Chairs: C. Cirstea, F. Gadducci, H. Schlingloff Past Chairmen: M. Roggenbach, L. Schröder, T. Mossakowski, J. Fiadeiro, P. Mosses, H.-J. Kreowski
Tue, 14 January 2020 at 03:50 pm in Massa Marittima, Italy
Joint work with: Roberto Bruni and Giorgio Mossa
Abstract: In the version of logic programming (LP) based on interpretations where variables occur in atoms, a goal reduction via unification can be seen as a transition labelled by the most general unifier. Categorically, it is thus natural to model a logic program as a coalgebra. In the talk we represent: (i) goals as the substitutive monoid freely generated by the predicate symbols; (ii) the LTS as the structured coalgebra defined by the SOS rules implicit in the LP semantics; (iii) the bisimulation semantics of a logic program as its image on the final coalgebra.