
Confluence of Graph
Rewriting with Interfaces
Filippo Bonchi, Fabio Gadducci, Aleks Kissinger, Pawel

Sobocinski and Fabio Zanasi

IFIP WG 1.3
9-12/01/2017, Binz

Confluence of Graph
Rewriting with Interfaces
Filippo Bonchi, Fabio Gadducci, Aleks Kissinger, Pawel

Sobocinski and Fabio Zanasi

To appear at ESOP 2017

IFIP WG 1.3
9-12/01/2017, Binz

Plan of the Talk

1) Confluence for Term Rewriting

2) Confluence for DPO Rewriting

3) Confluence for DPO Rewriting with Interfaces

4) Confluence for PROP Rewriting

Plan of the Talk

1) Confluence for Term Rewriting

2) Confluence for DPO Rewriting

3) Confluence for DPO Rewriting with Interfaces

4) Confluence for PROP Rewriting

Confluence and Termination

Confluence and Termination
Rewriting relation

Confluence and Termination

Its reflexive and transitive closure *
Rewriting relation

Confluence and Termination

Its reflexive and transitive closure *
Rewriting relation

Confluence

**

* *

Local Confluence

* *

Confluence and Termination

Its reflexive and transitive closure *
Rewriting relation

Confluence

**

* *

Local Confluence

* *

Newman's Lemma
In a terminating rewriting system,

local confluence implies confluence

Confluence
for Term Rewriting

Knuth-Bendix 1970
Confluence of a terminating rewriting system is decidable

Confluence
for Term Rewriting

Knuth-Bendix 1970
Confluence of a terminating rewriting system is decidable

If all the critical pairs are joinable,
then the system is locally confluent

Confluence
for Term Rewriting

The converse implication is trivial

Knuth-Bendix 1970
Confluence of a terminating rewriting system is decidable

If all the critical pairs are joinable,
then the system is locally confluent

Confluence
for Term Rewriting

The converse implication is trivial

In a terminating system,
checking joinability of critical pairs is easy

Knuth-Bendix 1970
Confluence of a terminating rewriting system is decidable

If all the critical pairs are joinable,
then the system is locally confluent

Example
f (f (x)) f (x) f (g (x)) g (x)

(1) (2)
Two unary symbols f,g:1-->1

Example

Trivially, the system is terminating

f (f (x)) f (x) f (g (x)) g (x)
(1) (2)

Two unary symbols f,g:1-->1

Example

Trivially, the system is terminating

Critical pair

f (f (x)) f (x) f (g (x)) g (x)
(1) (2)

Two unary symbols f,g:1-->1

Example

Trivially, the system is terminating

Critical pair

f (f (x)) f (x) f (g (x)) g (x)
(1) (2)

f (f (g (x)))

f (g (x)) f (g (x))

(1) (2)

* *

Two unary symbols f,g:1-->1

Example

Trivially, the system is terminating

Critical pair

f (f (x)) f (x) f (g (x)) g (x)
(1) (2)

f (f (g (x)))

f (g (x)) f (g (x))

(1) (2)

* *

For all terms, rewriting is confluent

Two unary symbols f,g:1-->1

Example

Trivially, the system is terminating

Critical pair

f (f (x)) f (x) f (g (x)) g (x)
(1) (2)

f (f (g (x)))

f (g (x)) f (g (x))

(1) (2)

* *

For all terms, rewriting is confluent
Every term has a unique normal form

Two unary symbols f,g:1-->1

Ground Confluence
f (c) cf (g (f (x))) x

Two unary symbols f,g:1-->1 and one constant c:0-->1

g (c) c

Ground Confluence
f (c) cf (g (f (x))) x

Two unary symbols f,g:1-->1 and one constant c:0-->1

g (c) c
The following critical pair is not joinable

Ground Confluence
f (c) cf (g (f (x))) x

Two unary symbols f,g:1-->1 and one constant c:0-->1

g (c) c
The following critical pair is not joinable

f (g (f (g (f (x)))))

f (g (x)) g (f (x))

Ground Confluence
f (c) cf (g (f (x))) x

Two unary symbols f,g:1-->1 and one constant c:0-->1

g (c) c
The following critical pair is not joinable

f (g (f (g (f (x)))))

f (g (x)) g (f (x))
So, the system is not confluent

Ground Confluence
f (c) cf (g (f (x))) x

Two unary symbols f,g:1-->1 and one constant c:0-->1

g (c) c
The following critical pair is not joinable

f (g (f (g (f (x)))))

f (g (x)) g (f (x))
So, the system is not confluent

But it is ground confluent:

Ground Confluence
f (c) cf (g (f (x))) x

Two unary symbols f,g:1-->1 and one constant c:0-->1

g (c) c
The following critical pair is not joinable

f (g (f (g (f (x)))))

f (g (x)) g (f (x))
So, the system is not confluent

But it is ground confluent:
it is confluent for all the ground terms

Ground Confluence

So, the system is not confluent
But it is ground confluent:

it is confluent for all the ground terms

Kapur et al. 1990
For a terminating Term Rewriting System,

ground confluence is not decidable

Ground Confluence

So, the system is not confluent
But it is ground confluent:

it is confluent for all the ground terms

Kapur et al. 1990
For a terminating Term Rewriting System,

ground confluence is not decidable

The trivial implication is not trivial anymore

Plan of the Talk

1) Confluence for Term Rewriting

2) Confluence for DPO Rewriting

3) Confluence for DPO Rewriting with Interfaces

4) Confluence for PROP Rewriting

Graph Rewriting
(the DPO approach)

We work in an arbitrary adhesive category,
typically the category of hypergraphs and their morphisms

Graph Rewriting
(the DPO approach)

We work in an arbitrary adhesive category,
typically the category of hypergraphs and their morphisms

A rewriting rule is a span
L K R

Graph Rewriting
(the DPO approach)

We work in an arbitrary adhesive category,
typically the category of hypergraphs and their morphisms

A rewriting rule is a span
L K R

A rewriting step is a commuting diagram

Graph Rewriting
(the DPO approach)

We work in an arbitrary adhesive category,
typically the category of hypergraphs and their morphisms

A rewriting rule is a span
L K R

A rewriting step is a commuting diagram
L K R

G C H

Graph Rewriting
(the DPO approach)

We work in an arbitrary adhesive category,
typically the category of hypergraphs and their morphisms

A rewriting rule is a span
L K R

A rewriting step is a commuting diagram

where the two squares are pushouts

L K R

G C H

Graph Rewriting
(the DPO approach)

We work in an arbitrary adhesive category,
typically the category of hypergraphs and their morphisms

A rewriting rule is a span
L K R

A rewriting step is a commuting diagram

where the two squares are pushouts

L K R

G C H

G H

Confluence
for DPO rewriting

Plump 1993
For a terminating DPO Rewriting System,

confluence is not decidable

Confluence
for DPO rewriting

Plump 1993
For a terminating DPO Rewriting System,

confluence is not decidable

Critical pair analysis is useless:
joinability of critical pairs does not entail local confluence

Confluence
for DPO rewriting

Plump 1993
For a terminating DPO Rewriting System,

confluence is not decidable

Critical pair analysis is useless:
joinability of critical pairs does not entail local confluence

L1

G

R1 K1

H1 C1

K2 R2

C2 H2

L2
f1 f2

 f1 and f2 are jointly epi

Critical Pairs

Counter-example
0

1

b
0

1

0
a

1
0

1
0

b
1

0
a

1

Counter-example
0

1

b
0

1

0
a

1
0

1
0

b
1

0
a

1

Only two critical pairs

Counter-example
0

1

b
0

1

0
a

1
0

1
0

b
1

0
a

1

0

1

b
0

1

0
a

1
0

1
0

b
1

0
a

1

a

b b

Only two critical pairs

Counter-example
0

1

b
0

1

0
a

1
0

1
0

b
1

0
a

1

0

1

b
0

1

0
a

1
0

1
0

b
1

0
a

1

a

b b

0

1

b
0

1

0
a

1
0

1
0

b
1

0
a

1

b ba

Only two critical pairs

Counter-example
0

1

b
0

1

0
a

1
0

1
0

b
1

0
a

1

0

1

b
0

1

0
a

1
0

1
0

b
1

0
a

1

a

b b

0

1

b
0

1

0
a

1
0

1
0

b
1

0
a

1

b ba

Only two critical pairs

Both are trivially joinable
but the system is not confluent

Counter-example
0

1

b
0

1

0
a

1
0

1
0

b
1

0
a

1

Both are trivially joinable
but the system is not confluent

Counter-example
0

1

b
0

1

0
a

1
0

1
0

b
1

0
a

1

Both are trivially joinable
but the system is not confluent

0

1

b
0

1

0
a

1
0

1
0

b
1

0
a

1

a

bb

b

b

b

b b

Plan of the Talk

1) Confluence for Term Rewriting

2) Confluence for DPO Rewriting

3) Confluence for DPO Rewriting with Interfaces

4) Confluence for PROP Rewriting

DPO rewriting
with Interfaces

DPO rewriting
with Interfaces

DPO Rewriting with Borrowed Contexts:
Ehrig and Koenig 2004

DPO rewriting
with Interfaces

DPO Rewriting with Borrowed Contexts:
Ehrig and Koenig 2004

Graphical Encoding of Process Calculi
Bonchi, Koenig, Gadducci 2009 - Gadducci 2007

DPO rewriting
with Interfaces

DPO Rewriting with Borrowed Contexts:
Ehrig and Koenig 2004

Graphical Encoding of Process Calculi
Bonchi, Koenig, Gadducci 2009 - Gadducci 2007

Foundational studies of computads in cospans categories
Gadducci, Heckel 1997 - Sassone, Sobocinski 2005

DPO rewriting
with Interfaces

Rather than rewriting graphs,
we rewrite graphs with interfaces

G J

DPO Rewriting with Borrowed Contexts:
Ehrig and Koenig 2004

Graphical Encoding of Process Calculi
Bonchi, Koenig, Gadducci 2009 - Gadducci 2007

Foundational studies of computads in cospans categories
Gadducci, Heckel 1997 - Sassone, Sobocinski 2005

DPO rewriting
with Interfaces

Rather than rewriting graphs,
we rewrite graphs with interfaces

G J

DPO Rewriting with Borrowed Contexts:
Ehrig and Koenig 2004

Graphical Encoding of Process Calculi
Bonchi, Koenig, Gadducci 2009 - Gadducci 2007

Foundational studies of computads in cospans categories
Gadducci, Heckel 1997 - Sassone, Sobocinski 2005

0
a

b

a
1 0

1System Interface

DPO rewriting
with Interfaces

Rather than rewriting graphs,
we rewrite graphs with interfaces

G J

DPO Rewriting with Borrowed Contexts:
Ehrig and Koenig 2004

Graphical Encoding of Process Calculi
Bonchi, Koenig, Gadducci 2009 - Gadducci 2007

Foundational studies of computads in cospans categories
Gadducci, Heckel 1997 - Sassone, Sobocinski 2005

0
a

b

a
1 0

1System Interface

Ubiquitous in
computer science:

Queries in Databases,
Kleene Algebra,

etc...

DPO rewriting
with Interfaces

DPO rewriting
with Interfaces
A rewriting rule is a span

L K R

DPO rewriting
with Interfaces
A rewriting rule is a span

L K R

A rewriting step is a commuting diagram

where the two
squares are

pushouts

L K R

G C H

J

DPO rewriting
with Interfaces
A rewriting rule is a span

L K R

(G<-J) (H<-J)

A rewriting step is a commuting diagram

where the two
squares are

pushouts

L K R

G C H

J

DPO rewriting
with Interfaces
A rewriting rule is a span

L K R

(G<-J) (H<-J)

A rewriting step is a commuting diagram

where the two
squares are

pushouts

L K R

G C H

J

standard DPO
is an instance
when J is the
initial object 0

Example
0

1

b
0

1

0
a

1
0

1
0

b
1

0
a

1

Example
0

1

b
0

1

0
a

1
0

1
0

b
1

0
a

1

0

0

1
0

b
1

0
a

1

a

b

0

1

1
01

0
1

Example
0

1

b
0

1

0
a

1
0

1
0

b
1

0
a

1

0

0

1
0

b
1

0
a

1

a

b

0

1

1
01

0
1

0

0

1

0

1

b
0

1

0
a

1

b
1

0 1

Example
0

1

b
0

1

0
a

1
0

1
0

b
1

0
a

1

0

0

1
0

b
1

0
a

1

a

b

0

1

1
01

0
1

0

0

1

0

1

b
0

1

0
a

1

b
1

0 1

By adding the interface,
the arriving states are distinguished

Critical Pairs
with interfaces

Critical Pairs
with interfaces

L1

G1

R1 K1

H1 C1

K2 R2

C2 H2

L2
f1 f2

 f1 and f2 are jointly epi

Critical Pairs
with interfaces

L1

G1

R1 K1

H1 C1

K2 R2

C2 H2

L2
f1 f2

 f1 and f2 are jointly epi

J

Critical Pairs
with interfaces

L1

G1

R1 K1

H1 C1

K2 R2

C2 H2

L2
f1 f2

 f1 and f2 are jointly epi

J

0

0

1

b
0

1

0
a

1

b
1

0 1 0

0

1
0

b
1

0
a

1

a

b

0

1

1
01

0
1

Confluence for
DPO with Interfaces

Confluence for
DPO with Interfaces

In a DPO rewriting system with interfaces,
if all critical pairs are joinable,

then the system is locally confluent

Theorem

Confluence for
DPO with Interfaces

In a DPO rewriting system with interfaces,
if all critical pairs are joinable,

then the system is locally confluent

Theorem

In a terminating DPO rewriting system
with interfaces,

confluence is decidable

Corollary

Confluence for
DPO with Interfaces

In a DPO rewriting system with interfaces,
if all critical pairs are joinable,

then the system is locally confluent

Theorem

In a terminating DPO rewriting system
with interfaces,

confluence is decidable

Corollary

Confluence for all graphs with interfaces G <- J

Confluence for
DPO with Interfaces

In a DPO rewriting system with interfaces,
if all critical pairs are joinable,

then the system is locally confluent

Theorem

In a terminating DPO rewriting system
with interfaces,

confluence is decidable

Corollary

Confluence for all graphs with interfaces G <- J

Plump's result concerns all graphs with interfaces G <- 0

Confluence for
DPO with Interfaces

In a DPO rewriting system with interfaces,
if all critical pairs are joinable,

then the system is locally confluent

Theorem

In a terminating DPO rewriting system
with interfaces,

confluence is decidable

Corollary

Confluence for all graphs with interfaces G <- J

Plump's result concerns all graphs with interfaces G <- 0

G
R
O
U
N
D

A nice analogy
Terminating

Term Rewriting
Terminating

DPO Rewriting

Ground
Confluence

Confluence Decidable
(Knuth-Bendix 1970)

Undecidable
(Plump 1993)

Decidable
(This talk)

Undecidable
(Kapur et al. 1990)

A nice analogy
Terminating

Term Rewriting
Terminating

DPO Rewriting

Ground
Confluence

Confluence Decidable
(Knuth-Bendix 1970)

Undecidable
(Plump 1993)

Decidable
(This talk)

Undecidable
(Kapur et al. 1990)

Plump's notion of "strongly joinable"

A nice analogy
Terminating

Term Rewriting
Terminating

DPO Rewriting

Ground
Confluence

Confluence Decidable
(Knuth-Bendix 1970)

Undecidable
(Plump 1993)

Decidable
(This talk)

Undecidable
(Kapur et al. 1990)

Plump's notion of "strongly joinable"
Koenig et al. 2011

Plan of the Talk

1) Confluence for Term Rewriting

2) Confluence for DPO Rewriting

3) Confluence for DPO Rewriting with Interfaces

4) Confluence for PROP Rewriting

Freely Generated PROPs

Freely Generated PROPs

o

n m{ }

A signature Σ is a set of gates with arity and coarity

Freely Generated PROPs

o

n m{ }

A signature Σ is a set of gates with arity and coarity

c, d ::=

The set of Σ-diagrams is generated by the following grammar

c d
c
d

o1 o2 ok
. . .

oi 2 Σ

Freely Generated PROPs

o

n m{ }

A signature Σ is a set of gates with arity and coarity

c, d ::=

The set of Σ-diagrams is generated by the following grammar

c d
c
d

o1 o2 ok
. . .

oi 2 Σ

The PROP freely generated by Σ, TΣ, has
as arrows the Σ-diagrams

modulo the laws of strict symmetric monoidal categories

axioms for PROPs

axioms for PROPs
2.2. PROPS 17

(t1 ; t3) � (t2 ; t4) = (t1 � t2) ; (t3 � t4)

(t1 ; t2) ; t3 = t1 ; (t2 ; t3) id
n

; c = c = c ; id
m

(t1 � t2) � t3 = t1 � (t2 � t3) id0 � t = t = t � id0

�1,1 ; �1,1 = id2 (t � id
z

) ; �
m,z

= �
n,z

; (id
z

� t)

Figure 2.1: Axioms of symmetric strict monoidal categories for a PROP T.

PROPs are adapted to the study of universal algebra in a symmetric monoidal setting. Within
this perspective, a typical way of defining a PROP is as the free construction on a given set of
generators and equations. We express these data in the form of a (one-sorted) symmetric monoidal
theory (SMT).

Definition 2.2. A symmetric monoidal theory (SMT) is a pair (⌃, E) consisting of a signature
⌃ and a set of equations E. The signature ⌃ is a set of generators o : n ! m with arity n and
coarity m. The set of ⌃-terms is obtained by composing generators in ⌃, the unit id : 1 ! 1 and
the symmetry �1,1 : 2 ! 2 with ; and �. This is a purely formal process: given ⌃-terms t : k ! l,
u : l ! m, v : m ! n, one constructs new ⌃-terms t ; u : k ! m and t � v : k + n ! l + n. The set
E of equations contains pairs (t, t0 : n ! m) of ⌃-terms with the same arity and coarity.

Now, given an SMT (⌃, E), one (freely) obtains a PROP T by letting the arrows n ! m be the
set of ⌃-terms n ! m taken modulo the laws of symmetric strict monoidal categories — Fig. 2.1
— and the smallest congruence (with respect to ; and �) containing the equations t = t0 for any
(t, t0) 2 E.

There is a natural graphical representation of these terms as string diagrams, which we now
sketch referring to [100] for the details. A ⌃-term n ! m is pictured as a box with n ports
on the left and m ports on the right, to which we shall refer with top-bottom enumerations
1, . . . , n and 1, . . . , m. Composition via ; and � are rendered graphically by horizontal and
vertical juxtaposition of boxes, respectively.

t ; s is drawn st t � s is drawn t
s

. (2.1)

In any SMT there are specific ⌃-terms generating the underlying symmetric monoidal structure:
these are id1 : 1 ! 1, represented as , the symmetry �1,1 : 1 + 1 ! 1 + 1, represented as

, and the unit object for �, that is, id0 : 0 ! 0, whose representation is an empty space .
Graphical representation for arbitrary identities id

n

and symmetries �
n,m

are generated according
to the pasting rules in (2.1).

The axioms of symmetric strict monoidal categories (Fig. 2.1) are naturally displayed in the
graphical language. Compatibility of � and ; is already implicit in the representation of (t ; s) �

(t0 ; s0) and (t � s) ; (t0 � s0) as the same string diagram:

st
st 00

Similarly, associativity of ; , � and compatibility of � with the unit are also implicit in the
graphical representation. We then have two sliding axioms yielding compatibility of ; with the
identity and naturality of symmetry:

t = t = t . (SM1)
t

= t . (SM2)

Finally, we have that �1,1 is self-inverse, that is,

= . (SM3)

axioms for PROPs
2.2. PROPS 17

(t1 ; t3) � (t2 ; t4) = (t1 � t2) ; (t3 � t4)

(t1 ; t2) ; t3 = t1 ; (t2 ; t3) id
n

; c = c = c ; id
m

(t1 � t2) � t3 = t1 � (t2 � t3) id0 � t = t = t � id0

�1,1 ; �1,1 = id2 (t � id
z

) ; �
m,z

= �
n,z

; (id
z

� t)

Figure 2.1: Axioms of symmetric strict monoidal categories for a PROP T.

PROPs are adapted to the study of universal algebra in a symmetric monoidal setting. Within
this perspective, a typical way of defining a PROP is as the free construction on a given set of
generators and equations. We express these data in the form of a (one-sorted) symmetric monoidal
theory (SMT).

Definition 2.2. A symmetric monoidal theory (SMT) is a pair (⌃, E) consisting of a signature
⌃ and a set of equations E. The signature ⌃ is a set of generators o : n ! m with arity n and
coarity m. The set of ⌃-terms is obtained by composing generators in ⌃, the unit id : 1 ! 1 and
the symmetry �1,1 : 2 ! 2 with ; and �. This is a purely formal process: given ⌃-terms t : k ! l,
u : l ! m, v : m ! n, one constructs new ⌃-terms t ; u : k ! m and t � v : k + n ! l + n. The set
E of equations contains pairs (t, t0 : n ! m) of ⌃-terms with the same arity and coarity.

Now, given an SMT (⌃, E), one (freely) obtains a PROP T by letting the arrows n ! m be the
set of ⌃-terms n ! m taken modulo the laws of symmetric strict monoidal categories — Fig. 2.1
— and the smallest congruence (with respect to ; and �) containing the equations t = t0 for any
(t, t0) 2 E.

There is a natural graphical representation of these terms as string diagrams, which we now
sketch referring to [100] for the details. A ⌃-term n ! m is pictured as a box with n ports
on the left and m ports on the right, to which we shall refer with top-bottom enumerations
1, . . . , n and 1, . . . , m. Composition via ; and � are rendered graphically by horizontal and
vertical juxtaposition of boxes, respectively.

t ; s is drawn st t � s is drawn t
s

. (2.1)

In any SMT there are specific ⌃-terms generating the underlying symmetric monoidal structure:
these are id1 : 1 ! 1, represented as , the symmetry �1,1 : 1 + 1 ! 1 + 1, represented as

, and the unit object for �, that is, id0 : 0 ! 0, whose representation is an empty space .
Graphical representation for arbitrary identities id

n

and symmetries �
n,m

are generated according
to the pasting rules in (2.1).

The axioms of symmetric strict monoidal categories (Fig. 2.1) are naturally displayed in the
graphical language. Compatibility of � and ; is already implicit in the representation of (t ; s) �

(t0 ; s0) and (t � s) ; (t0 � s0) as the same string diagram:

st
st 00

Similarly, associativity of ; , � and compatibility of � with the unit are also implicit in the
graphical representation. We then have two sliding axioms yielding compatibility of ; with the
identity and naturality of symmetry:

t = t = t . (SM1)
t

= t . (SM2)

Finally, we have that �1,1 is self-inverse, that is,

= . (SM3)

2.2. PROPS 17

(t1 ; t3) � (t2 ; t4) = (t1 � t2) ; (t3 � t4)

(t1 ; t2) ; t3 = t1 ; (t2 ; t3) id
n

; c = c = c ; id
m

(t1 � t2) � t3 = t1 � (t2 � t3) id0 � t = t = t � id0

�1,1 ; �1,1 = id2 (t � id
z

) ; �
m,z

= �
n,z

; (id
z

� t)

Figure 2.1: Axioms of symmetric strict monoidal categories for a PROP T.

PROPs are adapted to the study of universal algebra in a symmetric monoidal setting. Within
this perspective, a typical way of defining a PROP is as the free construction on a given set of
generators and equations. We express these data in the form of a (one-sorted) symmetric monoidal
theory (SMT).

Definition 2.2. A symmetric monoidal theory (SMT) is a pair (⌃, E) consisting of a signature
⌃ and a set of equations E. The signature ⌃ is a set of generators o : n ! m with arity n and
coarity m. The set of ⌃-terms is obtained by composing generators in ⌃, the unit id : 1 ! 1 and
the symmetry �1,1 : 2 ! 2 with ; and �. This is a purely formal process: given ⌃-terms t : k ! l,
u : l ! m, v : m ! n, one constructs new ⌃-terms t ; u : k ! m and t � v : k + n ! l + n. The set
E of equations contains pairs (t, t0 : n ! m) of ⌃-terms with the same arity and coarity.

Now, given an SMT (⌃, E), one (freely) obtains a PROP T by letting the arrows n ! m be the
set of ⌃-terms n ! m taken modulo the laws of symmetric strict monoidal categories — Fig. 2.1
— and the smallest congruence (with respect to ; and �) containing the equations t = t0 for any
(t, t0) 2 E.

There is a natural graphical representation of these terms as string diagrams, which we now
sketch referring to [100] for the details. A ⌃-term n ! m is pictured as a box with n ports
on the left and m ports on the right, to which we shall refer with top-bottom enumerations
1, . . . , n and 1, . . . , m. Composition via ; and � are rendered graphically by horizontal and
vertical juxtaposition of boxes, respectively.

t ; s is drawn st t � s is drawn t
s

. (2.1)

In any SMT there are specific ⌃-terms generating the underlying symmetric monoidal structure:
these are id1 : 1 ! 1, represented as , the symmetry �1,1 : 1 + 1 ! 1 + 1, represented as

, and the unit object for �, that is, id0 : 0 ! 0, whose representation is an empty space .
Graphical representation for arbitrary identities id

n

and symmetries �
n,m

are generated according
to the pasting rules in (2.1).

The axioms of symmetric strict monoidal categories (Fig. 2.1) are naturally displayed in the
graphical language. Compatibility of � and ; is already implicit in the representation of (t ; s) �

(t0 ; s0) and (t � s) ; (t0 � s0) as the same string diagram:

st
st 00

Similarly, associativity of ; , � and compatibility of � with the unit are also implicit in the
graphical representation. We then have two sliding axioms yielding compatibility of ; with the
identity and naturality of symmetry:

t = t = t . (SM1)
t

= t . (SM2)

Finally, we have that �1,1 is self-inverse, that is,

= . (SM3)

axioms for PROPs
2.2. PROPS 17

(t1 ; t3) � (t2 ; t4) = (t1 � t2) ; (t3 � t4)

(t1 ; t2) ; t3 = t1 ; (t2 ; t3) id
n

; c = c = c ; id
m

(t1 � t2) � t3 = t1 � (t2 � t3) id0 � t = t = t � id0

�1,1 ; �1,1 = id2 (t � id
z

) ; �
m,z

= �
n,z

; (id
z

� t)

Figure 2.1: Axioms of symmetric strict monoidal categories for a PROP T.

PROPs are adapted to the study of universal algebra in a symmetric monoidal setting. Within
this perspective, a typical way of defining a PROP is as the free construction on a given set of
generators and equations. We express these data in the form of a (one-sorted) symmetric monoidal
theory (SMT).

Definition 2.2. A symmetric monoidal theory (SMT) is a pair (⌃, E) consisting of a signature
⌃ and a set of equations E. The signature ⌃ is a set of generators o : n ! m with arity n and
coarity m. The set of ⌃-terms is obtained by composing generators in ⌃, the unit id : 1 ! 1 and
the symmetry �1,1 : 2 ! 2 with ; and �. This is a purely formal process: given ⌃-terms t : k ! l,
u : l ! m, v : m ! n, one constructs new ⌃-terms t ; u : k ! m and t � v : k + n ! l + n. The set
E of equations contains pairs (t, t0 : n ! m) of ⌃-terms with the same arity and coarity.

Now, given an SMT (⌃, E), one (freely) obtains a PROP T by letting the arrows n ! m be the
set of ⌃-terms n ! m taken modulo the laws of symmetric strict monoidal categories — Fig. 2.1
— and the smallest congruence (with respect to ; and �) containing the equations t = t0 for any
(t, t0) 2 E.

There is a natural graphical representation of these terms as string diagrams, which we now
sketch referring to [100] for the details. A ⌃-term n ! m is pictured as a box with n ports
on the left and m ports on the right, to which we shall refer with top-bottom enumerations
1, . . . , n and 1, . . . , m. Composition via ; and � are rendered graphically by horizontal and
vertical juxtaposition of boxes, respectively.

t ; s is drawn st t � s is drawn t
s

. (2.1)

In any SMT there are specific ⌃-terms generating the underlying symmetric monoidal structure:
these are id1 : 1 ! 1, represented as , the symmetry �1,1 : 1 + 1 ! 1 + 1, represented as

, and the unit object for �, that is, id0 : 0 ! 0, whose representation is an empty space .
Graphical representation for arbitrary identities id

n

and symmetries �
n,m

are generated according
to the pasting rules in (2.1).

The axioms of symmetric strict monoidal categories (Fig. 2.1) are naturally displayed in the
graphical language. Compatibility of � and ; is already implicit in the representation of (t ; s) �

(t0 ; s0) and (t � s) ; (t0 � s0) as the same string diagram:

st
st 00

Similarly, associativity of ; , � and compatibility of � with the unit are also implicit in the
graphical representation. We then have two sliding axioms yielding compatibility of ; with the
identity and naturality of symmetry:

t = t = t . (SM1)
t

= t . (SM2)

Finally, we have that �1,1 is self-inverse, that is,

= . (SM3)

2.2. PROPS 17

(t1 ; t3) � (t2 ; t4) = (t1 � t2) ; (t3 � t4)

(t1 ; t2) ; t3 = t1 ; (t2 ; t3) id
n

; c = c = c ; id
m

(t1 � t2) � t3 = t1 � (t2 � t3) id0 � t = t = t � id0

�1,1 ; �1,1 = id2 (t � id
z

) ; �
m,z

= �
n,z

; (id
z

� t)

Figure 2.1: Axioms of symmetric strict monoidal categories for a PROP T.

PROPs are adapted to the study of universal algebra in a symmetric monoidal setting. Within
this perspective, a typical way of defining a PROP is as the free construction on a given set of
generators and equations. We express these data in the form of a (one-sorted) symmetric monoidal
theory (SMT).

Definition 2.2. A symmetric monoidal theory (SMT) is a pair (⌃, E) consisting of a signature
⌃ and a set of equations E. The signature ⌃ is a set of generators o : n ! m with arity n and
coarity m. The set of ⌃-terms is obtained by composing generators in ⌃, the unit id : 1 ! 1 and
the symmetry �1,1 : 2 ! 2 with ; and �. This is a purely formal process: given ⌃-terms t : k ! l,
u : l ! m, v : m ! n, one constructs new ⌃-terms t ; u : k ! m and t � v : k + n ! l + n. The set
E of equations contains pairs (t, t0 : n ! m) of ⌃-terms with the same arity and coarity.

Now, given an SMT (⌃, E), one (freely) obtains a PROP T by letting the arrows n ! m be the
set of ⌃-terms n ! m taken modulo the laws of symmetric strict monoidal categories — Fig. 2.1
— and the smallest congruence (with respect to ; and �) containing the equations t = t0 for any
(t, t0) 2 E.

There is a natural graphical representation of these terms as string diagrams, which we now
sketch referring to [100] for the details. A ⌃-term n ! m is pictured as a box with n ports
on the left and m ports on the right, to which we shall refer with top-bottom enumerations
1, . . . , n and 1, . . . , m. Composition via ; and � are rendered graphically by horizontal and
vertical juxtaposition of boxes, respectively.

t ; s is drawn st t � s is drawn t
s

. (2.1)

In any SMT there are specific ⌃-terms generating the underlying symmetric monoidal structure:
these are id1 : 1 ! 1, represented as , the symmetry �1,1 : 1 + 1 ! 1 + 1, represented as

, and the unit object for �, that is, id0 : 0 ! 0, whose representation is an empty space .
Graphical representation for arbitrary identities id

n

and symmetries �
n,m

are generated according
to the pasting rules in (2.1).

The axioms of symmetric strict monoidal categories (Fig. 2.1) are naturally displayed in the
graphical language. Compatibility of � and ; is already implicit in the representation of (t ; s) �

(t0 ; s0) and (t � s) ; (t0 � s0) as the same string diagram:

st
st 00

Similarly, associativity of ; , � and compatibility of � with the unit are also implicit in the
graphical representation. We then have two sliding axioms yielding compatibility of ; with the
identity and naturality of symmetry:

t = t = t . (SM1)
t

= t . (SM2)

Finally, we have that �1,1 is self-inverse, that is,

= . (SM3)

2.2. PROPS 17

(t1 ; t3) � (t2 ; t4) = (t1 � t2) ; (t3 � t4)

(t1 ; t2) ; t3 = t1 ; (t2 ; t3) id
n

; c = c = c ; id
m

(t1 � t2) � t3 = t1 � (t2 � t3) id0 � t = t = t � id0

�1,1 ; �1,1 = id2 (t � id
z

) ; �
m,z

= �
n,z

; (id
z

� t)

Figure 2.1: Axioms of symmetric strict monoidal categories for a PROP T.

PROPs are adapted to the study of universal algebra in a symmetric monoidal setting. Within
this perspective, a typical way of defining a PROP is as the free construction on a given set of
generators and equations. We express these data in the form of a (one-sorted) symmetric monoidal
theory (SMT).

Definition 2.2. A symmetric monoidal theory (SMT) is a pair (⌃, E) consisting of a signature
⌃ and a set of equations E. The signature ⌃ is a set of generators o : n ! m with arity n and
coarity m. The set of ⌃-terms is obtained by composing generators in ⌃, the unit id : 1 ! 1 and
the symmetry �1,1 : 2 ! 2 with ; and �. This is a purely formal process: given ⌃-terms t : k ! l,
u : l ! m, v : m ! n, one constructs new ⌃-terms t ; u : k ! m and t � v : k + n ! l + n. The set
E of equations contains pairs (t, t0 : n ! m) of ⌃-terms with the same arity and coarity.

Now, given an SMT (⌃, E), one (freely) obtains a PROP T by letting the arrows n ! m be the
set of ⌃-terms n ! m taken modulo the laws of symmetric strict monoidal categories — Fig. 2.1
— and the smallest congruence (with respect to ; and �) containing the equations t = t0 for any
(t, t0) 2 E.

There is a natural graphical representation of these terms as string diagrams, which we now
sketch referring to [100] for the details. A ⌃-term n ! m is pictured as a box with n ports
on the left and m ports on the right, to which we shall refer with top-bottom enumerations
1, . . . , n and 1, . . . , m. Composition via ; and � are rendered graphically by horizontal and
vertical juxtaposition of boxes, respectively.

t ; s is drawn st t � s is drawn t
s

. (2.1)

In any SMT there are specific ⌃-terms generating the underlying symmetric monoidal structure:
these are id1 : 1 ! 1, represented as , the symmetry �1,1 : 1 + 1 ! 1 + 1, represented as

, and the unit object for �, that is, id0 : 0 ! 0, whose representation is an empty space .
Graphical representation for arbitrary identities id

n

and symmetries �
n,m

are generated according
to the pasting rules in (2.1).

The axioms of symmetric strict monoidal categories (Fig. 2.1) are naturally displayed in the
graphical language. Compatibility of � and ; is already implicit in the representation of (t ; s) �

(t0 ; s0) and (t � s) ; (t0 � s0) as the same string diagram:

st
st 00

Similarly, associativity of ; , � and compatibility of � with the unit are also implicit in the
graphical representation. We then have two sliding axioms yielding compatibility of ; with the
identity and naturality of symmetry:

t = t = t . (SM1)
t

= t . (SM2)

Finally, we have that �1,1 is self-inverse, that is,

= . (SM3)

axioms for PROPs
2.2. PROPS 17

(t1 ; t3) � (t2 ; t4) = (t1 � t2) ; (t3 � t4)

(t1 ; t2) ; t3 = t1 ; (t2 ; t3) id
n

; c = c = c ; id
m

(t1 � t2) � t3 = t1 � (t2 � t3) id0 � t = t = t � id0

�1,1 ; �1,1 = id2 (t � id
z

) ; �
m,z

= �
n,z

; (id
z

� t)

Figure 2.1: Axioms of symmetric strict monoidal categories for a PROP T.

PROPs are adapted to the study of universal algebra in a symmetric monoidal setting. Within
this perspective, a typical way of defining a PROP is as the free construction on a given set of
generators and equations. We express these data in the form of a (one-sorted) symmetric monoidal
theory (SMT).

Definition 2.2. A symmetric monoidal theory (SMT) is a pair (⌃, E) consisting of a signature
⌃ and a set of equations E. The signature ⌃ is a set of generators o : n ! m with arity n and
coarity m. The set of ⌃-terms is obtained by composing generators in ⌃, the unit id : 1 ! 1 and
the symmetry �1,1 : 2 ! 2 with ; and �. This is a purely formal process: given ⌃-terms t : k ! l,
u : l ! m, v : m ! n, one constructs new ⌃-terms t ; u : k ! m and t � v : k + n ! l + n. The set
E of equations contains pairs (t, t0 : n ! m) of ⌃-terms with the same arity and coarity.

Now, given an SMT (⌃, E), one (freely) obtains a PROP T by letting the arrows n ! m be the
set of ⌃-terms n ! m taken modulo the laws of symmetric strict monoidal categories — Fig. 2.1
— and the smallest congruence (with respect to ; and �) containing the equations t = t0 for any
(t, t0) 2 E.

There is a natural graphical representation of these terms as string diagrams, which we now
sketch referring to [100] for the details. A ⌃-term n ! m is pictured as a box with n ports
on the left and m ports on the right, to which we shall refer with top-bottom enumerations
1, . . . , n and 1, . . . , m. Composition via ; and � are rendered graphically by horizontal and
vertical juxtaposition of boxes, respectively.

t ; s is drawn st t � s is drawn t
s

. (2.1)

In any SMT there are specific ⌃-terms generating the underlying symmetric monoidal structure:
these are id1 : 1 ! 1, represented as , the symmetry �1,1 : 1 + 1 ! 1 + 1, represented as

, and the unit object for �, that is, id0 : 0 ! 0, whose representation is an empty space .
Graphical representation for arbitrary identities id

n

and symmetries �
n,m

are generated according
to the pasting rules in (2.1).

The axioms of symmetric strict monoidal categories (Fig. 2.1) are naturally displayed in the
graphical language. Compatibility of � and ; is already implicit in the representation of (t ; s) �

(t0 ; s0) and (t � s) ; (t0 � s0) as the same string diagram:

st
st 00

Similarly, associativity of ; , � and compatibility of � with the unit are also implicit in the
graphical representation. We then have two sliding axioms yielding compatibility of ; with the
identity and naturality of symmetry:

t = t = t . (SM1)
t

= t . (SM2)

Finally, we have that �1,1 is self-inverse, that is,

= . (SM3)

2.2. PROPS 17

(t1 ; t3) � (t2 ; t4) = (t1 � t2) ; (t3 � t4)

(t1 ; t2) ; t3 = t1 ; (t2 ; t3) id
n

; c = c = c ; id
m

(t1 � t2) � t3 = t1 � (t2 � t3) id0 � t = t = t � id0

�1,1 ; �1,1 = id2 (t � id
z

) ; �
m,z

= �
n,z

; (id
z

� t)

Figure 2.1: Axioms of symmetric strict monoidal categories for a PROP T.

PROPs are adapted to the study of universal algebra in a symmetric monoidal setting. Within
this perspective, a typical way of defining a PROP is as the free construction on a given set of
generators and equations. We express these data in the form of a (one-sorted) symmetric monoidal
theory (SMT).

Definition 2.2. A symmetric monoidal theory (SMT) is a pair (⌃, E) consisting of a signature
⌃ and a set of equations E. The signature ⌃ is a set of generators o : n ! m with arity n and
coarity m. The set of ⌃-terms is obtained by composing generators in ⌃, the unit id : 1 ! 1 and
the symmetry �1,1 : 2 ! 2 with ; and �. This is a purely formal process: given ⌃-terms t : k ! l,
u : l ! m, v : m ! n, one constructs new ⌃-terms t ; u : k ! m and t � v : k + n ! l + n. The set
E of equations contains pairs (t, t0 : n ! m) of ⌃-terms with the same arity and coarity.

Now, given an SMT (⌃, E), one (freely) obtains a PROP T by letting the arrows n ! m be the
set of ⌃-terms n ! m taken modulo the laws of symmetric strict monoidal categories — Fig. 2.1
— and the smallest congruence (with respect to ; and �) containing the equations t = t0 for any
(t, t0) 2 E.

There is a natural graphical representation of these terms as string diagrams, which we now
sketch referring to [100] for the details. A ⌃-term n ! m is pictured as a box with n ports
on the left and m ports on the right, to which we shall refer with top-bottom enumerations
1, . . . , n and 1, . . . , m. Composition via ; and � are rendered graphically by horizontal and
vertical juxtaposition of boxes, respectively.

t ; s is drawn st t � s is drawn t
s

. (2.1)

In any SMT there are specific ⌃-terms generating the underlying symmetric monoidal structure:
these are id1 : 1 ! 1, represented as , the symmetry �1,1 : 1 + 1 ! 1 + 1, represented as

, and the unit object for �, that is, id0 : 0 ! 0, whose representation is an empty space .
Graphical representation for arbitrary identities id

n

and symmetries �
n,m

are generated according
to the pasting rules in (2.1).

The axioms of symmetric strict monoidal categories (Fig. 2.1) are naturally displayed in the
graphical language. Compatibility of � and ; is already implicit in the representation of (t ; s) �

(t0 ; s0) and (t � s) ; (t0 � s0) as the same string diagram:

st
st 00

Similarly, associativity of ; , � and compatibility of � with the unit are also implicit in the
graphical representation. We then have two sliding axioms yielding compatibility of ; with the
identity and naturality of symmetry:

t = t = t . (SM1)
t

= t . (SM2)

Finally, we have that �1,1 is self-inverse, that is,

= . (SM3)

2.2. PROPS 17

(t1 ; t3) � (t2 ; t4) = (t1 � t2) ; (t3 � t4)

(t1 ; t2) ; t3 = t1 ; (t2 ; t3) id
n

; c = c = c ; id
m

(t1 � t2) � t3 = t1 � (t2 � t3) id0 � t = t = t � id0

�1,1 ; �1,1 = id2 (t � id
z

) ; �
m,z

= �
n,z

; (id
z

� t)

Figure 2.1: Axioms of symmetric strict monoidal categories for a PROP T.

PROPs are adapted to the study of universal algebra in a symmetric monoidal setting. Within
this perspective, a typical way of defining a PROP is as the free construction on a given set of
generators and equations. We express these data in the form of a (one-sorted) symmetric monoidal
theory (SMT).

Definition 2.2. A symmetric monoidal theory (SMT) is a pair (⌃, E) consisting of a signature
⌃ and a set of equations E. The signature ⌃ is a set of generators o : n ! m with arity n and
coarity m. The set of ⌃-terms is obtained by composing generators in ⌃, the unit id : 1 ! 1 and
the symmetry �1,1 : 2 ! 2 with ; and �. This is a purely formal process: given ⌃-terms t : k ! l,
u : l ! m, v : m ! n, one constructs new ⌃-terms t ; u : k ! m and t � v : k + n ! l + n. The set
E of equations contains pairs (t, t0 : n ! m) of ⌃-terms with the same arity and coarity.

Now, given an SMT (⌃, E), one (freely) obtains a PROP T by letting the arrows n ! m be the
set of ⌃-terms n ! m taken modulo the laws of symmetric strict monoidal categories — Fig. 2.1
— and the smallest congruence (with respect to ; and �) containing the equations t = t0 for any
(t, t0) 2 E.

There is a natural graphical representation of these terms as string diagrams, which we now
sketch referring to [100] for the details. A ⌃-term n ! m is pictured as a box with n ports
on the left and m ports on the right, to which we shall refer with top-bottom enumerations
1, . . . , n and 1, . . . , m. Composition via ; and � are rendered graphically by horizontal and
vertical juxtaposition of boxes, respectively.

t ; s is drawn st t � s is drawn t
s

. (2.1)

In any SMT there are specific ⌃-terms generating the underlying symmetric monoidal structure:
these are id1 : 1 ! 1, represented as , the symmetry �1,1 : 1 + 1 ! 1 + 1, represented as

, and the unit object for �, that is, id0 : 0 ! 0, whose representation is an empty space .
Graphical representation for arbitrary identities id

n

and symmetries �
n,m

are generated according
to the pasting rules in (2.1).

The axioms of symmetric strict monoidal categories (Fig. 2.1) are naturally displayed in the
graphical language. Compatibility of � and ; is already implicit in the representation of (t ; s) �

(t0 ; s0) and (t � s) ; (t0 � s0) as the same string diagram:

st
st 00

Similarly, associativity of ; , � and compatibility of � with the unit are also implicit in the
graphical representation. We then have two sliding axioms yielding compatibility of ; with the
identity and naturality of symmetry:

t = t = t . (SM1)
t

= t . (SM2)

Finally, we have that �1,1 is self-inverse, that is,

= . (SM3)

t2

t1 t3
t4

axioms for PROPs
2.2. PROPS 17

(t1 ; t3) � (t2 ; t4) = (t1 � t2) ; (t3 � t4)

(t1 ; t2) ; t3 = t1 ; (t2 ; t3) id
n

; c = c = c ; id
m

(t1 � t2) � t3 = t1 � (t2 � t3) id0 � t = t = t � id0

�1,1 ; �1,1 = id2 (t � id
z

) ; �
m,z

= �
n,z

; (id
z

� t)

Figure 2.1: Axioms of symmetric strict monoidal categories for a PROP T.

PROPs are adapted to the study of universal algebra in a symmetric monoidal setting. Within
this perspective, a typical way of defining a PROP is as the free construction on a given set of
generators and equations. We express these data in the form of a (one-sorted) symmetric monoidal
theory (SMT).

Definition 2.2. A symmetric monoidal theory (SMT) is a pair (⌃, E) consisting of a signature
⌃ and a set of equations E. The signature ⌃ is a set of generators o : n ! m with arity n and
coarity m. The set of ⌃-terms is obtained by composing generators in ⌃, the unit id : 1 ! 1 and
the symmetry �1,1 : 2 ! 2 with ; and �. This is a purely formal process: given ⌃-terms t : k ! l,
u : l ! m, v : m ! n, one constructs new ⌃-terms t ; u : k ! m and t � v : k + n ! l + n. The set
E of equations contains pairs (t, t0 : n ! m) of ⌃-terms with the same arity and coarity.

Now, given an SMT (⌃, E), one (freely) obtains a PROP T by letting the arrows n ! m be the
set of ⌃-terms n ! m taken modulo the laws of symmetric strict monoidal categories — Fig. 2.1
— and the smallest congruence (with respect to ; and �) containing the equations t = t0 for any
(t, t0) 2 E.

There is a natural graphical representation of these terms as string diagrams, which we now
sketch referring to [100] for the details. A ⌃-term n ! m is pictured as a box with n ports
on the left and m ports on the right, to which we shall refer with top-bottom enumerations
1, . . . , n and 1, . . . , m. Composition via ; and � are rendered graphically by horizontal and
vertical juxtaposition of boxes, respectively.

t ; s is drawn st t � s is drawn t
s

. (2.1)

In any SMT there are specific ⌃-terms generating the underlying symmetric monoidal structure:
these are id1 : 1 ! 1, represented as , the symmetry �1,1 : 1 + 1 ! 1 + 1, represented as

, and the unit object for �, that is, id0 : 0 ! 0, whose representation is an empty space .
Graphical representation for arbitrary identities id

n

and symmetries �
n,m

are generated according
to the pasting rules in (2.1).

The axioms of symmetric strict monoidal categories (Fig. 2.1) are naturally displayed in the
graphical language. Compatibility of � and ; is already implicit in the representation of (t ; s) �

(t0 ; s0) and (t � s) ; (t0 � s0) as the same string diagram:

st
st 00

Similarly, associativity of ; , � and compatibility of � with the unit are also implicit in the
graphical representation. We then have two sliding axioms yielding compatibility of ; with the
identity and naturality of symmetry:

t = t = t . (SM1)
t

= t . (SM2)

Finally, we have that �1,1 is self-inverse, that is,

= . (SM3)

2.2. PROPS 17

(t1 ; t3) � (t2 ; t4) = (t1 � t2) ; (t3 � t4)

(t1 ; t2) ; t3 = t1 ; (t2 ; t3) id
n

; c = c = c ; id
m

(t1 � t2) � t3 = t1 � (t2 � t3) id0 � t = t = t � id0

�1,1 ; �1,1 = id2 (t � id
z

) ; �
m,z

= �
n,z

; (id
z

� t)

Figure 2.1: Axioms of symmetric strict monoidal categories for a PROP T.

PROPs are adapted to the study of universal algebra in a symmetric monoidal setting. Within
this perspective, a typical way of defining a PROP is as the free construction on a given set of
generators and equations. We express these data in the form of a (one-sorted) symmetric monoidal
theory (SMT).

Definition 2.2. A symmetric monoidal theory (SMT) is a pair (⌃, E) consisting of a signature
⌃ and a set of equations E. The signature ⌃ is a set of generators o : n ! m with arity n and
coarity m. The set of ⌃-terms is obtained by composing generators in ⌃, the unit id : 1 ! 1 and
the symmetry �1,1 : 2 ! 2 with ; and �. This is a purely formal process: given ⌃-terms t : k ! l,
u : l ! m, v : m ! n, one constructs new ⌃-terms t ; u : k ! m and t � v : k + n ! l + n. The set
E of equations contains pairs (t, t0 : n ! m) of ⌃-terms with the same arity and coarity.

Now, given an SMT (⌃, E), one (freely) obtains a PROP T by letting the arrows n ! m be the
set of ⌃-terms n ! m taken modulo the laws of symmetric strict monoidal categories — Fig. 2.1
— and the smallest congruence (with respect to ; and �) containing the equations t = t0 for any
(t, t0) 2 E.

There is a natural graphical representation of these terms as string diagrams, which we now
sketch referring to [100] for the details. A ⌃-term n ! m is pictured as a box with n ports
on the left and m ports on the right, to which we shall refer with top-bottom enumerations
1, . . . , n and 1, . . . , m. Composition via ; and � are rendered graphically by horizontal and
vertical juxtaposition of boxes, respectively.

t ; s is drawn st t � s is drawn t
s

. (2.1)

In any SMT there are specific ⌃-terms generating the underlying symmetric monoidal structure:
these are id1 : 1 ! 1, represented as , the symmetry �1,1 : 1 + 1 ! 1 + 1, represented as

, and the unit object for �, that is, id0 : 0 ! 0, whose representation is an empty space .
Graphical representation for arbitrary identities id

n

and symmetries �
n,m

are generated according
to the pasting rules in (2.1).

The axioms of symmetric strict monoidal categories (Fig. 2.1) are naturally displayed in the
graphical language. Compatibility of � and ; is already implicit in the representation of (t ; s) �

(t0 ; s0) and (t � s) ; (t0 � s0) as the same string diagram:

st
st 00

Similarly, associativity of ; , � and compatibility of � with the unit are also implicit in the
graphical representation. We then have two sliding axioms yielding compatibility of ; with the
identity and naturality of symmetry:

t = t = t . (SM1)
t

= t . (SM2)

Finally, we have that �1,1 is self-inverse, that is,

= . (SM3)

2.2. PROPS 17

(t1 ; t3) � (t2 ; t4) = (t1 � t2) ; (t3 � t4)

(t1 ; t2) ; t3 = t1 ; (t2 ; t3) id
n

; c = c = c ; id
m

(t1 � t2) � t3 = t1 � (t2 � t3) id0 � t = t = t � id0

�1,1 ; �1,1 = id2 (t � id
z

) ; �
m,z

= �
n,z

; (id
z

� t)

Figure 2.1: Axioms of symmetric strict monoidal categories for a PROP T.

PROPs are adapted to the study of universal algebra in a symmetric monoidal setting. Within
this perspective, a typical way of defining a PROP is as the free construction on a given set of
generators and equations. We express these data in the form of a (one-sorted) symmetric monoidal
theory (SMT).

Definition 2.2. A symmetric monoidal theory (SMT) is a pair (⌃, E) consisting of a signature
⌃ and a set of equations E. The signature ⌃ is a set of generators o : n ! m with arity n and
coarity m. The set of ⌃-terms is obtained by composing generators in ⌃, the unit id : 1 ! 1 and
the symmetry �1,1 : 2 ! 2 with ; and �. This is a purely formal process: given ⌃-terms t : k ! l,
u : l ! m, v : m ! n, one constructs new ⌃-terms t ; u : k ! m and t � v : k + n ! l + n. The set
E of equations contains pairs (t, t0 : n ! m) of ⌃-terms with the same arity and coarity.

Now, given an SMT (⌃, E), one (freely) obtains a PROP T by letting the arrows n ! m be the
set of ⌃-terms n ! m taken modulo the laws of symmetric strict monoidal categories — Fig. 2.1
— and the smallest congruence (with respect to ; and �) containing the equations t = t0 for any
(t, t0) 2 E.

There is a natural graphical representation of these terms as string diagrams, which we now
sketch referring to [100] for the details. A ⌃-term n ! m is pictured as a box with n ports
on the left and m ports on the right, to which we shall refer with top-bottom enumerations
1, . . . , n and 1, . . . , m. Composition via ; and � are rendered graphically by horizontal and
vertical juxtaposition of boxes, respectively.

t ; s is drawn st t � s is drawn t
s

. (2.1)

In any SMT there are specific ⌃-terms generating the underlying symmetric monoidal structure:
these are id1 : 1 ! 1, represented as , the symmetry �1,1 : 1 + 1 ! 1 + 1, represented as

, and the unit object for �, that is, id0 : 0 ! 0, whose representation is an empty space .
Graphical representation for arbitrary identities id

n

and symmetries �
n,m

are generated according
to the pasting rules in (2.1).

The axioms of symmetric strict monoidal categories (Fig. 2.1) are naturally displayed in the
graphical language. Compatibility of � and ; is already implicit in the representation of (t ; s) �

(t0 ; s0) and (t � s) ; (t0 � s0) as the same string diagram:

st
st 00

Similarly, associativity of ; , � and compatibility of � with the unit are also implicit in the
graphical representation. We then have two sliding axioms yielding compatibility of ; with the
identity and naturality of symmetry:

t = t = t . (SM1)
t

= t . (SM2)

Finally, we have that �1,1 is self-inverse, that is,

= . (SM3)

axioms for PROPs
2.2. PROPS 17

(t1 ; t3) � (t2 ; t4) = (t1 � t2) ; (t3 � t4)

(t1 ; t2) ; t3 = t1 ; (t2 ; t3) id
n

; c = c = c ; id
m

(t1 � t2) � t3 = t1 � (t2 � t3) id0 � t = t = t � id0

�1,1 ; �1,1 = id2 (t � id
z

) ; �
m,z

= �
n,z

; (id
z

� t)

Figure 2.1: Axioms of symmetric strict monoidal categories for a PROP T.

PROPs are adapted to the study of universal algebra in a symmetric monoidal setting. Within
this perspective, a typical way of defining a PROP is as the free construction on a given set of
generators and equations. We express these data in the form of a (one-sorted) symmetric monoidal
theory (SMT).

Definition 2.2. A symmetric monoidal theory (SMT) is a pair (⌃, E) consisting of a signature
⌃ and a set of equations E. The signature ⌃ is a set of generators o : n ! m with arity n and
coarity m. The set of ⌃-terms is obtained by composing generators in ⌃, the unit id : 1 ! 1 and
the symmetry �1,1 : 2 ! 2 with ; and �. This is a purely formal process: given ⌃-terms t : k ! l,
u : l ! m, v : m ! n, one constructs new ⌃-terms t ; u : k ! m and t � v : k + n ! l + n. The set
E of equations contains pairs (t, t0 : n ! m) of ⌃-terms with the same arity and coarity.

Now, given an SMT (⌃, E), one (freely) obtains a PROP T by letting the arrows n ! m be the
set of ⌃-terms n ! m taken modulo the laws of symmetric strict monoidal categories — Fig. 2.1
— and the smallest congruence (with respect to ; and �) containing the equations t = t0 for any
(t, t0) 2 E.

There is a natural graphical representation of these terms as string diagrams, which we now
sketch referring to [100] for the details. A ⌃-term n ! m is pictured as a box with n ports
on the left and m ports on the right, to which we shall refer with top-bottom enumerations
1, . . . , n and 1, . . . , m. Composition via ; and � are rendered graphically by horizontal and
vertical juxtaposition of boxes, respectively.

t ; s is drawn st t � s is drawn t
s

. (2.1)

In any SMT there are specific ⌃-terms generating the underlying symmetric monoidal structure:
these are id1 : 1 ! 1, represented as , the symmetry �1,1 : 1 + 1 ! 1 + 1, represented as

, and the unit object for �, that is, id0 : 0 ! 0, whose representation is an empty space .
Graphical representation for arbitrary identities id

n

and symmetries �
n,m

are generated according
to the pasting rules in (2.1).

The axioms of symmetric strict monoidal categories (Fig. 2.1) are naturally displayed in the
graphical language. Compatibility of � and ; is already implicit in the representation of (t ; s) �

(t0 ; s0) and (t � s) ; (t0 � s0) as the same string diagram:

st
st 00

Similarly, associativity of ; , � and compatibility of � with the unit are also implicit in the
graphical representation. We then have two sliding axioms yielding compatibility of ; with the
identity and naturality of symmetry:

t = t = t . (SM1)
t

= t . (SM2)

Finally, we have that �1,1 is self-inverse, that is,

= . (SM3)

2.2. PROPS 17

(t1 ; t3) � (t2 ; t4) = (t1 � t2) ; (t3 � t4)

(t1 ; t2) ; t3 = t1 ; (t2 ; t3) id
n

; c = c = c ; id
m

(t1 � t2) � t3 = t1 � (t2 � t3) id0 � t = t = t � id0

�1,1 ; �1,1 = id2 (t � id
z

) ; �
m,z

= �
n,z

; (id
z

� t)

Figure 2.1: Axioms of symmetric strict monoidal categories for a PROP T.

PROPs are adapted to the study of universal algebra in a symmetric monoidal setting. Within
this perspective, a typical way of defining a PROP is as the free construction on a given set of
generators and equations. We express these data in the form of a (one-sorted) symmetric monoidal
theory (SMT).

Definition 2.2. A symmetric monoidal theory (SMT) is a pair (⌃, E) consisting of a signature
⌃ and a set of equations E. The signature ⌃ is a set of generators o : n ! m with arity n and
coarity m. The set of ⌃-terms is obtained by composing generators in ⌃, the unit id : 1 ! 1 and
the symmetry �1,1 : 2 ! 2 with ; and �. This is a purely formal process: given ⌃-terms t : k ! l,
u : l ! m, v : m ! n, one constructs new ⌃-terms t ; u : k ! m and t � v : k + n ! l + n. The set
E of equations contains pairs (t, t0 : n ! m) of ⌃-terms with the same arity and coarity.

Now, given an SMT (⌃, E), one (freely) obtains a PROP T by letting the arrows n ! m be the
set of ⌃-terms n ! m taken modulo the laws of symmetric strict monoidal categories — Fig. 2.1
— and the smallest congruence (with respect to ; and �) containing the equations t = t0 for any
(t, t0) 2 E.

There is a natural graphical representation of these terms as string diagrams, which we now
sketch referring to [100] for the details. A ⌃-term n ! m is pictured as a box with n ports
on the left and m ports on the right, to which we shall refer with top-bottom enumerations
1, . . . , n and 1, . . . , m. Composition via ; and � are rendered graphically by horizontal and
vertical juxtaposition of boxes, respectively.

t ; s is drawn st t � s is drawn t
s

. (2.1)

In any SMT there are specific ⌃-terms generating the underlying symmetric monoidal structure:
these are id1 : 1 ! 1, represented as , the symmetry �1,1 : 1 + 1 ! 1 + 1, represented as

, and the unit object for �, that is, id0 : 0 ! 0, whose representation is an empty space .
Graphical representation for arbitrary identities id

n

and symmetries �
n,m

are generated according
to the pasting rules in (2.1).

The axioms of symmetric strict monoidal categories (Fig. 2.1) are naturally displayed in the
graphical language. Compatibility of � and ; is already implicit in the representation of (t ; s) �

(t0 ; s0) and (t � s) ; (t0 � s0) as the same string diagram:

st
st 00

Similarly, associativity of ; , � and compatibility of � with the unit are also implicit in the
graphical representation. We then have two sliding axioms yielding compatibility of ; with the
identity and naturality of symmetry:

t = t = t . (SM1)
t

= t . (SM2)

Finally, we have that �1,1 is self-inverse, that is,

= . (SM3)

2.2. PROPS 17

(t1 ; t3) � (t2 ; t4) = (t1 � t2) ; (t3 � t4)

(t1 ; t2) ; t3 = t1 ; (t2 ; t3) id
n

; c = c = c ; id
m

(t1 � t2) � t3 = t1 � (t2 � t3) id0 � t = t = t � id0

�1,1 ; �1,1 = id2 (t � id
z

) ; �
m,z

= �
n,z

; (id
z

� t)

Figure 2.1: Axioms of symmetric strict monoidal categories for a PROP T.

PROPs are adapted to the study of universal algebra in a symmetric monoidal setting. Within
this perspective, a typical way of defining a PROP is as the free construction on a given set of
generators and equations. We express these data in the form of a (one-sorted) symmetric monoidal
theory (SMT).

Definition 2.2. A symmetric monoidal theory (SMT) is a pair (⌃, E) consisting of a signature
⌃ and a set of equations E. The signature ⌃ is a set of generators o : n ! m with arity n and
coarity m. The set of ⌃-terms is obtained by composing generators in ⌃, the unit id : 1 ! 1 and
the symmetry �1,1 : 2 ! 2 with ; and �. This is a purely formal process: given ⌃-terms t : k ! l,
u : l ! m, v : m ! n, one constructs new ⌃-terms t ; u : k ! m and t � v : k + n ! l + n. The set
E of equations contains pairs (t, t0 : n ! m) of ⌃-terms with the same arity and coarity.

Now, given an SMT (⌃, E), one (freely) obtains a PROP T by letting the arrows n ! m be the
set of ⌃-terms n ! m taken modulo the laws of symmetric strict monoidal categories — Fig. 2.1
— and the smallest congruence (with respect to ; and �) containing the equations t = t0 for any
(t, t0) 2 E.

There is a natural graphical representation of these terms as string diagrams, which we now
sketch referring to [100] for the details. A ⌃-term n ! m is pictured as a box with n ports
on the left and m ports on the right, to which we shall refer with top-bottom enumerations
1, . . . , n and 1, . . . , m. Composition via ; and � are rendered graphically by horizontal and
vertical juxtaposition of boxes, respectively.

t ; s is drawn st t � s is drawn t
s

. (2.1)

In any SMT there are specific ⌃-terms generating the underlying symmetric monoidal structure:
these are id1 : 1 ! 1, represented as , the symmetry �1,1 : 1 + 1 ! 1 + 1, represented as

, and the unit object for �, that is, id0 : 0 ! 0, whose representation is an empty space .
Graphical representation for arbitrary identities id

n

and symmetries �
n,m

are generated according
to the pasting rules in (2.1).

The axioms of symmetric strict monoidal categories (Fig. 2.1) are naturally displayed in the
graphical language. Compatibility of � and ; is already implicit in the representation of (t ; s) �

(t0 ; s0) and (t � s) ; (t0 � s0) as the same string diagram:

st
st 00

Similarly, associativity of ; , � and compatibility of � with the unit are also implicit in the
graphical representation. We then have two sliding axioms yielding compatibility of ; with the
identity and naturality of symmetry:

t = t = t . (SM1)
t

= t . (SM2)

Finally, we have that �1,1 is self-inverse, that is,

= . (SM3)

2.2. PROPS 17

(t1 ; t3) � (t2 ; t4) = (t1 � t2) ; (t3 � t4)

(t1 ; t2) ; t3 = t1 ; (t2 ; t3) id
n

; c = c = c ; id
m

(t1 � t2) � t3 = t1 � (t2 � t3) id0 � t = t = t � id0

�1,1 ; �1,1 = id2 (t � id
z

) ; �
m,z

= �
n,z

; (id
z

� t)

Figure 2.1: Axioms of symmetric strict monoidal categories for a PROP T.

PROPs are adapted to the study of universal algebra in a symmetric monoidal setting. Within
this perspective, a typical way of defining a PROP is as the free construction on a given set of
generators and equations. We express these data in the form of a (one-sorted) symmetric monoidal
theory (SMT).

Definition 2.2. A symmetric monoidal theory (SMT) is a pair (⌃, E) consisting of a signature
⌃ and a set of equations E. The signature ⌃ is a set of generators o : n ! m with arity n and
coarity m. The set of ⌃-terms is obtained by composing generators in ⌃, the unit id : 1 ! 1 and
the symmetry �1,1 : 2 ! 2 with ; and �. This is a purely formal process: given ⌃-terms t : k ! l,
u : l ! m, v : m ! n, one constructs new ⌃-terms t ; u : k ! m and t � v : k + n ! l + n. The set
E of equations contains pairs (t, t0 : n ! m) of ⌃-terms with the same arity and coarity.

Now, given an SMT (⌃, E), one (freely) obtains a PROP T by letting the arrows n ! m be the
set of ⌃-terms n ! m taken modulo the laws of symmetric strict monoidal categories — Fig. 2.1
— and the smallest congruence (with respect to ; and �) containing the equations t = t0 for any
(t, t0) 2 E.

There is a natural graphical representation of these terms as string diagrams, which we now
sketch referring to [100] for the details. A ⌃-term n ! m is pictured as a box with n ports
on the left and m ports on the right, to which we shall refer with top-bottom enumerations
1, . . . , n and 1, . . . , m. Composition via ; and � are rendered graphically by horizontal and
vertical juxtaposition of boxes, respectively.

t ; s is drawn st t � s is drawn t
s

. (2.1)

In any SMT there are specific ⌃-terms generating the underlying symmetric monoidal structure:
these are id1 : 1 ! 1, represented as , the symmetry �1,1 : 1 + 1 ! 1 + 1, represented as

, and the unit object for �, that is, id0 : 0 ! 0, whose representation is an empty space .
Graphical representation for arbitrary identities id

n

and symmetries �
n,m

are generated according
to the pasting rules in (2.1).

The axioms of symmetric strict monoidal categories (Fig. 2.1) are naturally displayed in the
graphical language. Compatibility of � and ; is already implicit in the representation of (t ; s) �

(t0 ; s0) and (t � s) ; (t0 � s0) as the same string diagram:

st
st 00

Similarly, associativity of ; , � and compatibility of � with the unit are also implicit in the
graphical representation. We then have two sliding axioms yielding compatibility of ; with the
identity and naturality of symmetry:

t = t = t . (SM1)
t

= t . (SM2)

Finally, we have that �1,1 is self-inverse, that is,

= . (SM3)

axioms for PROPs
2.2. PROPS 17

(t1 ; t3) � (t2 ; t4) = (t1 � t2) ; (t3 � t4)

(t1 ; t2) ; t3 = t1 ; (t2 ; t3) id
n

; c = c = c ; id
m

(t1 � t2) � t3 = t1 � (t2 � t3) id0 � t = t = t � id0

�1,1 ; �1,1 = id2 (t � id
z

) ; �
m,z

= �
n,z

; (id
z

� t)

Figure 2.1: Axioms of symmetric strict monoidal categories for a PROP T.

PROPs are adapted to the study of universal algebra in a symmetric monoidal setting. Within
this perspective, a typical way of defining a PROP is as the free construction on a given set of
generators and equations. We express these data in the form of a (one-sorted) symmetric monoidal
theory (SMT).

Definition 2.2. A symmetric monoidal theory (SMT) is a pair (⌃, E) consisting of a signature
⌃ and a set of equations E. The signature ⌃ is a set of generators o : n ! m with arity n and
coarity m. The set of ⌃-terms is obtained by composing generators in ⌃, the unit id : 1 ! 1 and
the symmetry �1,1 : 2 ! 2 with ; and �. This is a purely formal process: given ⌃-terms t : k ! l,
u : l ! m, v : m ! n, one constructs new ⌃-terms t ; u : k ! m and t � v : k + n ! l + n. The set
E of equations contains pairs (t, t0 : n ! m) of ⌃-terms with the same arity and coarity.

Now, given an SMT (⌃, E), one (freely) obtains a PROP T by letting the arrows n ! m be the
set of ⌃-terms n ! m taken modulo the laws of symmetric strict monoidal categories — Fig. 2.1
— and the smallest congruence (with respect to ; and �) containing the equations t = t0 for any
(t, t0) 2 E.

There is a natural graphical representation of these terms as string diagrams, which we now
sketch referring to [100] for the details. A ⌃-term n ! m is pictured as a box with n ports
on the left and m ports on the right, to which we shall refer with top-bottom enumerations
1, . . . , n and 1, . . . , m. Composition via ; and � are rendered graphically by horizontal and
vertical juxtaposition of boxes, respectively.

t ; s is drawn st t � s is drawn t
s

. (2.1)

In any SMT there are specific ⌃-terms generating the underlying symmetric monoidal structure:
these are id1 : 1 ! 1, represented as , the symmetry �1,1 : 1 + 1 ! 1 + 1, represented as

, and the unit object for �, that is, id0 : 0 ! 0, whose representation is an empty space .
Graphical representation for arbitrary identities id

n

and symmetries �
n,m

are generated according
to the pasting rules in (2.1).

The axioms of symmetric strict monoidal categories (Fig. 2.1) are naturally displayed in the
graphical language. Compatibility of � and ; is already implicit in the representation of (t ; s) �

(t0 ; s0) and (t � s) ; (t0 � s0) as the same string diagram:

st
st 00

Similarly, associativity of ; , � and compatibility of � with the unit are also implicit in the
graphical representation. We then have two sliding axioms yielding compatibility of ; with the
identity and naturality of symmetry:

t = t = t . (SM1)
t

= t . (SM2)

Finally, we have that �1,1 is self-inverse, that is,

= . (SM3)

2.2. PROPS 17

(t1 ; t3) � (t2 ; t4) = (t1 � t2) ; (t3 � t4)

(t1 ; t2) ; t3 = t1 ; (t2 ; t3) id
n

; c = c = c ; id
m

(t1 � t2) � t3 = t1 � (t2 � t3) id0 � t = t = t � id0

�1,1 ; �1,1 = id2 (t � id
z

) ; �
m,z

= �
n,z

; (id
z

� t)

Figure 2.1: Axioms of symmetric strict monoidal categories for a PROP T.

PROPs are adapted to the study of universal algebra in a symmetric monoidal setting. Within
this perspective, a typical way of defining a PROP is as the free construction on a given set of
generators and equations. We express these data in the form of a (one-sorted) symmetric monoidal
theory (SMT).

Definition 2.2. A symmetric monoidal theory (SMT) is a pair (⌃, E) consisting of a signature
⌃ and a set of equations E. The signature ⌃ is a set of generators o : n ! m with arity n and
coarity m. The set of ⌃-terms is obtained by composing generators in ⌃, the unit id : 1 ! 1 and
the symmetry �1,1 : 2 ! 2 with ; and �. This is a purely formal process: given ⌃-terms t : k ! l,
u : l ! m, v : m ! n, one constructs new ⌃-terms t ; u : k ! m and t � v : k + n ! l + n. The set
E of equations contains pairs (t, t0 : n ! m) of ⌃-terms with the same arity and coarity.

Now, given an SMT (⌃, E), one (freely) obtains a PROP T by letting the arrows n ! m be the
set of ⌃-terms n ! m taken modulo the laws of symmetric strict monoidal categories — Fig. 2.1
— and the smallest congruence (with respect to ; and �) containing the equations t = t0 for any
(t, t0) 2 E.

There is a natural graphical representation of these terms as string diagrams, which we now
sketch referring to [100] for the details. A ⌃-term n ! m is pictured as a box with n ports
on the left and m ports on the right, to which we shall refer with top-bottom enumerations
1, . . . , n and 1, . . . , m. Composition via ; and � are rendered graphically by horizontal and
vertical juxtaposition of boxes, respectively.

t ; s is drawn st t � s is drawn t
s

. (2.1)

In any SMT there are specific ⌃-terms generating the underlying symmetric monoidal structure:
these are id1 : 1 ! 1, represented as , the symmetry �1,1 : 1 + 1 ! 1 + 1, represented as

, and the unit object for �, that is, id0 : 0 ! 0, whose representation is an empty space .
Graphical representation for arbitrary identities id

n

and symmetries �
n,m

are generated according
to the pasting rules in (2.1).

The axioms of symmetric strict monoidal categories (Fig. 2.1) are naturally displayed in the
graphical language. Compatibility of � and ; is already implicit in the representation of (t ; s) �

(t0 ; s0) and (t � s) ; (t0 � s0) as the same string diagram:

st
st 00

Similarly, associativity of ; , � and compatibility of � with the unit are also implicit in the
graphical representation. We then have two sliding axioms yielding compatibility of ; with the
identity and naturality of symmetry:

t = t = t . (SM1)
t

= t . (SM2)

Finally, we have that �1,1 is self-inverse, that is,

= . (SM3)

2.2. PROPS 17

(t1 ; t3) � (t2 ; t4) = (t1 � t2) ; (t3 � t4)

(t1 ; t2) ; t3 = t1 ; (t2 ; t3) id
n

; c = c = c ; id
m

(t1 � t2) � t3 = t1 � (t2 � t3) id0 � t = t = t � id0

�1,1 ; �1,1 = id2 (t � id
z

) ; �
m,z

= �
n,z

; (id
z

� t)

Figure 2.1: Axioms of symmetric strict monoidal categories for a PROP T.

PROPs are adapted to the study of universal algebra in a symmetric monoidal setting. Within
this perspective, a typical way of defining a PROP is as the free construction on a given set of
generators and equations. We express these data in the form of a (one-sorted) symmetric monoidal
theory (SMT).

Definition 2.2. A symmetric monoidal theory (SMT) is a pair (⌃, E) consisting of a signature
⌃ and a set of equations E. The signature ⌃ is a set of generators o : n ! m with arity n and
coarity m. The set of ⌃-terms is obtained by composing generators in ⌃, the unit id : 1 ! 1 and
the symmetry �1,1 : 2 ! 2 with ; and �. This is a purely formal process: given ⌃-terms t : k ! l,
u : l ! m, v : m ! n, one constructs new ⌃-terms t ; u : k ! m and t � v : k + n ! l + n. The set
E of equations contains pairs (t, t0 : n ! m) of ⌃-terms with the same arity and coarity.

Now, given an SMT (⌃, E), one (freely) obtains a PROP T by letting the arrows n ! m be the
set of ⌃-terms n ! m taken modulo the laws of symmetric strict monoidal categories — Fig. 2.1
— and the smallest congruence (with respect to ; and �) containing the equations t = t0 for any
(t, t0) 2 E.

There is a natural graphical representation of these terms as string diagrams, which we now
sketch referring to [100] for the details. A ⌃-term n ! m is pictured as a box with n ports
on the left and m ports on the right, to which we shall refer with top-bottom enumerations
1, . . . , n and 1, . . . , m. Composition via ; and � are rendered graphically by horizontal and
vertical juxtaposition of boxes, respectively.

t ; s is drawn st t � s is drawn t
s

. (2.1)

In any SMT there are specific ⌃-terms generating the underlying symmetric monoidal structure:
these are id1 : 1 ! 1, represented as , the symmetry �1,1 : 1 + 1 ! 1 + 1, represented as

, and the unit object for �, that is, id0 : 0 ! 0, whose representation is an empty space .
Graphical representation for arbitrary identities id

n

and symmetries �
n,m

are generated according
to the pasting rules in (2.1).

The axioms of symmetric strict monoidal categories (Fig. 2.1) are naturally displayed in the
graphical language. Compatibility of � and ; is already implicit in the representation of (t ; s) �

(t0 ; s0) and (t � s) ; (t0 � s0) as the same string diagram:

st
st 00

Similarly, associativity of ; , � and compatibility of � with the unit are also implicit in the
graphical representation. We then have two sliding axioms yielding compatibility of ; with the
identity and naturality of symmetry:

t = t = t . (SM1)
t

= t . (SM2)

Finally, we have that �1,1 is self-inverse, that is,

= . (SM3)

2.2. PROPS 17

(t1 ; t3) � (t2 ; t4) = (t1 � t2) ; (t3 � t4)

(t1 ; t2) ; t3 = t1 ; (t2 ; t3) id
n

; c = c = c ; id
m

(t1 � t2) � t3 = t1 � (t2 � t3) id0 � t = t = t � id0

�1,1 ; �1,1 = id2 (t � id
z

) ; �
m,z

= �
n,z

; (id
z

� t)

Figure 2.1: Axioms of symmetric strict monoidal categories for a PROP T.

PROPs are adapted to the study of universal algebra in a symmetric monoidal setting. Within
this perspective, a typical way of defining a PROP is as the free construction on a given set of
generators and equations. We express these data in the form of a (one-sorted) symmetric monoidal
theory (SMT).

Definition 2.2. A symmetric monoidal theory (SMT) is a pair (⌃, E) consisting of a signature
⌃ and a set of equations E. The signature ⌃ is a set of generators o : n ! m with arity n and
coarity m. The set of ⌃-terms is obtained by composing generators in ⌃, the unit id : 1 ! 1 and
the symmetry �1,1 : 2 ! 2 with ; and �. This is a purely formal process: given ⌃-terms t : k ! l,
u : l ! m, v : m ! n, one constructs new ⌃-terms t ; u : k ! m and t � v : k + n ! l + n. The set
E of equations contains pairs (t, t0 : n ! m) of ⌃-terms with the same arity and coarity.

Now, given an SMT (⌃, E), one (freely) obtains a PROP T by letting the arrows n ! m be the
set of ⌃-terms n ! m taken modulo the laws of symmetric strict monoidal categories — Fig. 2.1
— and the smallest congruence (with respect to ; and �) containing the equations t = t0 for any
(t, t0) 2 E.

There is a natural graphical representation of these terms as string diagrams, which we now
sketch referring to [100] for the details. A ⌃-term n ! m is pictured as a box with n ports
on the left and m ports on the right, to which we shall refer with top-bottom enumerations
1, . . . , n and 1, . . . , m. Composition via ; and � are rendered graphically by horizontal and
vertical juxtaposition of boxes, respectively.

t ; s is drawn st t � s is drawn t
s

. (2.1)

In any SMT there are specific ⌃-terms generating the underlying symmetric monoidal structure:
these are id1 : 1 ! 1, represented as , the symmetry �1,1 : 1 + 1 ! 1 + 1, represented as

, and the unit object for �, that is, id0 : 0 ! 0, whose representation is an empty space .
Graphical representation for arbitrary identities id

n

and symmetries �
n,m

are generated according
to the pasting rules in (2.1).

The axioms of symmetric strict monoidal categories (Fig. 2.1) are naturally displayed in the
graphical language. Compatibility of � and ; is already implicit in the representation of (t ; s) �

(t0 ; s0) and (t � s) ; (t0 � s0) as the same string diagram:

st
st 00

Similarly, associativity of ; , � and compatibility of � with the unit are also implicit in the
graphical representation. We then have two sliding axioms yielding compatibility of ; with the
identity and naturality of symmetry:

t = t = t . (SM1)
t

= t . (SM2)

Finally, we have that �1,1 is self-inverse, that is,

= . (SM3)

2.2. PROPS 17

(t1 ; t3) � (t2 ; t4) = (t1 � t2) ; (t3 � t4)

(t1 ; t2) ; t3 = t1 ; (t2 ; t3) id
n

; c = c = c ; id
m

(t1 � t2) � t3 = t1 � (t2 � t3) id0 � t = t = t � id0

�1,1 ; �1,1 = id2 (t � id
z

) ; �
m,z

= �
n,z

; (id
z

� t)

Figure 2.1: Axioms of symmetric strict monoidal categories for a PROP T.

PROPs are adapted to the study of universal algebra in a symmetric monoidal setting. Within
this perspective, a typical way of defining a PROP is as the free construction on a given set of
generators and equations. We express these data in the form of a (one-sorted) symmetric monoidal
theory (SMT).

Definition 2.2. A symmetric monoidal theory (SMT) is a pair (⌃, E) consisting of a signature
⌃ and a set of equations E. The signature ⌃ is a set of generators o : n ! m with arity n and
coarity m. The set of ⌃-terms is obtained by composing generators in ⌃, the unit id : 1 ! 1 and
the symmetry �1,1 : 2 ! 2 with ; and �. This is a purely formal process: given ⌃-terms t : k ! l,
u : l ! m, v : m ! n, one constructs new ⌃-terms t ; u : k ! m and t � v : k + n ! l + n. The set
E of equations contains pairs (t, t0 : n ! m) of ⌃-terms with the same arity and coarity.

Now, given an SMT (⌃, E), one (freely) obtains a PROP T by letting the arrows n ! m be the
set of ⌃-terms n ! m taken modulo the laws of symmetric strict monoidal categories — Fig. 2.1
— and the smallest congruence (with respect to ; and �) containing the equations t = t0 for any
(t, t0) 2 E.

There is a natural graphical representation of these terms as string diagrams, which we now
sketch referring to [100] for the details. A ⌃-term n ! m is pictured as a box with n ports
on the left and m ports on the right, to which we shall refer with top-bottom enumerations
1, . . . , n and 1, . . . , m. Composition via ; and � are rendered graphically by horizontal and
vertical juxtaposition of boxes, respectively.

t ; s is drawn st t � s is drawn t
s

. (2.1)

In any SMT there are specific ⌃-terms generating the underlying symmetric monoidal structure:
these are id1 : 1 ! 1, represented as , the symmetry �1,1 : 1 + 1 ! 1 + 1, represented as

, and the unit object for �, that is, id0 : 0 ! 0, whose representation is an empty space .
Graphical representation for arbitrary identities id

n

and symmetries �
n,m

are generated according
to the pasting rules in (2.1).

The axioms of symmetric strict monoidal categories (Fig. 2.1) are naturally displayed in the
graphical language. Compatibility of � and ; is already implicit in the representation of (t ; s) �

(t0 ; s0) and (t � s) ; (t0 � s0) as the same string diagram:

st
st 00

Similarly, associativity of ; , � and compatibility of � with the unit are also implicit in the
graphical representation. We then have two sliding axioms yielding compatibility of ; with the
identity and naturality of symmetry:

t = t = t . (SM1)
t

= t . (SM2)

Finally, we have that �1,1 is self-inverse, that is,

= . (SM3)

axioms for PROPs
2.2. PROPS 17

(t1 ; t3) � (t2 ; t4) = (t1 � t2) ; (t3 � t4)

(t1 ; t2) ; t3 = t1 ; (t2 ; t3) id
n

; c = c = c ; id
m

(t1 � t2) � t3 = t1 � (t2 � t3) id0 � t = t = t � id0

�1,1 ; �1,1 = id2 (t � id
z

) ; �
m,z

= �
n,z

; (id
z

� t)

Figure 2.1: Axioms of symmetric strict monoidal categories for a PROP T.

PROPs are adapted to the study of universal algebra in a symmetric monoidal setting. Within
this perspective, a typical way of defining a PROP is as the free construction on a given set of
generators and equations. We express these data in the form of a (one-sorted) symmetric monoidal
theory (SMT).

Definition 2.2. A symmetric monoidal theory (SMT) is a pair (⌃, E) consisting of a signature
⌃ and a set of equations E. The signature ⌃ is a set of generators o : n ! m with arity n and
coarity m. The set of ⌃-terms is obtained by composing generators in ⌃, the unit id : 1 ! 1 and
the symmetry �1,1 : 2 ! 2 with ; and �. This is a purely formal process: given ⌃-terms t : k ! l,
u : l ! m, v : m ! n, one constructs new ⌃-terms t ; u : k ! m and t � v : k + n ! l + n. The set
E of equations contains pairs (t, t0 : n ! m) of ⌃-terms with the same arity and coarity.

Now, given an SMT (⌃, E), one (freely) obtains a PROP T by letting the arrows n ! m be the
set of ⌃-terms n ! m taken modulo the laws of symmetric strict monoidal categories — Fig. 2.1
— and the smallest congruence (with respect to ; and �) containing the equations t = t0 for any
(t, t0) 2 E.

There is a natural graphical representation of these terms as string diagrams, which we now
sketch referring to [100] for the details. A ⌃-term n ! m is pictured as a box with n ports
on the left and m ports on the right, to which we shall refer with top-bottom enumerations
1, . . . , n and 1, . . . , m. Composition via ; and � are rendered graphically by horizontal and
vertical juxtaposition of boxes, respectively.

t ; s is drawn st t � s is drawn t
s

. (2.1)

In any SMT there are specific ⌃-terms generating the underlying symmetric monoidal structure:
these are id1 : 1 ! 1, represented as , the symmetry �1,1 : 1 + 1 ! 1 + 1, represented as

, and the unit object for �, that is, id0 : 0 ! 0, whose representation is an empty space .
Graphical representation for arbitrary identities id

n

and symmetries �
n,m

are generated according
to the pasting rules in (2.1).

The axioms of symmetric strict monoidal categories (Fig. 2.1) are naturally displayed in the
graphical language. Compatibility of � and ; is already implicit in the representation of (t ; s) �

(t0 ; s0) and (t � s) ; (t0 � s0) as the same string diagram:

st
st 00

Similarly, associativity of ; , � and compatibility of � with the unit are also implicit in the
graphical representation. We then have two sliding axioms yielding compatibility of ; with the
identity and naturality of symmetry:

t = t = t . (SM1)
t

= t . (SM2)

Finally, we have that �1,1 is self-inverse, that is,

= . (SM3)

2.2. PROPS 17

(t1 ; t3) � (t2 ; t4) = (t1 � t2) ; (t3 � t4)

(t1 ; t2) ; t3 = t1 ; (t2 ; t3) id
n

; c = c = c ; id
m

(t1 � t2) � t3 = t1 � (t2 � t3) id0 � t = t = t � id0

�1,1 ; �1,1 = id2 (t � id
z

) ; �
m,z

= �
n,z

; (id
z

� t)

Figure 2.1: Axioms of symmetric strict monoidal categories for a PROP T.

PROPs are adapted to the study of universal algebra in a symmetric monoidal setting. Within
this perspective, a typical way of defining a PROP is as the free construction on a given set of
generators and equations. We express these data in the form of a (one-sorted) symmetric monoidal
theory (SMT).

Definition 2.2. A symmetric monoidal theory (SMT) is a pair (⌃, E) consisting of a signature
⌃ and a set of equations E. The signature ⌃ is a set of generators o : n ! m with arity n and
coarity m. The set of ⌃-terms is obtained by composing generators in ⌃, the unit id : 1 ! 1 and
the symmetry �1,1 : 2 ! 2 with ; and �. This is a purely formal process: given ⌃-terms t : k ! l,
u : l ! m, v : m ! n, one constructs new ⌃-terms t ; u : k ! m and t � v : k + n ! l + n. The set
E of equations contains pairs (t, t0 : n ! m) of ⌃-terms with the same arity and coarity.

Now, given an SMT (⌃, E), one (freely) obtains a PROP T by letting the arrows n ! m be the
set of ⌃-terms n ! m taken modulo the laws of symmetric strict monoidal categories — Fig. 2.1
— and the smallest congruence (with respect to ; and �) containing the equations t = t0 for any
(t, t0) 2 E.

There is a natural graphical representation of these terms as string diagrams, which we now
sketch referring to [100] for the details. A ⌃-term n ! m is pictured as a box with n ports
on the left and m ports on the right, to which we shall refer with top-bottom enumerations
1, . . . , n and 1, . . . , m. Composition via ; and � are rendered graphically by horizontal and
vertical juxtaposition of boxes, respectively.

t ; s is drawn st t � s is drawn t
s

. (2.1)

In any SMT there are specific ⌃-terms generating the underlying symmetric monoidal structure:
these are id1 : 1 ! 1, represented as , the symmetry �1,1 : 1 + 1 ! 1 + 1, represented as

, and the unit object for �, that is, id0 : 0 ! 0, whose representation is an empty space .
Graphical representation for arbitrary identities id

n

and symmetries �
n,m

are generated according
to the pasting rules in (2.1).

The axioms of symmetric strict monoidal categories (Fig. 2.1) are naturally displayed in the
graphical language. Compatibility of � and ; is already implicit in the representation of (t ; s) �

(t0 ; s0) and (t � s) ; (t0 � s0) as the same string diagram:

st
st 00

Similarly, associativity of ; , � and compatibility of � with the unit are also implicit in the
graphical representation. We then have two sliding axioms yielding compatibility of ; with the
identity and naturality of symmetry:

t = t = t . (SM1)
t

= t . (SM2)

Finally, we have that �1,1 is self-inverse, that is,

= . (SM3)

2.2. PROPS 17

(t1 ; t3) � (t2 ; t4) = (t1 � t2) ; (t3 � t4)

(t1 ; t2) ; t3 = t1 ; (t2 ; t3) id
n

; c = c = c ; id
m

(t1 � t2) � t3 = t1 � (t2 � t3) id0 � t = t = t � id0

�1,1 ; �1,1 = id2 (t � id
z

) ; �
m,z

= �
n,z

; (id
z

� t)

Figure 2.1: Axioms of symmetric strict monoidal categories for a PROP T.

PROPs are adapted to the study of universal algebra in a symmetric monoidal setting. Within
this perspective, a typical way of defining a PROP is as the free construction on a given set of
generators and equations. We express these data in the form of a (one-sorted) symmetric monoidal
theory (SMT).

Definition 2.2. A symmetric monoidal theory (SMT) is a pair (⌃, E) consisting of a signature
⌃ and a set of equations E. The signature ⌃ is a set of generators o : n ! m with arity n and
coarity m. The set of ⌃-terms is obtained by composing generators in ⌃, the unit id : 1 ! 1 and
the symmetry �1,1 : 2 ! 2 with ; and �. This is a purely formal process: given ⌃-terms t : k ! l,
u : l ! m, v : m ! n, one constructs new ⌃-terms t ; u : k ! m and t � v : k + n ! l + n. The set
E of equations contains pairs (t, t0 : n ! m) of ⌃-terms with the same arity and coarity.

Now, given an SMT (⌃, E), one (freely) obtains a PROP T by letting the arrows n ! m be the
set of ⌃-terms n ! m taken modulo the laws of symmetric strict monoidal categories — Fig. 2.1
— and the smallest congruence (with respect to ; and �) containing the equations t = t0 for any
(t, t0) 2 E.

There is a natural graphical representation of these terms as string diagrams, which we now
sketch referring to [100] for the details. A ⌃-term n ! m is pictured as a box with n ports
on the left and m ports on the right, to which we shall refer with top-bottom enumerations
1, . . . , n and 1, . . . , m. Composition via ; and � are rendered graphically by horizontal and
vertical juxtaposition of boxes, respectively.

t ; s is drawn st t � s is drawn t
s

. (2.1)

In any SMT there are specific ⌃-terms generating the underlying symmetric monoidal structure:
these are id1 : 1 ! 1, represented as , the symmetry �1,1 : 1 + 1 ! 1 + 1, represented as

, and the unit object for �, that is, id0 : 0 ! 0, whose representation is an empty space .
Graphical representation for arbitrary identities id

n

and symmetries �
n,m

are generated according
to the pasting rules in (2.1).

The axioms of symmetric strict monoidal categories (Fig. 2.1) are naturally displayed in the
graphical language. Compatibility of � and ; is already implicit in the representation of (t ; s) �

(t0 ; s0) and (t � s) ; (t0 � s0) as the same string diagram:

st
st 00

Similarly, associativity of ; , � and compatibility of � with the unit are also implicit in the
graphical representation. We then have two sliding axioms yielding compatibility of ; with the
identity and naturality of symmetry:

t = t = t . (SM1)
t

= t . (SM2)

Finally, we have that �1,1 is self-inverse, that is,

= . (SM3)

2.2. PROPS 17

(t1 ; t3) � (t2 ; t4) = (t1 � t2) ; (t3 � t4)

(t1 ; t2) ; t3 = t1 ; (t2 ; t3) id
n

; c = c = c ; id
m

(t1 � t2) � t3 = t1 � (t2 � t3) id0 � t = t = t � id0

�1,1 ; �1,1 = id2 (t � id
z

) ; �
m,z

= �
n,z

; (id
z

� t)

Figure 2.1: Axioms of symmetric strict monoidal categories for a PROP T.

PROPs are adapted to the study of universal algebra in a symmetric monoidal setting. Within
this perspective, a typical way of defining a PROP is as the free construction on a given set of
generators and equations. We express these data in the form of a (one-sorted) symmetric monoidal
theory (SMT).

Definition 2.2. A symmetric monoidal theory (SMT) is a pair (⌃, E) consisting of a signature
⌃ and a set of equations E. The signature ⌃ is a set of generators o : n ! m with arity n and
coarity m. The set of ⌃-terms is obtained by composing generators in ⌃, the unit id : 1 ! 1 and
the symmetry �1,1 : 2 ! 2 with ; and �. This is a purely formal process: given ⌃-terms t : k ! l,
u : l ! m, v : m ! n, one constructs new ⌃-terms t ; u : k ! m and t � v : k + n ! l + n. The set
E of equations contains pairs (t, t0 : n ! m) of ⌃-terms with the same arity and coarity.

Now, given an SMT (⌃, E), one (freely) obtains a PROP T by letting the arrows n ! m be the
set of ⌃-terms n ! m taken modulo the laws of symmetric strict monoidal categories — Fig. 2.1
— and the smallest congruence (with respect to ; and �) containing the equations t = t0 for any
(t, t0) 2 E.

There is a natural graphical representation of these terms as string diagrams, which we now
sketch referring to [100] for the details. A ⌃-term n ! m is pictured as a box with n ports
on the left and m ports on the right, to which we shall refer with top-bottom enumerations
1, . . . , n and 1, . . . , m. Composition via ; and � are rendered graphically by horizontal and
vertical juxtaposition of boxes, respectively.

t ; s is drawn st t � s is drawn t
s

. (2.1)

In any SMT there are specific ⌃-terms generating the underlying symmetric monoidal structure:
these are id1 : 1 ! 1, represented as , the symmetry �1,1 : 1 + 1 ! 1 + 1, represented as

, and the unit object for �, that is, id0 : 0 ! 0, whose representation is an empty space .
Graphical representation for arbitrary identities id

n

and symmetries �
n,m

are generated according
to the pasting rules in (2.1).

The axioms of symmetric strict monoidal categories (Fig. 2.1) are naturally displayed in the
graphical language. Compatibility of � and ; is already implicit in the representation of (t ; s) �

(t0 ; s0) and (t � s) ; (t0 � s0) as the same string diagram:

st
st 00

Similarly, associativity of ; , � and compatibility of � with the unit are also implicit in the
graphical representation. We then have two sliding axioms yielding compatibility of ; with the
identity and naturality of symmetry:

t = t = t . (SM1)
t

= t . (SM2)

Finally, we have that �1,1 is self-inverse, that is,

= . (SM3)

2.2. PROPS 17

(t1 ; t3) � (t2 ; t4) = (t1 � t2) ; (t3 � t4)

(t1 ; t2) ; t3 = t1 ; (t2 ; t3) id
n

; c = c = c ; id
m

(t1 � t2) � t3 = t1 � (t2 � t3) id0 � t = t = t � id0

�1,1 ; �1,1 = id2 (t � id
z

) ; �
m,z

= �
n,z

; (id
z

� t)

Figure 2.1: Axioms of symmetric strict monoidal categories for a PROP T.

PROPs are adapted to the study of universal algebra in a symmetric monoidal setting. Within
this perspective, a typical way of defining a PROP is as the free construction on a given set of
generators and equations. We express these data in the form of a (one-sorted) symmetric monoidal
theory (SMT).

Definition 2.2. A symmetric monoidal theory (SMT) is a pair (⌃, E) consisting of a signature
⌃ and a set of equations E. The signature ⌃ is a set of generators o : n ! m with arity n and
coarity m. The set of ⌃-terms is obtained by composing generators in ⌃, the unit id : 1 ! 1 and
the symmetry �1,1 : 2 ! 2 with ; and �. This is a purely formal process: given ⌃-terms t : k ! l,
u : l ! m, v : m ! n, one constructs new ⌃-terms t ; u : k ! m and t � v : k + n ! l + n. The set
E of equations contains pairs (t, t0 : n ! m) of ⌃-terms with the same arity and coarity.

Now, given an SMT (⌃, E), one (freely) obtains a PROP T by letting the arrows n ! m be the
set of ⌃-terms n ! m taken modulo the laws of symmetric strict monoidal categories — Fig. 2.1
— and the smallest congruence (with respect to ; and �) containing the equations t = t0 for any
(t, t0) 2 E.

There is a natural graphical representation of these terms as string diagrams, which we now
sketch referring to [100] for the details. A ⌃-term n ! m is pictured as a box with n ports
on the left and m ports on the right, to which we shall refer with top-bottom enumerations
1, . . . , n and 1, . . . , m. Composition via ; and � are rendered graphically by horizontal and
vertical juxtaposition of boxes, respectively.

t ; s is drawn st t � s is drawn t
s

. (2.1)

In any SMT there are specific ⌃-terms generating the underlying symmetric monoidal structure:
these are id1 : 1 ! 1, represented as , the symmetry �1,1 : 1 + 1 ! 1 + 1, represented as

, and the unit object for �, that is, id0 : 0 ! 0, whose representation is an empty space .
Graphical representation for arbitrary identities id

n

and symmetries �
n,m

are generated according
to the pasting rules in (2.1).

The axioms of symmetric strict monoidal categories (Fig. 2.1) are naturally displayed in the
graphical language. Compatibility of � and ; is already implicit in the representation of (t ; s) �

(t0 ; s0) and (t � s) ; (t0 � s0) as the same string diagram:

st
st 00

Similarly, associativity of ; , � and compatibility of � with the unit are also implicit in the
graphical representation. We then have two sliding axioms yielding compatibility of ; with the
identity and naturality of symmetry:

t = t = t . (SM1)
t

= t . (SM2)

Finally, we have that �1,1 is self-inverse, that is,

= . (SM3)

2.2. PROPS 17

(t1 ; t3) � (t2 ; t4) = (t1 � t2) ; (t3 � t4)

(t1 ; t2) ; t3 = t1 ; (t2 ; t3) id
n

; c = c = c ; id
m

(t1 � t2) � t3 = t1 � (t2 � t3) id0 � t = t = t � id0

�1,1 ; �1,1 = id2 (t � id
z

) ; �
m,z

= �
n,z

; (id
z

� t)

Figure 2.1: Axioms of symmetric strict monoidal categories for a PROP T.

PROPs are adapted to the study of universal algebra in a symmetric monoidal setting. Within
this perspective, a typical way of defining a PROP is as the free construction on a given set of
generators and equations. We express these data in the form of a (one-sorted) symmetric monoidal
theory (SMT).

Definition 2.2. A symmetric monoidal theory (SMT) is a pair (⌃, E) consisting of a signature
⌃ and a set of equations E. The signature ⌃ is a set of generators o : n ! m with arity n and
coarity m. The set of ⌃-terms is obtained by composing generators in ⌃, the unit id : 1 ! 1 and
the symmetry �1,1 : 2 ! 2 with ; and �. This is a purely formal process: given ⌃-terms t : k ! l,
u : l ! m, v : m ! n, one constructs new ⌃-terms t ; u : k ! m and t � v : k + n ! l + n. The set
E of equations contains pairs (t, t0 : n ! m) of ⌃-terms with the same arity and coarity.

Now, given an SMT (⌃, E), one (freely) obtains a PROP T by letting the arrows n ! m be the
set of ⌃-terms n ! m taken modulo the laws of symmetric strict monoidal categories — Fig. 2.1
— and the smallest congruence (with respect to ; and �) containing the equations t = t0 for any
(t, t0) 2 E.

There is a natural graphical representation of these terms as string diagrams, which we now
sketch referring to [100] for the details. A ⌃-term n ! m is pictured as a box with n ports
on the left and m ports on the right, to which we shall refer with top-bottom enumerations
1, . . . , n and 1, . . . , m. Composition via ; and � are rendered graphically by horizontal and
vertical juxtaposition of boxes, respectively.

t ; s is drawn st t � s is drawn t
s

. (2.1)

In any SMT there are specific ⌃-terms generating the underlying symmetric monoidal structure:
these are id1 : 1 ! 1, represented as , the symmetry �1,1 : 1 + 1 ! 1 + 1, represented as

, and the unit object for �, that is, id0 : 0 ! 0, whose representation is an empty space .
Graphical representation for arbitrary identities id

n

and symmetries �
n,m

are generated according
to the pasting rules in (2.1).

The axioms of symmetric strict monoidal categories (Fig. 2.1) are naturally displayed in the
graphical language. Compatibility of � and ; is already implicit in the representation of (t ; s) �

(t0 ; s0) and (t � s) ; (t0 � s0) as the same string diagram:

st
st 00

Similarly, associativity of ; , � and compatibility of � with the unit are also implicit in the
graphical representation. We then have two sliding axioms yielding compatibility of ; with the
identity and naturality of symmetry:

t = t = t . (SM1)
t

= t . (SM2)

Finally, we have that �1,1 is self-inverse, that is,

= . (SM3)

axioms for PROPs
2.2. PROPS 17

(t1 ; t3) � (t2 ; t4) = (t1 � t2) ; (t3 � t4)

(t1 ; t2) ; t3 = t1 ; (t2 ; t3) id
n

; c = c = c ; id
m

(t1 � t2) � t3 = t1 � (t2 � t3) id0 � t = t = t � id0

�1,1 ; �1,1 = id2 (t � id
z

) ; �
m,z

= �
n,z

; (id
z

� t)

Figure 2.1: Axioms of symmetric strict monoidal categories for a PROP T.

PROPs are adapted to the study of universal algebra in a symmetric monoidal setting. Within
this perspective, a typical way of defining a PROP is as the free construction on a given set of
generators and equations. We express these data in the form of a (one-sorted) symmetric monoidal
theory (SMT).

Definition 2.2. A symmetric monoidal theory (SMT) is a pair (⌃, E) consisting of a signature
⌃ and a set of equations E. The signature ⌃ is a set of generators o : n ! m with arity n and
coarity m. The set of ⌃-terms is obtained by composing generators in ⌃, the unit id : 1 ! 1 and
the symmetry �1,1 : 2 ! 2 with ; and �. This is a purely formal process: given ⌃-terms t : k ! l,
u : l ! m, v : m ! n, one constructs new ⌃-terms t ; u : k ! m and t � v : k + n ! l + n. The set
E of equations contains pairs (t, t0 : n ! m) of ⌃-terms with the same arity and coarity.

Now, given an SMT (⌃, E), one (freely) obtains a PROP T by letting the arrows n ! m be the
set of ⌃-terms n ! m taken modulo the laws of symmetric strict monoidal categories — Fig. 2.1
— and the smallest congruence (with respect to ; and �) containing the equations t = t0 for any
(t, t0) 2 E.

There is a natural graphical representation of these terms as string diagrams, which we now
sketch referring to [100] for the details. A ⌃-term n ! m is pictured as a box with n ports
on the left and m ports on the right, to which we shall refer with top-bottom enumerations
1, . . . , n and 1, . . . , m. Composition via ; and � are rendered graphically by horizontal and
vertical juxtaposition of boxes, respectively.

t ; s is drawn st t � s is drawn t
s

. (2.1)

In any SMT there are specific ⌃-terms generating the underlying symmetric monoidal structure:
these are id1 : 1 ! 1, represented as , the symmetry �1,1 : 1 + 1 ! 1 + 1, represented as

, and the unit object for �, that is, id0 : 0 ! 0, whose representation is an empty space .
Graphical representation for arbitrary identities id

n

and symmetries �
n,m

are generated according
to the pasting rules in (2.1).

The axioms of symmetric strict monoidal categories (Fig. 2.1) are naturally displayed in the
graphical language. Compatibility of � and ; is already implicit in the representation of (t ; s) �

(t0 ; s0) and (t � s) ; (t0 � s0) as the same string diagram:

st
st 00

Similarly, associativity of ; , � and compatibility of � with the unit are also implicit in the
graphical representation. We then have two sliding axioms yielding compatibility of ; with the
identity and naturality of symmetry:

t = t = t . (SM1)
t

= t . (SM2)

Finally, we have that �1,1 is self-inverse, that is,

= . (SM3)

2.2. PROPS 17

(t1 ; t3) � (t2 ; t4) = (t1 � t2) ; (t3 � t4)

(t1 ; t2) ; t3 = t1 ; (t2 ; t3) id
n

; c = c = c ; id
m

(t1 � t2) � t3 = t1 � (t2 � t3) id0 � t = t = t � id0

�1,1 ; �1,1 = id2 (t � id
z

) ; �
m,z

= �
n,z

; (id
z

� t)

Figure 2.1: Axioms of symmetric strict monoidal categories for a PROP T.

PROPs are adapted to the study of universal algebra in a symmetric monoidal setting. Within
this perspective, a typical way of defining a PROP is as the free construction on a given set of
generators and equations. We express these data in the form of a (one-sorted) symmetric monoidal
theory (SMT).

Definition 2.2. A symmetric monoidal theory (SMT) is a pair (⌃, E) consisting of a signature
⌃ and a set of equations E. The signature ⌃ is a set of generators o : n ! m with arity n and
coarity m. The set of ⌃-terms is obtained by composing generators in ⌃, the unit id : 1 ! 1 and
the symmetry �1,1 : 2 ! 2 with ; and �. This is a purely formal process: given ⌃-terms t : k ! l,
u : l ! m, v : m ! n, one constructs new ⌃-terms t ; u : k ! m and t � v : k + n ! l + n. The set
E of equations contains pairs (t, t0 : n ! m) of ⌃-terms with the same arity and coarity.

Now, given an SMT (⌃, E), one (freely) obtains a PROP T by letting the arrows n ! m be the
set of ⌃-terms n ! m taken modulo the laws of symmetric strict monoidal categories — Fig. 2.1
— and the smallest congruence (with respect to ; and �) containing the equations t = t0 for any
(t, t0) 2 E.

There is a natural graphical representation of these terms as string diagrams, which we now
sketch referring to [100] for the details. A ⌃-term n ! m is pictured as a box with n ports
on the left and m ports on the right, to which we shall refer with top-bottom enumerations
1, . . . , n and 1, . . . , m. Composition via ; and � are rendered graphically by horizontal and
vertical juxtaposition of boxes, respectively.

t ; s is drawn st t � s is drawn t
s

. (2.1)

In any SMT there are specific ⌃-terms generating the underlying symmetric monoidal structure:
these are id1 : 1 ! 1, represented as , the symmetry �1,1 : 1 + 1 ! 1 + 1, represented as

, and the unit object for �, that is, id0 : 0 ! 0, whose representation is an empty space .
Graphical representation for arbitrary identities id

n

and symmetries �
n,m

are generated according
to the pasting rules in (2.1).

The axioms of symmetric strict monoidal categories (Fig. 2.1) are naturally displayed in the
graphical language. Compatibility of � and ; is already implicit in the representation of (t ; s) �

(t0 ; s0) and (t � s) ; (t0 � s0) as the same string diagram:

st
st 00

Similarly, associativity of ; , � and compatibility of � with the unit are also implicit in the
graphical representation. We then have two sliding axioms yielding compatibility of ; with the
identity and naturality of symmetry:

t = t = t . (SM1)
t

= t . (SM2)

Finally, we have that �1,1 is self-inverse, that is,

= . (SM3)

2.2. PROPS 17

(t1 ; t3) � (t2 ; t4) = (t1 � t2) ; (t3 � t4)

(t1 ; t2) ; t3 = t1 ; (t2 ; t3) id
n

; c = c = c ; id
m

(t1 � t2) � t3 = t1 � (t2 � t3) id0 � t = t = t � id0

�1,1 ; �1,1 = id2 (t � id
z

) ; �
m,z

= �
n,z

; (id
z

� t)

Figure 2.1: Axioms of symmetric strict monoidal categories for a PROP T.

PROPs are adapted to the study of universal algebra in a symmetric monoidal setting. Within
this perspective, a typical way of defining a PROP is as the free construction on a given set of
generators and equations. We express these data in the form of a (one-sorted) symmetric monoidal
theory (SMT).

Definition 2.2. A symmetric monoidal theory (SMT) is a pair (⌃, E) consisting of a signature
⌃ and a set of equations E. The signature ⌃ is a set of generators o : n ! m with arity n and
coarity m. The set of ⌃-terms is obtained by composing generators in ⌃, the unit id : 1 ! 1 and
the symmetry �1,1 : 2 ! 2 with ; and �. This is a purely formal process: given ⌃-terms t : k ! l,
u : l ! m, v : m ! n, one constructs new ⌃-terms t ; u : k ! m and t � v : k + n ! l + n. The set
E of equations contains pairs (t, t0 : n ! m) of ⌃-terms with the same arity and coarity.

Now, given an SMT (⌃, E), one (freely) obtains a PROP T by letting the arrows n ! m be the
set of ⌃-terms n ! m taken modulo the laws of symmetric strict monoidal categories — Fig. 2.1
— and the smallest congruence (with respect to ; and �) containing the equations t = t0 for any
(t, t0) 2 E.

There is a natural graphical representation of these terms as string diagrams, which we now
sketch referring to [100] for the details. A ⌃-term n ! m is pictured as a box with n ports
on the left and m ports on the right, to which we shall refer with top-bottom enumerations
1, . . . , n and 1, . . . , m. Composition via ; and � are rendered graphically by horizontal and
vertical juxtaposition of boxes, respectively.

t ; s is drawn st t � s is drawn t
s

. (2.1)

In any SMT there are specific ⌃-terms generating the underlying symmetric monoidal structure:
these are id1 : 1 ! 1, represented as , the symmetry �1,1 : 1 + 1 ! 1 + 1, represented as

, and the unit object for �, that is, id0 : 0 ! 0, whose representation is an empty space .
Graphical representation for arbitrary identities id

n

and symmetries �
n,m

are generated according
to the pasting rules in (2.1).

The axioms of symmetric strict monoidal categories (Fig. 2.1) are naturally displayed in the
graphical language. Compatibility of � and ; is already implicit in the representation of (t ; s) �

(t0 ; s0) and (t � s) ; (t0 � s0) as the same string diagram:

st
st 00

Similarly, associativity of ; , � and compatibility of � with the unit are also implicit in the
graphical representation. We then have two sliding axioms yielding compatibility of ; with the
identity and naturality of symmetry:

t = t = t . (SM1)
t

= t . (SM2)

Finally, we have that �1,1 is self-inverse, that is,

= . (SM3)

2.2. PROPS 17

(t1 ; t3) � (t2 ; t4) = (t1 � t2) ; (t3 � t4)

(t1 ; t2) ; t3 = t1 ; (t2 ; t3) id
n

; c = c = c ; id
m

(t1 � t2) � t3 = t1 � (t2 � t3) id0 � t = t = t � id0

�1,1 ; �1,1 = id2 (t � id
z

) ; �
m,z

= �
n,z

; (id
z

� t)

Figure 2.1: Axioms of symmetric strict monoidal categories for a PROP T.

PROPs are adapted to the study of universal algebra in a symmetric monoidal setting. Within
this perspective, a typical way of defining a PROP is as the free construction on a given set of
generators and equations. We express these data in the form of a (one-sorted) symmetric monoidal
theory (SMT).

Definition 2.2. A symmetric monoidal theory (SMT) is a pair (⌃, E) consisting of a signature
⌃ and a set of equations E. The signature ⌃ is a set of generators o : n ! m with arity n and
coarity m. The set of ⌃-terms is obtained by composing generators in ⌃, the unit id : 1 ! 1 and
the symmetry �1,1 : 2 ! 2 with ; and �. This is a purely formal process: given ⌃-terms t : k ! l,
u : l ! m, v : m ! n, one constructs new ⌃-terms t ; u : k ! m and t � v : k + n ! l + n. The set
E of equations contains pairs (t, t0 : n ! m) of ⌃-terms with the same arity and coarity.

Now, given an SMT (⌃, E), one (freely) obtains a PROP T by letting the arrows n ! m be the
set of ⌃-terms n ! m taken modulo the laws of symmetric strict monoidal categories — Fig. 2.1
— and the smallest congruence (with respect to ; and �) containing the equations t = t0 for any
(t, t0) 2 E.

There is a natural graphical representation of these terms as string diagrams, which we now
sketch referring to [100] for the details. A ⌃-term n ! m is pictured as a box with n ports
on the left and m ports on the right, to which we shall refer with top-bottom enumerations
1, . . . , n and 1, . . . , m. Composition via ; and � are rendered graphically by horizontal and
vertical juxtaposition of boxes, respectively.

t ; s is drawn st t � s is drawn t
s

. (2.1)

In any SMT there are specific ⌃-terms generating the underlying symmetric monoidal structure:
these are id1 : 1 ! 1, represented as , the symmetry �1,1 : 1 + 1 ! 1 + 1, represented as

, and the unit object for �, that is, id0 : 0 ! 0, whose representation is an empty space .
Graphical representation for arbitrary identities id

n

and symmetries �
n,m

are generated according
to the pasting rules in (2.1).

The axioms of symmetric strict monoidal categories (Fig. 2.1) are naturally displayed in the
graphical language. Compatibility of � and ; is already implicit in the representation of (t ; s) �

(t0 ; s0) and (t � s) ; (t0 � s0) as the same string diagram:

st
st 00

Similarly, associativity of ; , � and compatibility of � with the unit are also implicit in the
graphical representation. We then have two sliding axioms yielding compatibility of ; with the
identity and naturality of symmetry:

t = t = t . (SM1)
t

= t . (SM2)

Finally, we have that �1,1 is self-inverse, that is,

= . (SM3)

2.2. PROPS 17

(t1 ; t3) � (t2 ; t4) = (t1 � t2) ; (t3 � t4)

(t1 ; t2) ; t3 = t1 ; (t2 ; t3) id
n

; c = c = c ; id
m

(t1 � t2) � t3 = t1 � (t2 � t3) id0 � t = t = t � id0

�1,1 ; �1,1 = id2 (t � id
z

) ; �
m,z

= �
n,z

; (id
z

� t)

Figure 2.1: Axioms of symmetric strict monoidal categories for a PROP T.

PROPs are adapted to the study of universal algebra in a symmetric monoidal setting. Within
this perspective, a typical way of defining a PROP is as the free construction on a given set of
generators and equations. We express these data in the form of a (one-sorted) symmetric monoidal
theory (SMT).

Definition 2.2. A symmetric monoidal theory (SMT) is a pair (⌃, E) consisting of a signature
⌃ and a set of equations E. The signature ⌃ is a set of generators o : n ! m with arity n and
coarity m. The set of ⌃-terms is obtained by composing generators in ⌃, the unit id : 1 ! 1 and
the symmetry �1,1 : 2 ! 2 with ; and �. This is a purely formal process: given ⌃-terms t : k ! l,
u : l ! m, v : m ! n, one constructs new ⌃-terms t ; u : k ! m and t � v : k + n ! l + n. The set
E of equations contains pairs (t, t0 : n ! m) of ⌃-terms with the same arity and coarity.

Now, given an SMT (⌃, E), one (freely) obtains a PROP T by letting the arrows n ! m be the
set of ⌃-terms n ! m taken modulo the laws of symmetric strict monoidal categories — Fig. 2.1
— and the smallest congruence (with respect to ; and �) containing the equations t = t0 for any
(t, t0) 2 E.

There is a natural graphical representation of these terms as string diagrams, which we now
sketch referring to [100] for the details. A ⌃-term n ! m is pictured as a box with n ports
on the left and m ports on the right, to which we shall refer with top-bottom enumerations
1, . . . , n and 1, . . . , m. Composition via ; and � are rendered graphically by horizontal and
vertical juxtaposition of boxes, respectively.

t ; s is drawn st t � s is drawn t
s

. (2.1)

In any SMT there are specific ⌃-terms generating the underlying symmetric monoidal structure:
these are id1 : 1 ! 1, represented as , the symmetry �1,1 : 1 + 1 ! 1 + 1, represented as

, and the unit object for �, that is, id0 : 0 ! 0, whose representation is an empty space .
Graphical representation for arbitrary identities id

n

and symmetries �
n,m

are generated according
to the pasting rules in (2.1).

The axioms of symmetric strict monoidal categories (Fig. 2.1) are naturally displayed in the
graphical language. Compatibility of � and ; is already implicit in the representation of (t ; s) �

(t0 ; s0) and (t � s) ; (t0 � s0) as the same string diagram:

st
st 00

Similarly, associativity of ; , � and compatibility of � with the unit are also implicit in the
graphical representation. We then have two sliding axioms yielding compatibility of ; with the
identity and naturality of symmetry:

t = t = t . (SM1)
t

= t . (SM2)

Finally, we have that �1,1 is self-inverse, that is,

= . (SM3)

2.2. PROPS 17

(t1 ; t3) � (t2 ; t4) = (t1 � t2) ; (t3 � t4)

(t1 ; t2) ; t3 = t1 ; (t2 ; t3) id
n

; c = c = c ; id
m

(t1 � t2) � t3 = t1 � (t2 � t3) id0 � t = t = t � id0

�1,1 ; �1,1 = id2 (t � id
z

) ; �
m,z

= �
n,z

; (id
z

� t)

Figure 2.1: Axioms of symmetric strict monoidal categories for a PROP T.

PROPs are adapted to the study of universal algebra in a symmetric monoidal setting. Within
this perspective, a typical way of defining a PROP is as the free construction on a given set of
generators and equations. We express these data in the form of a (one-sorted) symmetric monoidal
theory (SMT).

Definition 2.2. A symmetric monoidal theory (SMT) is a pair (⌃, E) consisting of a signature
⌃ and a set of equations E. The signature ⌃ is a set of generators o : n ! m with arity n and
coarity m. The set of ⌃-terms is obtained by composing generators in ⌃, the unit id : 1 ! 1 and
the symmetry �1,1 : 2 ! 2 with ; and �. This is a purely formal process: given ⌃-terms t : k ! l,
u : l ! m, v : m ! n, one constructs new ⌃-terms t ; u : k ! m and t � v : k + n ! l + n. The set
E of equations contains pairs (t, t0 : n ! m) of ⌃-terms with the same arity and coarity.

Now, given an SMT (⌃, E), one (freely) obtains a PROP T by letting the arrows n ! m be the
set of ⌃-terms n ! m taken modulo the laws of symmetric strict monoidal categories — Fig. 2.1
— and the smallest congruence (with respect to ; and �) containing the equations t = t0 for any
(t, t0) 2 E.

There is a natural graphical representation of these terms as string diagrams, which we now
sketch referring to [100] for the details. A ⌃-term n ! m is pictured as a box with n ports
on the left and m ports on the right, to which we shall refer with top-bottom enumerations
1, . . . , n and 1, . . . , m. Composition via ; and � are rendered graphically by horizontal and
vertical juxtaposition of boxes, respectively.

t ; s is drawn st t � s is drawn t
s

. (2.1)

In any SMT there are specific ⌃-terms generating the underlying symmetric monoidal structure:
these are id1 : 1 ! 1, represented as , the symmetry �1,1 : 1 + 1 ! 1 + 1, represented as

, and the unit object for �, that is, id0 : 0 ! 0, whose representation is an empty space .
Graphical representation for arbitrary identities id

n

and symmetries �
n,m

are generated according
to the pasting rules in (2.1).

The axioms of symmetric strict monoidal categories (Fig. 2.1) are naturally displayed in the
graphical language. Compatibility of � and ; is already implicit in the representation of (t ; s) �

(t0 ; s0) and (t � s) ; (t0 � s0) as the same string diagram:

st
st 00

Similarly, associativity of ; , � and compatibility of � with the unit are also implicit in the
graphical representation. We then have two sliding axioms yielding compatibility of ; with the
identity and naturality of symmetry:

t = t = t . (SM1)
t

= t . (SM2)

Finally, we have that �1,1 is self-inverse, that is,

= . (SM3)

2.2. PROPS 17

(t1 ; t3) � (t2 ; t4) = (t1 � t2) ; (t3 � t4)

(t1 ; t2) ; t3 = t1 ; (t2 ; t3) id
n

; c = c = c ; id
m

(t1 � t2) � t3 = t1 � (t2 � t3) id0 � t = t = t � id0

�1,1 ; �1,1 = id2 (t � id
z

) ; �
m,z

= �
n,z

; (id
z

� t)

Figure 2.1: Axioms of symmetric strict monoidal categories for a PROP T.

PROPs are adapted to the study of universal algebra in a symmetric monoidal setting. Within
this perspective, a typical way of defining a PROP is as the free construction on a given set of
generators and equations. We express these data in the form of a (one-sorted) symmetric monoidal
theory (SMT).

Definition 2.2. A symmetric monoidal theory (SMT) is a pair (⌃, E) consisting of a signature
⌃ and a set of equations E. The signature ⌃ is a set of generators o : n ! m with arity n and
coarity m. The set of ⌃-terms is obtained by composing generators in ⌃, the unit id : 1 ! 1 and
the symmetry �1,1 : 2 ! 2 with ; and �. This is a purely formal process: given ⌃-terms t : k ! l,
u : l ! m, v : m ! n, one constructs new ⌃-terms t ; u : k ! m and t � v : k + n ! l + n. The set
E of equations contains pairs (t, t0 : n ! m) of ⌃-terms with the same arity and coarity.

Now, given an SMT (⌃, E), one (freely) obtains a PROP T by letting the arrows n ! m be the
set of ⌃-terms n ! m taken modulo the laws of symmetric strict monoidal categories — Fig. 2.1
— and the smallest congruence (with respect to ; and �) containing the equations t = t0 for any
(t, t0) 2 E.

There is a natural graphical representation of these terms as string diagrams, which we now
sketch referring to [100] for the details. A ⌃-term n ! m is pictured as a box with n ports
on the left and m ports on the right, to which we shall refer with top-bottom enumerations
1, . . . , n and 1, . . . , m. Composition via ; and � are rendered graphically by horizontal and
vertical juxtaposition of boxes, respectively.

t ; s is drawn st t � s is drawn t
s

. (2.1)

In any SMT there are specific ⌃-terms generating the underlying symmetric monoidal structure:
these are id1 : 1 ! 1, represented as , the symmetry �1,1 : 1 + 1 ! 1 + 1, represented as

, and the unit object for �, that is, id0 : 0 ! 0, whose representation is an empty space .
Graphical representation for arbitrary identities id

n

and symmetries �
n,m

are generated according
to the pasting rules in (2.1).

The axioms of symmetric strict monoidal categories (Fig. 2.1) are naturally displayed in the
graphical language. Compatibility of � and ; is already implicit in the representation of (t ; s) �

(t0 ; s0) and (t � s) ; (t0 � s0) as the same string diagram:

st
st 00

Similarly, associativity of ; , � and compatibility of � with the unit are also implicit in the
graphical representation. We then have two sliding axioms yielding compatibility of ; with the
identity and naturality of symmetry:

t = t = t . (SM1)
t

= t . (SM2)

Finally, we have that �1,1 is self-inverse, that is,

= . (SM3)

Symmetric Monoidal
Theories

An SMT is a pair (Σ,E) where
• Σ is a signature and
• E is a set of equations l=r, for Σ-diagrams l,r:n-->m

Symmetric Monoidal
Theories

An SMT is a pair (Σ,E) where
• Σ is a signature and
• E is a set of equations l=r, for Σ-diagrams l,r:n-->m

== =

Commutative monoid

Symmetric Monoidal
Theories

An SMT is a pair (Σ,E) where
• Σ is a signature and
• E is a set of equations l=r, for Σ-diagrams l,r:n-->m

== =

Commutative monoid

===

Commutative comonoid

Symmetric Monoidal
Theories

An SMT is a pair (Σ,E) where
• Σ is a signature and
• E is a set of equations l=r, for Σ-diagrams l,r:n-->m

== =

Commutative monoid

===

Commutative comonoid

= =

Special Frobenius Algebra

=

Symmetric Monoidal
Theories

Symmetric Monoidal
Theories

SMTs can be thought as Algebraic Theories but
1) terms are DAGs rather than Trees
2) variables are linear (cannot be copied or discarded)

Symmetric Monoidal
Theories

SMTs can be thought as Algebraic Theories but
1) terms are DAGs rather than Trees
2) variables are linear (cannot be copied or discarded)

These features make SMTs fundamental for
Quantum Informations,
Concurrency Theory,

Linear Logics and
Control Theory.

Symmetric Monoidal
Theories

SMTs can be thought as Algebraic Theories but
1) terms are DAGs rather than Trees
2) variables are linear (cannot be copied or discarded)

These features make SMTs fundamental for
Quantum Informations,
Concurrency Theory,

Linear Logics and
Control Theory.

More and more
interest on SMTs:

an entire workshop
at Simons Institute

(Berkley)

Symmetric Monoidal
Theories

SMTs can be thought as Algebraic Theories but
1) terms are DAGs rather than Trees
2) variables are linear (cannot be copied or discarded)

These features make SMTs fundamental for
Quantum Informations,
Concurrency Theory,

Linear Logics and
Control Theory.

More and more
interest on SMTs:

an entire workshop
at Simons Institute

(Berkley)

The celebrated
theoretical physicist

John Baez
"reinvented"

DPO rewriting

PROP Rewriting
By orienting the equations of an SMTs,

one obtains a rewriting system

PROP Rewriting
By orienting the equations of an SMTs,

one obtains a rewriting system
If the system is terminating and confluent,
one can check equivalence via rewriting

PROP Rewriting
By orienting the equations of an SMTs,

one obtains a rewriting system
If the system is terminating and confluent,
one can check equivalence via rewriting

More generally, rewriting is important for completeness proofs
that often rely on normal forms

PROP Rewriting
By orienting the equations of an SMTs,

one obtains a rewriting system
If the system is terminating and confluent,
one can check equivalence via rewriting

More generally, rewriting is important for completeness proofs
that often rely on normal forms

But rewriting modulo the axioms of PROPs is tough...

PROP Rewriting
By orienting the equations of an SMTs,

one obtains a rewriting system
If the system is terminating and confluent,
one can check equivalence via rewriting

More generally, rewriting is important for completeness proofs
that often rely on normal forms

But rewriting modulo the axioms of PROPs is tough...

PROP Rewriting
By orienting the equations of an SMTs,

one obtains a rewriting system
If the system is terminating and confluent,
one can check equivalence via rewriting

More generally, rewriting is important for completeness proofs
that often rely on normal forms

Rewriting modulo symmetric monoidal structure

Filippo Bonchi
CNRS, ENS Lyon

filippo.bonchi@gmail.com

Fabio Gadducci
U. Pisa

gadducci@di.unipi.it

Aleks Kissinger
Radboud U. Nijmegen

aleks@cs.ru.nl

Paweł Sobociński
U. Southampton

ps@ecs.soton.ac.uk

Fabio Zanasi
Radboud U. Nijmegen

fzanasi@cs.ru.nl

Abstract
String diagrams are a powerful and intuitive graphical syntax for
terms of symmetric monoidal categories (SMCs). They find many
applications in computer science and are becoming increasingly
relevant in other fields such as physics and control theory.

An important role in many such approaches is played by equa-
tional theories of diagrams, typically oriented and applied as
rewrite rules. This paper lays a comprehensive foundation for this
form of rewriting. We interpret diagrams combinatorially as typed
hypergraphs and establish the precise correspondence between dia-
gram rewriting modulo the laws of SMCs on the one hand and dou-
ble pushout (DPO) rewriting of hypergraphs, subject to a soundness
condition called convexity, on the other. This result rests on a more
general characterisation theorem in which we show that typed hy-
pergraph DPO rewriting amounts to diagram rewriting modulo the
laws of SMCs with a chosen special Frobenius structure.

We illustrate our approach with a proof of termination for the
theory of non-commutative bimonoids.

1. Introduction
Symmetric monoidal categories (SMCs) are categories where ar-
rows can be composed sequentially (;) and in parallel (�). The
interplay between these two kinds of composition is commonplace,
and indeed SMCs have found many applications in computer sci-
ence, physics and related fields. Focussing on computer science,
they feature in concurrency theory, where they describe the con-
current nature of executions of Petri nets [30] as well as serving
as their compositional algebra [9, 39], quantum information, where
they model quantum circuits [11, 12], and in systems theory, where
they provide a calculus of signal flow graphs [2, 5, 7].

In each case, the algebra of SMCs gives us a syntax to talk
about domain-specific artefacts. However, the two composition op-
erations in an SMC are related by functoriality, and symmetries
are natural: this imposes a non-trivial structural equality relation
on terms from the outset—something that in process algebra is
referred to as structural congruence—that makes using ordinary
tree-like syntax ineffectual. Functoriality means that, given terms
A,B,C,D where A,B and C,D can be composed sequentially:

(A� C) ; (B �D) = (A ; B)� (C ; D). (1)

As a consequence, this syntax is intrinsically 2-dimensional, and so
diagrams—in this context often referred to as string diagrams—are
a more efficient representation for arrows of SMCs. Indeed, both

[Copyright notice will appear here once ’preprint’ option is removed.]

sides of the equation above are represented diagrammatically as

A B

C D

and so (1) is built into the representation, along with equational
properties such as associativity of both composition operations.

The history of string diagrams begins with Feynman and Pen-
rose, but they remained just a tool for private calculations, ulti-
mately excluded from papers. This was likely due to a lack of
foundational results that justified their use: the careful mathe-
matician checked each step in a diagrammatic proof using stan-
dard term-based means. This changed with the 1991 paper [21] of
Joyal and Street who formalised diagrams as topological structures
and understood diagrammatic manipulation as homotopy. Their
framework allowed them to show that the resulting diagrams-up-
to-homotopy-equivalence served as a description for the arrows
of free braided monoidal categories, of which SMCs are a special
case. Subsequently, the use of diagrammatic notation exploded, see
e.g. the survey [37]. The results of Joyal and Street mean that we
have a formal description of the nature of 2-dimensional syntax,
and so of the arrows of free braided monoidal categories.

Most applications, however, do not feature free categories but
rather rely on the presence of additional equations: for example,
algebraic structures such as bimonoids and Frobenius monoids are
commonplace. Adding equations to a theory of string diagrams
means that diagrammatic proofs include rewriting: if the left hand
side of an equation can be found in a larger string diagram, it can be
deleted and replaced with its right hand side.1 From a mathematical
point of view, one can formulate rewrite rules as generator 2-
cells (this data structure is variously called a computad [40] or a
polygraph [10]) and consider the resulting free 2-category, where
the 2-cells witness the possible rewriting trajectories. This does not
solve the problem of how to implement rewriting, and the approach
of Joyal and Street does not offer an immediate solution either; we
do not have an off-the-shelf rewriting theory for their diagrams.

One of the fundamental difficulties with working with terms
modulo the laws of SMCs is finding matches. For example, con-
sider the following rewrite rule

U V W�
then, using naturality, we ought to be able to find a match in

VU

U

W

which, viewed as a term, does not contain the l.h.s. as a subterm.

1 Diagram rewriting may represent e.g. a system whose topology dynami-
cally changes during execution.

1 2016/4/30

But rewriting modulo the axioms of PROPs is tough...

PROP Rewriting
By orienting the equations of an SMTs,

one obtains a rewriting system
If the system is terminating and confluent,
one can check equivalence via rewriting

More generally, rewriting is important for completeness proofs
that often rely on normal forms

Rewriting modulo symmetric monoidal structure

Filippo Bonchi
CNRS, ENS Lyon

filippo.bonchi@gmail.com

Fabio Gadducci
U. Pisa

gadducci@di.unipi.it

Aleks Kissinger
Radboud U. Nijmegen

aleks@cs.ru.nl

Paweł Sobociński
U. Southampton

ps@ecs.soton.ac.uk

Fabio Zanasi
Radboud U. Nijmegen

fzanasi@cs.ru.nl

Abstract
String diagrams are a powerful and intuitive graphical syntax for
terms of symmetric monoidal categories (SMCs). They find many
applications in computer science and are becoming increasingly
relevant in other fields such as physics and control theory.

An important role in many such approaches is played by equa-
tional theories of diagrams, typically oriented and applied as
rewrite rules. This paper lays a comprehensive foundation for this
form of rewriting. We interpret diagrams combinatorially as typed
hypergraphs and establish the precise correspondence between dia-
gram rewriting modulo the laws of SMCs on the one hand and dou-
ble pushout (DPO) rewriting of hypergraphs, subject to a soundness
condition called convexity, on the other. This result rests on a more
general characterisation theorem in which we show that typed hy-
pergraph DPO rewriting amounts to diagram rewriting modulo the
laws of SMCs with a chosen special Frobenius structure.

We illustrate our approach with a proof of termination for the
theory of non-commutative bimonoids.

1. Introduction
Symmetric monoidal categories (SMCs) are categories where ar-
rows can be composed sequentially (;) and in parallel (�). The
interplay between these two kinds of composition is commonplace,
and indeed SMCs have found many applications in computer sci-
ence, physics and related fields. Focussing on computer science,
they feature in concurrency theory, where they describe the con-
current nature of executions of Petri nets [30] as well as serving
as their compositional algebra [9, 39], quantum information, where
they model quantum circuits [11, 12], and in systems theory, where
they provide a calculus of signal flow graphs [2, 5, 7].

In each case, the algebra of SMCs gives us a syntax to talk
about domain-specific artefacts. However, the two composition op-
erations in an SMC are related by functoriality, and symmetries
are natural: this imposes a non-trivial structural equality relation
on terms from the outset—something that in process algebra is
referred to as structural congruence—that makes using ordinary
tree-like syntax ineffectual. Functoriality means that, given terms
A,B,C,D where A,B and C,D can be composed sequentially:

(A� C) ; (B �D) = (A ; B)� (C ; D). (1)

As a consequence, this syntax is intrinsically 2-dimensional, and so
diagrams—in this context often referred to as string diagrams—are
a more efficient representation for arrows of SMCs. Indeed, both

[Copyright notice will appear here once ’preprint’ option is removed.]

sides of the equation above are represented diagrammatically as

A B

C D

and so (1) is built into the representation, along with equational
properties such as associativity of both composition operations.

The history of string diagrams begins with Feynman and Pen-
rose, but they remained just a tool for private calculations, ulti-
mately excluded from papers. This was likely due to a lack of
foundational results that justified their use: the careful mathe-
matician checked each step in a diagrammatic proof using stan-
dard term-based means. This changed with the 1991 paper [21] of
Joyal and Street who formalised diagrams as topological structures
and understood diagrammatic manipulation as homotopy. Their
framework allowed them to show that the resulting diagrams-up-
to-homotopy-equivalence served as a description for the arrows
of free braided monoidal categories, of which SMCs are a special
case. Subsequently, the use of diagrammatic notation exploded, see
e.g. the survey [37]. The results of Joyal and Street mean that we
have a formal description of the nature of 2-dimensional syntax,
and so of the arrows of free braided monoidal categories.

Most applications, however, do not feature free categories but
rather rely on the presence of additional equations: for example,
algebraic structures such as bimonoids and Frobenius monoids are
commonplace. Adding equations to a theory of string diagrams
means that diagrammatic proofs include rewriting: if the left hand
side of an equation can be found in a larger string diagram, it can be
deleted and replaced with its right hand side.1 From a mathematical
point of view, one can formulate rewrite rules as generator 2-
cells (this data structure is variously called a computad [40] or a
polygraph [10]) and consider the resulting free 2-category, where
the 2-cells witness the possible rewriting trajectories. This does not
solve the problem of how to implement rewriting, and the approach
of Joyal and Street does not offer an immediate solution either; we
do not have an off-the-shelf rewriting theory for their diagrams.

One of the fundamental difficulties with working with terms
modulo the laws of SMCs is finding matches. For example, con-
sider the following rewrite rule

U V W�
then, using naturality, we ought to be able to find a match in

VU

U

W

which, viewed as a term, does not contain the l.h.s. as a subterm.

1 Diagram rewriting may represent e.g. a system whose topology dynami-
cally changes during execution.

1 2016/4/30

Rewriting modulo symmetric monoidal structure

Filippo Bonchi
CNRS, ENS Lyon

filippo.bonchi@gmail.com

Fabio Gadducci
U. Pisa

gadducci@di.unipi.it

Aleks Kissinger
Radboud U. Nijmegen

aleks@cs.ru.nl

Paweł Sobociński
U. Southampton

ps@ecs.soton.ac.uk

Fabio Zanasi
Radboud U. Nijmegen

fzanasi@cs.ru.nl

Abstract
String diagrams are a powerful and intuitive graphical syntax for
terms of symmetric monoidal categories (SMCs). They find many
applications in computer science and are becoming increasingly
relevant in other fields such as physics and control theory.

An important role in many such approaches is played by equa-
tional theories of diagrams, typically oriented and applied as
rewrite rules. This paper lays a comprehensive foundation for this
form of rewriting. We interpret diagrams combinatorially as typed
hypergraphs and establish the precise correspondence between dia-
gram rewriting modulo the laws of SMCs on the one hand and dou-
ble pushout (DPO) rewriting of hypergraphs, subject to a soundness
condition called convexity, on the other. This result rests on a more
general characterisation theorem in which we show that typed hy-
pergraph DPO rewriting amounts to diagram rewriting modulo the
laws of SMCs with a chosen special Frobenius structure.

We illustrate our approach with a proof of termination for the
theory of non-commutative bimonoids.

1. Introduction
Symmetric monoidal categories (SMCs) are categories where ar-
rows can be composed sequentially (;) and in parallel (�). The
interplay between these two kinds of composition is commonplace,
and indeed SMCs have found many applications in computer sci-
ence, physics and related fields. Focussing on computer science,
they feature in concurrency theory, where they describe the con-
current nature of executions of Petri nets [30] as well as serving
as their compositional algebra [9, 39], quantum information, where
they model quantum circuits [11, 12], and in systems theory, where
they provide a calculus of signal flow graphs [2, 5, 7].

In each case, the algebra of SMCs gives us a syntax to talk
about domain-specific artefacts. However, the two composition op-
erations in an SMC are related by functoriality, and symmetries
are natural: this imposes a non-trivial structural equality relation
on terms from the outset—something that in process algebra is
referred to as structural congruence—that makes using ordinary
tree-like syntax ineffectual. Functoriality means that, given terms
A,B,C,D where A,B and C,D can be composed sequentially:

(A� C) ; (B �D) = (A ; B)� (C ; D). (1)

As a consequence, this syntax is intrinsically 2-dimensional, and so
diagrams—in this context often referred to as string diagrams—are
a more efficient representation for arrows of SMCs. Indeed, both

[Copyright notice will appear here once ’preprint’ option is removed.]

sides of the equation above are represented diagrammatically as

A B

C D

and so (1) is built into the representation, along with equational
properties such as associativity of both composition operations.

The history of string diagrams begins with Feynman and Pen-
rose, but they remained just a tool for private calculations, ulti-
mately excluded from papers. This was likely due to a lack of
foundational results that justified their use: the careful mathe-
matician checked each step in a diagrammatic proof using stan-
dard term-based means. This changed with the 1991 paper [21] of
Joyal and Street who formalised diagrams as topological structures
and understood diagrammatic manipulation as homotopy. Their
framework allowed them to show that the resulting diagrams-up-
to-homotopy-equivalence served as a description for the arrows
of free braided monoidal categories, of which SMCs are a special
case. Subsequently, the use of diagrammatic notation exploded, see
e.g. the survey [37]. The results of Joyal and Street mean that we
have a formal description of the nature of 2-dimensional syntax,
and so of the arrows of free braided monoidal categories.

Most applications, however, do not feature free categories but
rather rely on the presence of additional equations: for example,
algebraic structures such as bimonoids and Frobenius monoids are
commonplace. Adding equations to a theory of string diagrams
means that diagrammatic proofs include rewriting: if the left hand
side of an equation can be found in a larger string diagram, it can be
deleted and replaced with its right hand side.1 From a mathematical
point of view, one can formulate rewrite rules as generator 2-
cells (this data structure is variously called a computad [40] or a
polygraph [10]) and consider the resulting free 2-category, where
the 2-cells witness the possible rewriting trajectories. This does not
solve the problem of how to implement rewriting, and the approach
of Joyal and Street does not offer an immediate solution either; we
do not have an off-the-shelf rewriting theory for their diagrams.

One of the fundamental difficulties with working with terms
modulo the laws of SMCs is finding matches. For example, con-
sider the following rewrite rule

U V W�
then, using naturality, we ought to be able to find a match in

VU

U

W

which, viewed as a term, does not contain the l.h.s. as a subterm.

1 Diagram rewriting may represent e.g. a system whose topology dynami-
cally changes during execution.

1 2016/4/30

But rewriting modulo the axioms of PROPs is tough...

PROP Rewriting
By orienting the equations of an SMTs,

one obtains a rewriting system
If the system is terminating and confluent,
one can check equivalence via rewriting

More generally, rewriting is important for completeness proofs
that often rely on normal forms

Rewriting modulo symmetric monoidal structure

Filippo Bonchi
CNRS, ENS Lyon

filippo.bonchi@gmail.com

Fabio Gadducci
U. Pisa

gadducci@di.unipi.it

Aleks Kissinger
Radboud U. Nijmegen

aleks@cs.ru.nl

Paweł Sobociński
U. Southampton

ps@ecs.soton.ac.uk

Fabio Zanasi
Radboud U. Nijmegen

fzanasi@cs.ru.nl

Abstract
String diagrams are a powerful and intuitive graphical syntax for
terms of symmetric monoidal categories (SMCs). They find many
applications in computer science and are becoming increasingly
relevant in other fields such as physics and control theory.

An important role in many such approaches is played by equa-
tional theories of diagrams, typically oriented and applied as
rewrite rules. This paper lays a comprehensive foundation for this
form of rewriting. We interpret diagrams combinatorially as typed
hypergraphs and establish the precise correspondence between dia-
gram rewriting modulo the laws of SMCs on the one hand and dou-
ble pushout (DPO) rewriting of hypergraphs, subject to a soundness
condition called convexity, on the other. This result rests on a more
general characterisation theorem in which we show that typed hy-
pergraph DPO rewriting amounts to diagram rewriting modulo the
laws of SMCs with a chosen special Frobenius structure.

We illustrate our approach with a proof of termination for the
theory of non-commutative bimonoids.

1. Introduction
Symmetric monoidal categories (SMCs) are categories where ar-
rows can be composed sequentially (;) and in parallel (�). The
interplay between these two kinds of composition is commonplace,
and indeed SMCs have found many applications in computer sci-
ence, physics and related fields. Focussing on computer science,
they feature in concurrency theory, where they describe the con-
current nature of executions of Petri nets [30] as well as serving
as their compositional algebra [9, 39], quantum information, where
they model quantum circuits [11, 12], and in systems theory, where
they provide a calculus of signal flow graphs [2, 5, 7].

In each case, the algebra of SMCs gives us a syntax to talk
about domain-specific artefacts. However, the two composition op-
erations in an SMC are related by functoriality, and symmetries
are natural: this imposes a non-trivial structural equality relation
on terms from the outset—something that in process algebra is
referred to as structural congruence—that makes using ordinary
tree-like syntax ineffectual. Functoriality means that, given terms
A,B,C,D where A,B and C,D can be composed sequentially:

(A� C) ; (B �D) = (A ; B)� (C ; D). (1)

As a consequence, this syntax is intrinsically 2-dimensional, and so
diagrams—in this context often referred to as string diagrams—are
a more efficient representation for arrows of SMCs. Indeed, both

[Copyright notice will appear here once ’preprint’ option is removed.]

sides of the equation above are represented diagrammatically as

A B

C D

and so (1) is built into the representation, along with equational
properties such as associativity of both composition operations.

The history of string diagrams begins with Feynman and Pen-
rose, but they remained just a tool for private calculations, ulti-
mately excluded from papers. This was likely due to a lack of
foundational results that justified their use: the careful mathe-
matician checked each step in a diagrammatic proof using stan-
dard term-based means. This changed with the 1991 paper [21] of
Joyal and Street who formalised diagrams as topological structures
and understood diagrammatic manipulation as homotopy. Their
framework allowed them to show that the resulting diagrams-up-
to-homotopy-equivalence served as a description for the arrows
of free braided monoidal categories, of which SMCs are a special
case. Subsequently, the use of diagrammatic notation exploded, see
e.g. the survey [37]. The results of Joyal and Street mean that we
have a formal description of the nature of 2-dimensional syntax,
and so of the arrows of free braided monoidal categories.

Most applications, however, do not feature free categories but
rather rely on the presence of additional equations: for example,
algebraic structures such as bimonoids and Frobenius monoids are
commonplace. Adding equations to a theory of string diagrams
means that diagrammatic proofs include rewriting: if the left hand
side of an equation can be found in a larger string diagram, it can be
deleted and replaced with its right hand side.1 From a mathematical
point of view, one can formulate rewrite rules as generator 2-
cells (this data structure is variously called a computad [40] or a
polygraph [10]) and consider the resulting free 2-category, where
the 2-cells witness the possible rewriting trajectories. This does not
solve the problem of how to implement rewriting, and the approach
of Joyal and Street does not offer an immediate solution either; we
do not have an off-the-shelf rewriting theory for their diagrams.

One of the fundamental difficulties with working with terms
modulo the laws of SMCs is finding matches. For example, con-
sider the following rewrite rule

U V W�
then, using naturality, we ought to be able to find a match in

VU

U

W

which, viewed as a term, does not contain the l.h.s. as a subterm.

1 Diagram rewriting may represent e.g. a system whose topology dynami-
cally changes during execution.

1 2016/4/30

Rewriting modulo symmetric monoidal structure

Filippo Bonchi
CNRS, ENS Lyon

filippo.bonchi@gmail.com

Fabio Gadducci
U. Pisa

gadducci@di.unipi.it

Aleks Kissinger
Radboud U. Nijmegen

aleks@cs.ru.nl

Paweł Sobociński
U. Southampton

ps@ecs.soton.ac.uk

Fabio Zanasi
Radboud U. Nijmegen

fzanasi@cs.ru.nl

Abstract
String diagrams are a powerful and intuitive graphical syntax for
terms of symmetric monoidal categories (SMCs). They find many
applications in computer science and are becoming increasingly
relevant in other fields such as physics and control theory.

An important role in many such approaches is played by equa-
tional theories of diagrams, typically oriented and applied as
rewrite rules. This paper lays a comprehensive foundation for this
form of rewriting. We interpret diagrams combinatorially as typed
hypergraphs and establish the precise correspondence between dia-
gram rewriting modulo the laws of SMCs on the one hand and dou-
ble pushout (DPO) rewriting of hypergraphs, subject to a soundness
condition called convexity, on the other. This result rests on a more
general characterisation theorem in which we show that typed hy-
pergraph DPO rewriting amounts to diagram rewriting modulo the
laws of SMCs with a chosen special Frobenius structure.

We illustrate our approach with a proof of termination for the
theory of non-commutative bimonoids.

1. Introduction
Symmetric monoidal categories (SMCs) are categories where ar-
rows can be composed sequentially (;) and in parallel (�). The
interplay between these two kinds of composition is commonplace,
and indeed SMCs have found many applications in computer sci-
ence, physics and related fields. Focussing on computer science,
they feature in concurrency theory, where they describe the con-
current nature of executions of Petri nets [30] as well as serving
as their compositional algebra [9, 39], quantum information, where
they model quantum circuits [11, 12], and in systems theory, where
they provide a calculus of signal flow graphs [2, 5, 7].

In each case, the algebra of SMCs gives us a syntax to talk
about domain-specific artefacts. However, the two composition op-
erations in an SMC are related by functoriality, and symmetries
are natural: this imposes a non-trivial structural equality relation
on terms from the outset—something that in process algebra is
referred to as structural congruence—that makes using ordinary
tree-like syntax ineffectual. Functoriality means that, given terms
A,B,C,D where A,B and C,D can be composed sequentially:

(A� C) ; (B �D) = (A ; B)� (C ; D). (1)

As a consequence, this syntax is intrinsically 2-dimensional, and so
diagrams—in this context often referred to as string diagrams—are
a more efficient representation for arrows of SMCs. Indeed, both

[Copyright notice will appear here once ’preprint’ option is removed.]

sides of the equation above are represented diagrammatically as

A B

C D

and so (1) is built into the representation, along with equational
properties such as associativity of both composition operations.

The history of string diagrams begins with Feynman and Pen-
rose, but they remained just a tool for private calculations, ulti-
mately excluded from papers. This was likely due to a lack of
foundational results that justified their use: the careful mathe-
matician checked each step in a diagrammatic proof using stan-
dard term-based means. This changed with the 1991 paper [21] of
Joyal and Street who formalised diagrams as topological structures
and understood diagrammatic manipulation as homotopy. Their
framework allowed them to show that the resulting diagrams-up-
to-homotopy-equivalence served as a description for the arrows
of free braided monoidal categories, of which SMCs are a special
case. Subsequently, the use of diagrammatic notation exploded, see
e.g. the survey [37]. The results of Joyal and Street mean that we
have a formal description of the nature of 2-dimensional syntax,
and so of the arrows of free braided monoidal categories.

Most applications, however, do not feature free categories but
rather rely on the presence of additional equations: for example,
algebraic structures such as bimonoids and Frobenius monoids are
commonplace. Adding equations to a theory of string diagrams
means that diagrammatic proofs include rewriting: if the left hand
side of an equation can be found in a larger string diagram, it can be
deleted and replaced with its right hand side.1 From a mathematical
point of view, one can formulate rewrite rules as generator 2-
cells (this data structure is variously called a computad [40] or a
polygraph [10]) and consider the resulting free 2-category, where
the 2-cells witness the possible rewriting trajectories. This does not
solve the problem of how to implement rewriting, and the approach
of Joyal and Street does not offer an immediate solution either; we
do not have an off-the-shelf rewriting theory for their diagrams.

One of the fundamental difficulties with working with terms
modulo the laws of SMCs is finding matches. For example, con-
sider the following rewrite rule

U V W�
then, using naturality, we ought to be able to find a match in

VU

U

W

which, viewed as a term, does not contain the l.h.s. as a subterm.

1 Diagram rewriting may represent e.g. a system whose topology dynami-
cally changes during execution.

1 2016/4/30

But rewriting modulo the axioms of PROPs is tough...

French School of Rewriting
(Yves la Font,

Samuel Mimram,
Philippe Malboss, ...)

Confluence for
PROP Rewriting

Lafont 2003 - Mimram 2014
A finite rewriting system,

can generate infinitely many critical pairs

Confluence for
PROP Rewriting

Lafont 2003 - Mimram 2014
A finite rewriting system,

can generate infinitely many critical pairs

(c) The theory of non-commutative bimonoids has signature ⌃NB

{ : 2! 1, : 0! 1, : 1! 2, : 1! 0}

and the following equations ENB.

=

=

=

=
= =

=

==

=

=

=

=

=
= =

=

==

=

We call NB the PROP freely generated from (⌃NB, ENB). In [4], we showed that
the rewriting system that is obtained by orienting the equalities from left to right
terminates. In this paper, we will show that is also confluent. For this, it will be
convenient to use µ, ⌘, ⌫, ✏, respectively, to refer to the generators in ⌃NB.

Rewriting in a PROP. Fix an arbitrary PROP X. A rewriting rule is a pair hl, ri where
l, r : i ! j in X have the same domain and codomain. We say that i ! j is the rule’s
type and sometimes write hl, ri : (i, j). A rewriting system R is a finite set of rules. Given
two arrows d, e : n! m in X, d

R

e i↵ 9hl, ri : (i, j) 2 R, c1 : n! k+ i, c2 : k+ j! n
such that d = c1 ; (idk � l) ; c2 and e = c1 ; (idk � r) ; c2, i.e., diagrammatically:

d
n m

= l
c2c1

n
k

ji
m n me = c2c1

n
k

ji
m

r .

The following well-known example illustrates the subtlety of critical pair analysis
when rewriting in monoidal categories.

Example 6 (From [31], see also [35]). Fix ⌃ = {� : 2 ! 2} and consider the rewriting
system on S⌃ consisting of the following rule:

γ γ

γ γ γ

γ� (2)

A critical pair analysis yields an infinite number of critical pairs. Indeed, as shown
in [31,35] any diagram � : 1 + m ! 1 + n that does not decompose non-trivially into
� = µ + ⌫ for some µ, ⌫ yields a critical pair

γ γ

γ

γ

γ

φ
⋮ ⋮γ

γ

φ
⋮ ⋮

γ γ

γ γ

γ

φ
⋮ ⋮

γ γ

γ

��

in which clearly there are two embeddings of the left-hand side of (2), coloured blue
and yellow, with the overlap coloured in green.

7

(c) The theory of non-commutative bimonoids has signature ⌃NB

{ : 2! 1, : 0! 1, : 1! 2, : 1! 0}

and the following equations ENB.

=

=

=

=
= =

=

==

=

=

=

=

=
= =

=

==

=

We call NB the PROP freely generated from (⌃NB, ENB). In [4], we showed that
the rewriting system that is obtained by orienting the equalities from left to right
terminates. In this paper, we will show that is also confluent. For this, it will be
convenient to use µ, ⌘, ⌫, ✏, respectively, to refer to the generators in ⌃NB.

Rewriting in a PROP. Fix an arbitrary PROP X. A rewriting rule is a pair hl, ri where
l, r : i ! j in X have the same domain and codomain. We say that i ! j is the rule’s
type and sometimes write hl, ri : (i, j). A rewriting system R is a finite set of rules. Given
two arrows d, e : n! m in X, d

R

e i↵ 9hl, ri : (i, j) 2 R, c1 : n! k+ i, c2 : k+ j! n
such that d = c1 ; (idk � l) ; c2 and e = c1 ; (idk � r) ; c2, i.e., diagrammatically:

d
n m

= l
c2c1

n
k

ji
m n me = c2c1

n
k

ji
m

r .

The following well-known example illustrates the subtlety of critical pair analysis
when rewriting in monoidal categories.

Example 6 (From [31], see also [35]). Fix ⌃ = {� : 2 ! 2} and consider the rewriting
system on S⌃ consisting of the following rule:

γ γ

γ γ γ

γ� (2)

A critical pair analysis yields an infinite number of critical pairs. Indeed, as shown
in [31,35] any diagram � : 1 + m ! 1 + n that does not decompose non-trivially into
� = µ + ⌫ for some µ, ⌫ yields a critical pair

γ γ

γ

γ

γ

φ
⋮ ⋮γ

γ

φ
⋮ ⋮

γ γ

γ γ

γ

φ
⋮ ⋮

γ γ

γ

��

in which clearly there are two embeddings of the left-hand side of (2), coloured blue
and yellow, with the overlap coloured in green.

7

One rule (directed Yang-Baxter)

Confluence for
PROP Rewriting

Lafont 2003 - Mimram 2014
A finite rewriting system,

can generate infinitely many critical pairs

(c) The theory of non-commutative bimonoids has signature ⌃NB

{ : 2! 1, : 0! 1, : 1! 2, : 1! 0}

and the following equations ENB.

=

=

=

=
= =

=

==

=

=

=

=

=
= =

=

==

=

We call NB the PROP freely generated from (⌃NB, ENB). In [4], we showed that
the rewriting system that is obtained by orienting the equalities from left to right
terminates. In this paper, we will show that is also confluent. For this, it will be
convenient to use µ, ⌘, ⌫, ✏, respectively, to refer to the generators in ⌃NB.

Rewriting in a PROP. Fix an arbitrary PROP X. A rewriting rule is a pair hl, ri where
l, r : i ! j in X have the same domain and codomain. We say that i ! j is the rule’s
type and sometimes write hl, ri : (i, j). A rewriting system R is a finite set of rules. Given
two arrows d, e : n! m in X, d

R

e i↵ 9hl, ri : (i, j) 2 R, c1 : n! k+ i, c2 : k+ j! n
such that d = c1 ; (idk � l) ; c2 and e = c1 ; (idk � r) ; c2, i.e., diagrammatically:

d
n m

= l
c2c1

n
k

ji
m n me = c2c1

n
k

ji
m

r .

The following well-known example illustrates the subtlety of critical pair analysis
when rewriting in monoidal categories.

Example 6 (From [31], see also [35]). Fix ⌃ = {� : 2 ! 2} and consider the rewriting
system on S⌃ consisting of the following rule:

γ γ

γ γ γ

γ� (2)

A critical pair analysis yields an infinite number of critical pairs. Indeed, as shown
in [31,35] any diagram � : 1 + m ! 1 + n that does not decompose non-trivially into
� = µ + ⌫ for some µ, ⌫ yields a critical pair

γ γ

γ

γ

γ

φ
⋮ ⋮γ

γ

φ
⋮ ⋮

γ γ

γ γ

γ

φ
⋮ ⋮

γ γ

γ

��

in which clearly there are two embeddings of the left-hand side of (2), coloured blue
and yellow, with the overlap coloured in green.

7

(c) The theory of non-commutative bimonoids has signature ⌃NB

{ : 2! 1, : 0! 1, : 1! 2, : 1! 0}

and the following equations ENB.

=

=

=

=
= =

=

==

=

=

=

=

=
= =

=

==

=

We call NB the PROP freely generated from (⌃NB, ENB). In [4], we showed that
the rewriting system that is obtained by orienting the equalities from left to right
terminates. In this paper, we will show that is also confluent. For this, it will be
convenient to use µ, ⌘, ⌫, ✏, respectively, to refer to the generators in ⌃NB.

Rewriting in a PROP. Fix an arbitrary PROP X. A rewriting rule is a pair hl, ri where
l, r : i ! j in X have the same domain and codomain. We say that i ! j is the rule’s
type and sometimes write hl, ri : (i, j). A rewriting system R is a finite set of rules. Given
two arrows d, e : n! m in X, d

R

e i↵ 9hl, ri : (i, j) 2 R, c1 : n! k+ i, c2 : k+ j! n
such that d = c1 ; (idk � l) ; c2 and e = c1 ; (idk � r) ; c2, i.e., diagrammatically:

d
n m

= l
c2c1

n
k

ji
m n me = c2c1

n
k

ji
m

r .

The following well-known example illustrates the subtlety of critical pair analysis
when rewriting in monoidal categories.

Example 6 (From [31], see also [35]). Fix ⌃ = {� : 2 ! 2} and consider the rewriting
system on S⌃ consisting of the following rule:

γ γ

γ γ γ

γ� (2)

A critical pair analysis yields an infinite number of critical pairs. Indeed, as shown
in [31,35] any diagram � : 1 + m ! 1 + n that does not decompose non-trivially into
� = µ + ⌫ for some µ, ⌫ yields a critical pair

γ γ

γ

γ

γ

φ
⋮ ⋮γ

γ

φ
⋮ ⋮

γ γ

γ γ

γ

φ
⋮ ⋮

γ γ

γ

��

in which clearly there are two embeddings of the left-hand side of (2), coloured blue
and yellow, with the overlap coloured in green.

7

One rule (directed Yang-Baxter)

(c) The theory of non-commutative bimonoids has signature ⌃NB

{ : 2! 1, : 0! 1, : 1! 2, : 1! 0}

and the following equations ENB.

=

=

=

=
= =

=

==

=

=

=

=

=
= =

=

==

=

We call NB the PROP freely generated from (⌃NB, ENB). In [4], we showed that
the rewriting system that is obtained by orienting the equalities from left to right
terminates. In this paper, we will show that is also confluent. For this, it will be
convenient to use µ, ⌘, ⌫, ✏, respectively, to refer to the generators in ⌃NB.

Rewriting in a PROP. Fix an arbitrary PROP X. A rewriting rule is a pair hl, ri where
l, r : i ! j in X have the same domain and codomain. We say that i ! j is the rule’s
type and sometimes write hl, ri : (i, j). A rewriting system R is a finite set of rules. Given
two arrows d, e : n! m in X, d

R

e i↵ 9hl, ri : (i, j) 2 R, c1 : n! k+ i, c2 : k+ j! n
such that d = c1 ; (idk � l) ; c2 and e = c1 ; (idk � r) ; c2, i.e., diagrammatically:

d
n m

= l
c2c1

n
k

ji
m n me = c2c1

n
k

ji
m

r .

The following well-known example illustrates the subtlety of critical pair analysis
when rewriting in monoidal categories.

Example 6 (From [31], see also [35]). Fix ⌃ = {� : 2 ! 2} and consider the rewriting
system on S⌃ consisting of the following rule:

γ γ

γ γ γ

γ� (2)

A critical pair analysis yields an infinite number of critical pairs. Indeed, as shown
in [31,35] any diagram � : 1 + m ! 1 + n that does not decompose non-trivially into
� = µ + ⌫ for some µ, ⌫ yields a critical pair

γ γ

γ

γ

γ

φ
⋮ ⋮γ

γ

φ
⋮ ⋮

γ γ

γ γ

γ

φ
⋮ ⋮

γ γ

γ

��

in which clearly there are two embeddings of the left-hand side of (2), coloured blue
and yellow, with the overlap coloured in green.

7

(c) The theory of non-commutative bimonoids has signature ⌃NB

{ : 2! 1, : 0! 1, : 1! 2, : 1! 0}

and the following equations ENB.

=

=

=

=
= =

=

==

=

=

=

=

=
= =

=

==

=

We call NB the PROP freely generated from (⌃NB, ENB). In [4], we showed that
the rewriting system that is obtained by orienting the equalities from left to right
terminates. In this paper, we will show that is also confluent. For this, it will be
convenient to use µ, ⌘, ⌫, ✏, respectively, to refer to the generators in ⌃NB.

Rewriting in a PROP. Fix an arbitrary PROP X. A rewriting rule is a pair hl, ri where
l, r : i ! j in X have the same domain and codomain. We say that i ! j is the rule’s
type and sometimes write hl, ri : (i, j). A rewriting system R is a finite set of rules. Given
two arrows d, e : n! m in X, d

R

e i↵ 9hl, ri : (i, j) 2 R, c1 : n! k+ i, c2 : k+ j! n
such that d = c1 ; (idk � l) ; c2 and e = c1 ; (idk � r) ; c2, i.e., diagrammatically:

d
n m

= l
c2c1

n
k

ji
m n me = c2c1

n
k

ji
m

r .

The following well-known example illustrates the subtlety of critical pair analysis
when rewriting in monoidal categories.

Example 6 (From [31], see also [35]). Fix ⌃ = {� : 2 ! 2} and consider the rewriting
system on S⌃ consisting of the following rule:

γ γ

γ γ γ

γ� (2)

A critical pair analysis yields an infinite number of critical pairs. Indeed, as shown
in [31,35] any diagram � : 1 + m ! 1 + n that does not decompose non-trivially into
� = µ + ⌫ for some µ, ⌫ yields a critical pair

γ γ

γ

γ

γ

φ
⋮ ⋮γ

γ

φ
⋮ ⋮

γ γ

γ γ

γ

φ
⋮ ⋮

γ γ

γ

��

in which clearly there are two embeddings of the left-hand side of (2), coloured blue
and yellow, with the overlap coloured in green.

7

(c) The theory of non-commutative bimonoids has signature ⌃NB

{ : 2! 1, : 0! 1, : 1! 2, : 1! 0}

and the following equations ENB.

=

=

=

=
= =

=

==

=

=

=

=

=
= =

=

==

=

We call NB the PROP freely generated from (⌃NB, ENB). In [4], we showed that
the rewriting system that is obtained by orienting the equalities from left to right
terminates. In this paper, we will show that is also confluent. For this, it will be
convenient to use µ, ⌘, ⌫, ✏, respectively, to refer to the generators in ⌃NB.

Rewriting in a PROP. Fix an arbitrary PROP X. A rewriting rule is a pair hl, ri where
l, r : i ! j in X have the same domain and codomain. We say that i ! j is the rule’s
type and sometimes write hl, ri : (i, j). A rewriting system R is a finite set of rules. Given
two arrows d, e : n! m in X, d

R

e i↵ 9hl, ri : (i, j) 2 R, c1 : n! k+ i, c2 : k+ j! n
such that d = c1 ; (idk � l) ; c2 and e = c1 ; (idk � r) ; c2, i.e., diagrammatically:

d
n m

= l
c2c1

n
k

ji
m n me = c2c1

n
k

ji
m

r .

The following well-known example illustrates the subtlety of critical pair analysis
when rewriting in monoidal categories.

Example 6 (From [31], see also [35]). Fix ⌃ = {� : 2 ! 2} and consider the rewriting
system on S⌃ consisting of the following rule:

γ γ

γ γ γ

γ� (2)

A critical pair analysis yields an infinite number of critical pairs. Indeed, as shown
in [31,35] any diagram � : 1 + m ! 1 + n that does not decompose non-trivially into
� = µ + ⌫ for some µ, ⌫ yields a critical pair

γ γ

γ

γ

γ

φ
⋮ ⋮γ

γ

φ
⋮ ⋮

γ γ

γ γ

γ

φ
⋮ ⋮

γ γ

γ

��

in which clearly there are two embeddings of the left-hand side of (2), coloured blue
and yellow, with the overlap coloured in green.

7

Infinitely many critical pairs: one for each diagram ɸ

Rewriting Modulo
Symmetric Monoidal Structure

(LICS 2016)
One solution to both problems: DPO rewriting with interfaces!

Rewriting Modulo
Symmetric Monoidal Structure

(LICS 2016)
One solution to both problems: DPO rewriting with interfaces!

If the theory contains
a special Frobenius structure,

If the theory does not contain
a special Frobenius structure,

Rewriting Modulo
Symmetric Monoidal Structure

(LICS 2016)
One solution to both problems: DPO rewriting with interfaces!

If the theory contains
a special Frobenius structure,

then
PROP rewriting

=
DPO rewriting
with interfaces

If the theory does not contain
a special Frobenius structure,

Rewriting Modulo
Symmetric Monoidal Structure

(LICS 2016)
One solution to both problems: DPO rewriting with interfaces!

If the theory contains
a special Frobenius structure,

then
PROP rewriting

=
DPO rewriting
with interfaces

If the theory does not contain
a special Frobenius structure,

then
PROP rewriting

=
convex DPO rewriting

with interfaces

Rewriting Modulo
Symmetric Monoidal Structure

(LICS 2016)
One solution to both problems: DPO rewriting with interfaces!

If the theory contains
a special Frobenius structure,

then
PROP rewriting

=
DPO rewriting
with interfaces

If the theory does not contain
a special Frobenius structure,

then
PROP rewriting

=
convex DPO rewriting

with interfaces
Paves the way to

challenging and promising
research paths...

Rewriting Modulo
Symmetric Monoidal Structure

(LICS 2016)
One solution to both problems: DPO rewriting with interfaces!

If the theory contains
a special Frobenius structure,

then
PROP rewriting

=
DPO rewriting
with interfaces

If the theory does not contain
a special Frobenius structure,

then
PROP rewriting

=
convex DPO rewriting

with interfaces
Paves the way to

challenging and promising
research paths...

We know how to prove
confluence

Future Works

Future Works
SMTs with Special Frobenius Structures are closely related to

Geometric Logic

Future Works
SMTs with Special Frobenius Structures are closely related to

Geometric Logic
Like term rewriting plays a crucial role for equational logic,

hopefully, DPO rewriting (with interfaces!) may play
analogous role for Geometric Logic....

Future Works
SMTs with Special Frobenius Structures are closely related to

Geometric Logic
Like term rewriting plays a crucial role for equational logic,

hopefully, DPO rewriting (with interfaces!) may play
analogous role for Geometric Logic....

Future Works
SMTs with Special Frobenius Structures are closely related to

Geometric Logic
Like term rewriting plays a crucial role for equational logic,

hopefully, DPO rewriting (with interfaces!) may play
analogous role for Geometric Logic....

SMTs with Special Frobenius Structures are closely related to
Relational Structures

(more precisely, to Cartesian Bicategories of Relations by
Carboni and Walters)

Future Works
SMTs with Special Frobenius Structures are closely related to

Geometric Logic
Like term rewriting plays a crucial role for equational logic,

hopefully, DPO rewriting (with interfaces!) may play
analogous role for Geometric Logic....

SMTs with Special Frobenius Structures are closely related to
Relational Structures

(more precisely, to Cartesian Bicategories of Relations by
Carboni and Walters)

A functorial semantics for them is still not understood

Future Works

Future Works
Most of the theory of convex DPO rewriting

has to be developed

Future Works
Most of the theory of convex DPO rewriting

has to be developed

Future Works

We need tools for supporting combinatorial reasoning
1) Implementing rewriting with Interfaces (for

arbitrary matches and rules)
2) Automatically proving confluence
3) (Semi-)Automatically check equivalence

Most of the theory of convex DPO rewriting
has to be developed

