Chairs: C. Cirstea, F. Gadducci, H. Schlingloff Past Chairmen: M. Roggenbach, L. Schröder, T. Mossakowski, J. Fiadeiro, P. Mosses, H.-J. Kreowski
Tue, 02 September 2014 at 05:00 pm in Sinaia, Romania
Joint work with: Alexander Kurz, Stefan Milius, Dirk Pattinson
Abstract: The analysis of concurrent and reactive systems is based to a large degree on various notions of process equivalence, ranging, on the so-called linear-time/branching-time spectrum, from fine-grained equivalences such as strong bisimilarity to coarse-grained ones such as trace equivalence. The theory of concurrent systems at large has benefited from developments in coalgebra, which has enabled uniform definitions and results that provide a common umbrella for seemingly disparate system types including non-deterministic, weighted, probabilistic, and game-based systesm. In particular, there has been some success in identifying a generic coalgebraic theory of bisimulation that matches known definitions in many concrete cases. The situation is currently somewhat less settled regarding trace equivalence. A number of coalgebraic approaches to trace equivalence have been proposed, none of which however cover all cases of interest; notably, all these approaches depend on explicit termination, which is not always imposed in standard systems, e.g. LTS. Here, we discuss a joint generalization of these approaches based on embedding functors modelling various aspects of the system, such as transition and braching, into a global monad; this approach appears to cover all cases considered previously and some additional ones, notably standard LTS and probabilistic labelled transition systems.
Slides