Confluence of Graph
Rewriting with Interfaces

Filippo Bonchi, Fabio Gadducci, Aleks Kissinger, Pawel
Sobocinski and Fabio Zanasi

IFIP WG 1.3
9-12/01/2017, Binz

Confluence of Graph
Rewriting with Interfaces

Filippo Bonchi, Fabio Gadducci, Aleks Kissinger, Pawel
Sobocinski and Fabio Zanasi

To appear at ESOP 2017

IFIP WG 1.3
9-12/01/2017, Binz

Plan of the Talk

1) Conftluence for Term Rewriting
2) Confluence for DPO Rewriting
3) Contluence for DPO Rewriting with Interfaces

4) Confluence for PROP Rewriting

Plan of the Talk

2) Confluence for DPO Rewriting
3) Contluence for DPO Rewriting with Interfaces

4) Confluence for PROP Rewriting

Confluence and Termination

Confluence and Termination

Rewriting relation

Confluence and Termination

Rewriting relation

Its reflexive and transitive closure

Confluence and Termination

Rewriting relation

Its reflexive and transitive closure

Confluence L ocal Confluence

Confluence and Termination

Rewriting relation

Its reflexive and transitive closure

Confluence L ocal Confluence

Newman's Lemma

CIn atermlnatlng rewrltlg SyStem j

Confluence

for Term Rewriting

Knuth-Bendix 1970 I
§¢ Confluence of a terminating rewriting s\ /stem is de idablel

Confluence

for Term Rewriting

Knuth-Bendix 1970 I
Confluence of a terminating rewriting system is de idable]

—»rh—-———- e —— o — e

i =

| If 2 all the Cntlcal palrs are JOlnabIe
| then the system |s Iocally Confluent {

e S —

Confluence

for Term Rewriting

Knuth-Bendix 1970 I
‘Confluence of a terminating rewriting system is de idablel

_»x»__——— e e e e e

i =

| If 2 all the Cntlcal palrs are JOlnabIe
| then the system |s Iocally Confluent {

The converse implication Is

Confluence

for Term Rewriting

Knuth-Bendix 1970 I
‘Confluence of a terminafing rewriting system is decidat

,_»Km.__f e ——— e

n

| If all the Cntlcal palrs are JOlna
| then the system |s Iocally Confluent *

The converse implication Is

In a terminating system,
checking joinability of critical pairs is easy

Example

Two unary symbols f,g:1-->1

Tt (x)) r(x) (g (x)) g (x)

Example

Two unary symbols f,g:1-->1
r(f(x)) r(X) (g (x)) g (X)

rivially, the system is terminating

Example

Two unary symbols f,g:1-->1
r(f(x)) r(X) (g (x)) g (X)

rivially, the system is terminating

Critical pair

Example

Two unary symbols f,g:1-->1
r(f(x)) r(X) (g (x)) g (X)

rivially, the system is terminating

Critical pair

T(r(g(x)))

Example

Two unary symbols f,g:1-->1
r(f(x)) r(X) (g (x)) g (X)

rivially, the system is terminating

Critical pair

T(r(g(x)))

f(g(x)) f(g(x))

For all terms, rewriting is confluent

Example

Two unary symbols f,g:1-->1
r(f(x)) r(X) (g (x)) g (X)

rivially, the system is terminating

Critical pair

T(r(g(x)))

f(g(x)) f(g(x))

For all terms, rewriting is confluent
Every term has a unigue normal form

Ground Confluence

Two unary symbols f,g:1-->1 and one constant c:0-->1

rg(fr(x))) x T1(c) ¢ g(c)

Ground Confluence

Two unary symbols f,g:1-->1 and one constant c:0-->1

T(g(1(x))) x 1(c) ¢ g(c)
The following critical pair is not joinable

C

Ground Confluence

Two unary symbols f,g:1-->1 and one constant c:0-->1

T(g(1(x))) x 1(c) ¢ g(c)
The following critical pair is not joinable
(g (f@(rx)))))

g (T(x)) r(g(x))

C

Ground Confluence

Two unary symbols f,g:1-->1 and one constant c:0-->1

T(g(1(x))) x 1(c) ¢ g(c)
The following critical pair is not joinable

(g (f(g(t(x)))))

g (T(x)) r(g(x))

S0, the system is not confluent

Ground Confluence

Two unary symbols f,g:1-->1 and one constant c:0-->1

T(g(1(x))) x 1(c) ¢ g(c)
The following critical pair is not joinable

(g (f(g(t(x)))))

g (f(x)) F(g(x))
S0, the system is not confluent
But it is ground confluent:

Ground Confluence

Two unary symbols f,g:1-->1 and one constant c:0-->1

T(g(1(x))) x 1(c) ¢ g(c)
The following critical pair is not joinable

(g (f(g(t(x)))))

g (f(x)) F(g(x))
S0, the system is not confluent

But it is ground confluent:

it Is confluent for all the ground terms

Ground Confluence

Kapur et al. 1990 _
; Fora termmatlng Term Revvntmg System
| _ground confluence is not decidable ‘

e —— e _

S0, the system is not confluent

But it is ground confluent:

it Is confluent for all the ground terms

Ground Confluence

Kapur et al. 1990 _
; Fora termmatlng Term Revvntmg System
| _ground confluence is not decidable ‘

e —— e _

S0, the system is not confluent

But it is ground confluent:

it Is confluent for all the ground terms

The implication is anymore

Plan of the Talk

1) Conftluence for Term Rewriting

3) Contluence for DPO Rewriting with Interfaces

4) Confluence for PROP Rewriting

Graph Rewriting
(the DPO approach)

We work in an arbitrary adhesive category,
typically the category of hypergraphs and their morphisms

Graph Rewriting
(the DPO approach)

We work in an arbitrary adhesive category,
typically the category of hypergraphs and their morphisms

A rewriting rule is a span
< K R

Graph Rewriting
(the DPO approach)

We work in an arbitrary adhesive category,
typically the category of hypergraphs and their morphisms

A rewriting rule is a span
[< K R
A rewriting step Is a commuting diagram

Graph Rewriting
(the DPO approach)

We work in an arbitrary adhesive category,
typically the category of hypergraphs and their morphisms

A rewriting rule is a span

[< K R

A rewriting step Is a commuting diagram
[« K R
v _| v |_ v

Graph Rewriting
(the DPO approach)

We work in an arbitrary adhesive category,
typically the category of hypergraphs and their morphisms

A rewriting rule is a span

[< K R
A rewriting step Is a commuting diagram
[« K R
v _| v |_ v
G+ C du

where the two squares are pushouts

Graph Rewriting
(the DPO approach)

We work in an arbitrary adhesive category,
typically the category of hypergraphs and their morphisms

A rewriting rule is a span

[< K R
A rewriting step Is a commuting diagram
[« K R
v _| v |_ v
G+ C du

where the two squares are pushouts
G H

Confluence
for DPO rewriting

Plump 1993
*For a termmatlng DPO Revvrmng System
| _confluence is not decidable ?'

= = e o —

Confluence
for DPO rewriting

Plump 1993
*For 3 termmatlng DPO Revvrmng System
_confluence is not decidable ?'

—

e E—— e — p—

Critical pair analysis is useless:
joinability of critical pairs does not entall local confluence

Confluence
for DPO rewriting

Plump 1993
*For 3 termmatmg DPO Revvrmng System
_confluence is not decidable |

e e e e —

Critical pair analysis is useless:
joinability of critical pairs does not entall local confluence

Crltlcal Pairs

1 R1‘—K1—’ Lz‘—Kg—’RQ i

| |—|1‘—C1 — G - 2—’|—|2 “\

!
|
|

| f1 and fz are Jomtly ep|

Cou nter—examp\e

——

I 0 |

—_— — — — — = = = L - — — —_— e e —_— e — —_——_—_ s e _ - e e e e — — — -

Cou nter—examp\e

——

Only two critical pairs

Cou nter—examp\e

——

__

roti & ta— i O
Only two critical pa|rs
» O e bee— i
I N2

Cou nter—examp\e

——

e] ™
Only two critical pa|rs
s Qe bpe—1— 0
TN T
L L A e N N L2
L Qs b= O
Ao N

Cou nter—examp\e

——

g — i O el
Only two critical pa|rs
o N
_________ B B Ty o A N A 2
s Ot g Q.
N N T
O =) S

Both are trivially joinable
but the system is not confluent

Cou nter—examp\e

——

Both are trivially joinable
but the system is not confluent

Cou nter—examp\e

——

CT T T T = T T [l R ==

——————————————————————————

Both are trivially joinable
but the system is not confluent

Plan of the Talk

1) Conftluence for Term Rewriting

2) Confluence for DPO Rewriting

4) Confluence for PROP Rewriting

DPO rewriting
with Interfaces

DPO rewriting
with Interfaces

'DPO Revvrltlng with Borrowed Contexts:
11 Ehrlg and Koemg 2004

DPO rewriting
with Interfaces

DPO Rewrltlng with Borrowed Contexts
| Ehrig and Komg 2004

- Graphlcal Encodmg of Process Calculi -
Bonchl Koenig, Gadducm 2009 Gadducci 2007

DPO rewriting
with Interfaces

DPO Rewrltlng with Borrowed Contexts
| Ehrig and Koenig 2004

o Graphmal Encodmg of Process s Calculi -
Bonchl Koenig, Gadducci 2009 - Gadducci 2007

Foundatlonal studies of Computads INn cospans categones
Gadducci, Heckel 1997 - Sassone, Sobocinski 2005

DPO rewriting
with Interfaces

DPO Rewrltlng with Borrowed Contexts
| Ehrig and Koenig 2004

o Graphmal Encodmg of Process s Calculi -
Bonchl Koenig, Gadducci 2009 - Gadducci 2007

Foundatlonal studies of Computads INn cospans categones
Gadducci, Heckel 1997 - Sassone, Sobocinski 2005

Rather than rewriting graphs,
we rewrite graphs with interfaces

Ge——-3J

DPO rewriting
with Interfaces

DPO Rewrltlng with Borrowed Contexts
| Ehrig and Koenig 2004

o Graphmal Encodmg of Process s Calculi -
Bonchl Koenig, Gadducci 2009 - Gadducci 2007

Foundatlonal studies of Computads INn cospans categones
Gadducci, Heckel 1997 - Sassone, Sobocinski 2005

Rather than rewriting graphs,
we rewrite graphs with interfaces

Interface

o
,CQ..
D
3
%D
=)

— e e— e—— e— e— e—— e— e— e— e— — — — —)

DPO rewriting
with Interfaces

DPO Rewrltlng with Borrowed Contexts
| Ehrig and Koenig 2004

o Graphmal Encodmg of Process s Calculi -
Bonchl Koenig, Gadducci 2009 - Gadducci 2007

Foundatlonal studies of Computads INn cospans categones
(Gadducci, Heckel 1997 - Sassone, Sobocinski 2005

Ubiquitous in o
computer science: 1ather than rewriting graphs,

Queries in Databases, rewrite graphs with interfaces

Kleene Algebra,
etc... G- J

e e e e— e— e— — — — — e

«—{7 ()—s !
Systemi%/' = <~

]
0

* | Interface
® I
I

DPO rewriting
with Interfaces

DPO rewriting
with Interfaces

A rewriting rule Is a span
< K "R

DPO rewriting
with Interfaces

A rewriting rule Is a span
< K "R

A rewriting step Is a commuting diagram

2 N " where the two
squares are
v 7 R pushouts

> H

DPO rewriting
with Interfaces

A rewriting rule Is a span
< K "R

A rewriting step Is a commuting diagram

2 N " where the two
squares are
v 7 R pushouts

> H

DPO rewriting
with Interfaces

A rewriting rule Is a span
< K "R

A rewriting step Is a commuting diagram

standard DPO 2 N A where the two
IS an instance sguares are
when J is the — v pushouts

initial object0 G- >H

r—-———- - - =771 I____‘ | S r-———> -7 T ="7"""

Example

—_—_——— — —

—_—_—— 2 - =

—_—_——_— — = =

-_—_——_ L - =

r— —

—_—_—— — — —

——— Ve ——

IIIIII

Example

—_—_——— — —

—_—_—— 2 - =

—_—_——_— — = =

|||||

-_—_——_ L - =

——— e — —

—_—_—— — — —

——— Ve ——

||||||

By adding the intertace,
the arriving states are distinguished

Critical Pairs
with Interfaces

Critical Pairs
with Interfaces

f1and f2 are jointly epi

Rie—Ki—— L1 Lo——Ks—R>
LA

H+—C+ >Gip - —Ho

Critical Pairs
with Interfaces

f1and f2 are jointly epi

Ri——K{—— \X | ;—Ko—R>
f1 fo
|‘l|1jl—(£1 l_’ Gl’éI Ctz—qu

Critical Pairs
with Intertaces

f1and f2 are jointly epi

H+—C+ G1 —H>
_____ Ot tee—i—8

——————————

__

Confluence for
DPO with Interfaces

Confluence for
DPO with Interfaces

| Theorem
i In a DPO rewriting system “with interfaces, ‘

if all critical pairs are joinable, {
_then the system is locally confluent

e I Il

Confluence for
DPO with Interfaces

| Theorem

11 ‘Ina DPO rewriting system ‘with mterfaces ‘
| if all critical pairs are joinable, t
| thenthe system is locally confluent

P ———— e

|

In a terminating DPO rewriting system
with Interfaces,
confluence is decidable

Confluence for
DPO with Interfaces

| Theorem

11 ‘Ina DPO rewriting system ‘with mterfaces ‘
| if all critical pairs are joinable, t
| thenthe system is locally confluent

P ———— e

|

In a terminating DPO rewriting system
with Interfaces,
confluence is decidable

Confluence for all graphs with interfaces G <- J

Confluence for
DPO with Interfaces

| Theorem

11 ‘Ina DPO rewriting system ‘with mterfaces ‘
| if all critical pairs are joinable,
| thenthe system is locally confluent

e ===

|

In a terminating DPO rewriting system
with Interfaces,
confluence is decidable

Confluence for all graphs with interfaces G <- J

Plump's result concerns all graphs with interfaces G <- 0

Confluence for
DPO with Interfaces

| Theorem

11 ‘Ina DPO rewriting system ‘with mterfaces ‘
| if all critical pairs are joinable, t
| thenthe system is locally confluent

P ———— e

|

In a terminating DPO rewriting system
with Interfaces,
confluence is decidable

Confluence for all graphs with interfaces G <- J

Plump's result concerns all graphs with interfaces G <-

A nice analogy

Terminating ~ Terminating
Term Rewriting - DPO Rewriting
Ground Undecidable Undecidable

Confluence| (Kapuretal. 1990) (Plump 1993)

...

Decidable Decidable

CONHUENCE| (1 huth-Bendix 1970) (This talk)

A nice analogy

Terminating ~ Terminating
Term Rewriting - DPO Rewriting
Ground Undecidable Undecidable

Confluence| (Kapuretal. 1990) (Plump 1993)

...

Decidable Decidable

CONHUENCE| (1 huth-Bendix 1970) (This talk)

Plump's notion of l"strongly joinable’

A nice analogy

Terminating ~ Terminating
Term Rewriting - DPO Rewriting
Ground Undecidable Undecidable

Confluence| (Kapuretal. 1990) (Plump 1993)

...

Decidable Decidable

CONHUENCE| (1 huth-Bendix 1970) (This talk)

Plump's notion of l"strongly joinable’
Koenig et al. 2011

Plan of the Talk

1) Conftluence for Term Rewriting
2) Confluence for DPO Rewriting

3) Contluence for DPO Rewriting with Interfaces

Freely Generated PROPs

Freely Generated PROPs

A signature 2 is a set of gates with arity and coarity

(ol

Freely Generated PROPs

A signature 2 is a set of gates with arity and coarity
mE 0L fm

The set of 2-diagrams is generated by the following grammar

HOE A0

c,d ::

[
™
=
I
][]
SHQ
e 1T

X4

Freely Generated PROPs

A signature 2 is a set of gates with arity and coarity

(o] }r

The set of 2-diagrams is generated by the following grammar

101 O oo HOL 0; €2

DO HCHdE :f{

c,d ::

The PROP freely generated by 2, Ts, has
as arrows the 2-diagrams
modulo the laws of strict symmetric monoidal categories

axioms for PROPs

axioms for PROPs

(t13t2)5t3 = t1;(t2;13) Wp ;¢ = C=C;ildpy

axioms for PROPs

(t13t2)5t3 = t1;(t2;13) Wp ;¢ = C=C;ildpy

(t1 Dto) Dts=t1 B (ta B t3) idg®t=1t=16&idg

axioms for PROPs

(t13t2)5t3 = t1;(t2;13) Wp ;¢ = C=C;ildpy
(h B lo) Bty =t B (oD ty) idgBt=1t=1Didg

(t1513) ® (t23ta) = (t1 D t2); (I3 D ta)

OPs
ioms for PR
axio

)
(

3)
2

3

2)

(1

C,
C =
d,, I C =

Z T 9

] O
@ Z
] @

ts)
(s @
ty) = (t1 D t2)

(t2;ta

t3) B

(tl,t

I3

7525

L4

axioms for PROPs

(t13t2)5t3 = t1;(t2;13) Wp ;¢ = C=C;ildpy
(h B lo) Bty =t B (oD ty) idgBt=1t=1Didg

(t1513) ® (t23ta) = (t1 D t2); (I3 D ta)

axioms for PROPs

(t13t2)5t3 = t1;(t2;13) Wp ;¢ = C=C;ildpy
(th Bt) Bty =1 B (tats) idog®t=1t=1t6idg
(t15t3) B (t25ts) = (t1 B t2); (t3 B t4)

(t s> Zdz) yOm,z = On,z (Zdz s> t)

axioms for PROPs

(t13t2)5t3 = t1;(t2;13) Wp ;¢ = C=C;ildpy
(th Bt) Bty =1 B (tats) idog®t=1t=1t6idg
(t15t3) B (t25ts) = (t1 B t2); (t3 B t4)

(t s> Zdz) yOm,z = On,z (Zdz s> t)

axioms for PROPs

(t13t2)5t3 = t1;(t2;13) Wp ;¢ = C=C;ildpy
(th Bt) Bty =1 B (tats) idog®t=1t=1t6idg
(t15t3) B (t25ts) = (t1 B t2); (t3 B t4)

(t s> Zdz) yOm,z = On,z (Zdz s> t)

01,1;01,1 = tdo

axioms for PROPs

(t13t2)5t3 = t1;(t2;13) Wp ;¢ = C=C;ildpy
(th Bt) Bty =1 B (tats) idog®t=1t=1t6idg
(t15t3) B (t25ts) = (t1 B t2); (t3 B t4)

(t s> Zdz) yOm,z = On,z (Zdz s> t)

01,1;01,1 = tdo

X X] =

Symmetric Monoidal
Theories

An SMT is a pair (2,E) where
e 2 IS asignature and
e Eis a setof equations |=r, for 2-diagrams I,r:n-->m

Symmetric Monoidal
Theories

An SMT is a pair (2,E) where
e 2 IS asignature and
e Eis a setof equations |=r, for 2-diagrams I,r:n-->m

Commutative monoid [t o

-1 3-8 5153

Symmetric Monoidal
Theories

An SMT is a pair (2,E) where
e 2 IS asignature and
e Eis a setof equations |=r, for 2-diagrams I,r:n-->m

Commutative monoid [+ | ot
Pt =D D= Pof-D-
Commutative comonoid ro| to
e - T] O =1

Symmetric Monoidal
Theories

An SMT is a pair (2,E) where
e 2 IS asignature and
e Eis a setof equations |=r, for 2-diagrams I,r:n-->m

Special Frobenius Algebra

Commutative monoid [t o

Pt =D [

Commutative comonoid ro| to

P g G TOq =

151-Dd-1]]

iﬁ
:

Symmetric Monoidal
Theories

Symmetric Monoidal
Theories

terms are DAGs rather than Trees |
~variables are linear (cannot be copied or dlscarded)

Symmetric Monoidal

Theories
terms are DAGs rather than Trees |

~variables are linear (cannot be copied or dlscarded)

These features make SMTs fundamental for
Quantum Informations,
Concurrency Theory,

Linear Logics and
Control Theory.

Symmetric Monoidal
Theories

1) terms are DAGs rather than Trees ‘
varlables are Imear (Cannot be Cop|ed or dlscarded)

These features make SMTs fundamental for
Quantum Informations,
Concurrency Theory,

“Linear Logics and
i Control Theory.

. More and more

| Interest on SMTs: |
| an entire workshop |
| at Simons Institute
’ (Berkley)

Symmetric Monoidal

Theories
terms are DAGs rather than Trees |

~variables are linear (cannot be copied or dlscarded)

These features make SMTs fundamental for
Quantum Informations,
Concurrency Theory,
“Linear Logics and
i Control Theory.

i - ” The celebrated

| interest on SMTs: | theoretical physicist
i an entire workshop | John Baez
‘reinvented”

at Simons Institute |

(Berkley) | DPO rewriting

PROP Rewriting

By orienting the equations of an SMTs,
one obtains a rewriting system

PROP Rewriting

By orienting the equations of an SMTs,
one obtains a rewriting system

It the system is terminating and confluent,
one can check equivalence via rewriting

PROP Rewriting

By orienting the equations of an SMTs,
one obtains a rewriting system

It the system is terminating and confluent,
one can check equivalence via rewriting

More generally, rewriting is important for completeness proofs
that often rely on normal forms

PROP Rewriting

By orienting the equations of an SMTs,
one obtains a rewriting system

It the system is terminating and confluent,
one can check equivalence via rewriting

More generally, rewriting is important for completeness proofs
that often rely on normal forms

But rewriting modulo the axioms of PROPs is tough...

PROP Rewriting

By orienting the equations of an SMTs,
one obtains a rewriting system

It the system is terminating and confluent,
one can check equivalence via rewriting

More generally, rewriting is important for completeness proofs
that often rely on normal forms

But rewriting modulo the axioms of PROPs is tough... |

| !

PROP Rewriting

By orienting the equations of an SMTs,
one obtains a rewriting system

It the system is terminating and confluent,
one can check equivalence via rewriting

More generally, rewriting is important for completeness proofs
that often rely on normal forms

But rewriting modulo the axioms of PROPs is tough... |
. U Vi— = |wl— |

PROP Rewriting

By orienting the equations of an SMTs,
one obtains a rewriting system

It the system is terminating and confluent,
one can check equivalence via rewriting

More generally, rewriting is important for completeness proofs
that often rely on normal forms

But rewriting modulo the axioms of PROPs is tough...
» T — = [

PROP Rewriting

By orienting the equations of an SMTs,
one obtains a rewriting system

It the system is terminating and confluent,
one can check equivalence via rewriting

More generally, rewriting is important for completeness proofs
that often rely on normal forms

But rewriting modulo the axioms of PROPs is tough...

| U Vi— = |Wi—

French School of Rewriting
(Yves la Font,
Samuel Mimram,
Philippe Malboss, ...)

| — -

Confluence for
PROP Rewriting

__Lafont 2003 - Mimram 2014 ____
;; A finite rewriting system,
can generate infinitely many critical pairs |

P ——— e — — B————— ————

Confluence for
PROP Rewriting

__Lafont 2003 - Mimram 2014 ____
;; A finite rewriting system,
ccan generate infinitely many critical pairs_ 7‘

h;)*—-; J———— e —

One rule (directed Yang-Baxter)

P = 35

Confluence for
PROP Rewriting

____Lafont 2003 - Mimram 2014
;; A finite rewriting system,
ccan generate infinitely many critical pairs_ 7‘

"—A e e e e —

One rule (directed Yang-Baxter)

Infinitely many critical pairs: one for each diagram ¢

Rewriting Modulo
Symmetric Monoidal Structure
(LICS 2016)

One solution to both problems: DPO rewriting with interfaces!

Rewriting Modulo
Symmetric Monoidal Structure
(LICS 2016)

One solution to both problems: DPO rewriting with interfaces!

It the theory contains It the theory does contain
a | a special Frobenius structure,

Rewriting Modulo
Symmetric Monoidal Structure
(LICS 2016)

One solution to both problems: DPO rewriting with interfaces!

It the theory contains

then
PROP rewriting

DPO rewriting
with interfaces

If the theory does contain

| a special Frobenius structure,

Rewriting Modulo
Symmetric Monoidal Structure
(LICS 2016)

One solution to both problems: DPO rewriting with interfaces!

It the theory contains

then
PROP rewriting

DPO rewriting
with interfaces

If the theory does contain

| a special Frobenius structure,

then
PROP rewriting
convex DPO rewriting
with interfaces

Rewriting Modulo
Symmetric Monoidal Structure
(LICS 2016)

One solution to both problems: DPO rewriting with interfaces!

It the theory contains

then
PROP rewriting

DPO rewriting
with interfaces

If the theory does contain

| a special Frobenius structure,

then
PROP rewriting
convex DPO rewriting
/\ with interfaces

Paves the way to
challenging and promising
research paths...

Rewriting Modulo
Symmetric Monoidal Structure
(LICS 2016)

One solution to both problems: DPO rewriting with interfaces!

It the theory contains It the theory does contain
a | a special Frobenius structure,
then then
PROP rewriting PROP rewriting
DPO rewriting convex DPO rewriting
with interface/g, /\ with interfaces
We know how to prove ChalIgr?gﬁwsthi(;/vS?/otr%ising
confluence research paths...

Future Works

Future Works

SMTs with Special Frobenius Structures are closely related to

Future Works

SMTs with Special Frobenius Structures are closely related to

Like term rewriting plays a crucial role for equational logic,
hopeftully, (with interfaces!) may play
analogous role for Geometric Logic....

Future Works

SMTs with Special Frobenius Structures are closely related to

Like term rewriting plays a crucial role for equational logic,
hopeftully, (with interfaces!) may play
analogous role for Geometric Logic....

Future Works

SMTs with Special Frobenius Structures are closely related to

Like term rewriting plays a crucial role for equational logic,
hopeftully, (with interfaces!) may play
analogous role for Geometric Logic....

SMTs with Special Frobenius Structures are closely related to
Relational Structures
(more precisely, to Cartesian Bicategories of Relations by
Carboni and Walters)

Future Works

SMTs with Special Frobenius Structures are closely related to

Like term rewriting plays a crucial role for equational logic,
hopeftully, (with interfaces!) may play
analogous role for Geometric Logic....

SMTs with Special Frobenius Structures are closely related to
Relational Structures
(more precisely, to Cartesian Bicategories of Relations by
Carboni and Walters)

A functorial semantics for them is still not understood

Future Works

Future Works

Most of the theory of convex DPO rewriting
has to be developed

Future Works

Most of the theory of convex DPO rewriting
has to be developed

Future Works

Most of the theory of convex DPO rewriting
has to be developed

We need tools for supporting combinatorial reasoning

1) Implementing rewriting with Interfaces (for
arbitrary matches and rules)
2) Automatically proving confluence

3) (Semi-)Automatically check equivalence

