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Newman's Lemma
In a terminating rewriting system,  

local confluence implies confluence 
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Confluence  
for Term Rewriting

The converse implication is trivial

In a terminating system, 
checking joinability of critical pairs is easy  

Knuth-Bendix 1970
Confluence of a terminating rewriting system is decidable

If all the critical pairs are joinable,  
then the system is locally confluent
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Example

Trivially, the system is terminating

Critical pair

f (f (x) )  f (x)  f (g (x) )  g (x)  
(1) (2)

f ( f (g (x) ) )  

f (g (x) ) f (g (x) )

(1) (2)

* *

For all terms, rewriting is confluent 
Every term has a unique normal form

Two unary symbols f,g:1-->1
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Ground Confluence

So, the system is not confluent
But it is ground confluent:

it is confluent for all the ground terms

Kapur et al. 1990
For a terminating Term Rewriting System, 

ground confluence is not decidable

The trivial implication is not trivial anymore
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Plump 1993
For a terminating DPO Rewriting System, 

confluence is not decidable

Critical pair analysis is useless:  
joinability of critical pairs does not entail local confluence

L1

G

R1 K1

H1 C1

K2 R2

C2 H2

L2
f1 f2

  f1 and f2 are jointly epi

Critical Pairs
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DPO rewriting  
with Interfaces

Rather than rewriting graphs, 
we rewrite graphs with interfaces

G J

DPO Rewriting with Borrowed Contexts:  
Ehrig and Koenig 2004

Graphical Encoding of Process Calculi 
Bonchi, Koenig, Gadducci 2009 - Gadducci 2007

Foundational studies of computads in cospans categories 
Gadducci, Heckel 1997 - Sassone, Sobocinski 2005

0
a

b

a
1 0

1System Interface

Ubiquitous in  
computer science: 

Queries in Databases, 
Kleene Algebra, 

etc...
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DPO rewriting  
with Interfaces
A rewriting rule is a span

L K R

(G<-J) (H<-J)

A rewriting step is a commuting diagram

where the two  
squares are  

pushouts

L K R

G C H

J

standard DPO 
is an instance 
when J is the   
initial object 0
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By adding the interface,  
the arriving states are distinguished
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if all critical pairs are joinable,  

then the system is locally confluent

Theorem

In a terminating DPO rewriting system  
with interfaces, 

confluence is decidable

Corollary

Confluence for all graphs with interfaces G <- J

Plump's result concerns all graphs with interfaces G <- 0
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Ground 
Confluence

Confluence Decidable 
(Knuth-Bendix 1970)

Undecidable 
(Plump 1993)

Decidable 
(This talk)

Undecidable 
(Kapur et al. 1990)

Plump's notion of "strongly joinable"
Koenig et al. 2011
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Freely Generated PROPs

o

n m{ }

A signature Σ is a set of gates with arity and coarity

c, d ::=

The set of Σ-diagrams is generated by the following grammar

c d
c
d

o1 o2 ok
. . .

oi 2 Σ

The PROP freely generated by Σ, TΣ, has  
as arrows the Σ-diagrams  

modulo the laws of strict symmetric monoidal categories
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(t1 ; t3) � (t2 ; t4) = (t1 � t2) ; (t3 � t4)

(t1 ; t2) ; t3 = t1 ; (t2 ; t3) id
n

; c = c = c ; id
m

(t1 � t2) � t3 = t1 � (t2 � t3) id0 � t = t = t � id0

�1,1 ; �1,1 = id2 (t � id
z

) ; �
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z
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Figure 2.1: Axioms of symmetric strict monoidal categories for a PROP T.

PROPs are adapted to the study of universal algebra in a symmetric monoidal setting. Within
this perspective, a typical way of defining a PROP is as the free construction on a given set of
generators and equations. We express these data in the form of a (one-sorted) symmetric monoidal
theory (SMT).

Definition 2.2. A symmetric monoidal theory (SMT) is a pair (⌃, E) consisting of a signature
⌃ and a set of equations E. The signature ⌃ is a set of generators o : n ! m with arity n and
coarity m. The set of ⌃-terms is obtained by composing generators in ⌃, the unit id : 1 ! 1 and
the symmetry �1,1 : 2 ! 2 with ; and �. This is a purely formal process: given ⌃-terms t : k ! l,
u : l ! m, v : m ! n, one constructs new ⌃-terms t ; u : k ! m and t � v : k + n ! l + n. The set
E of equations contains pairs (t, t0 : n ! m) of ⌃-terms with the same arity and coarity.

Now, given an SMT (⌃, E), one (freely) obtains a PROP T by letting the arrows n ! m be the
set of ⌃-terms n ! m taken modulo the laws of symmetric strict monoidal categories — Fig. 2.1
— and the smallest congruence (with respect to ; and �) containing the equations t = t0 for any
(t, t0) 2 E.

There is a natural graphical representation of these terms as string diagrams, which we now
sketch referring to [100] for the details. A ⌃-term n ! m is pictured as a box with n ports
on the left and m ports on the right, to which we shall refer with top-bottom enumerations
1, . . . , n and 1, . . . , m. Composition via ; and � are rendered graphically by horizontal and
vertical juxtaposition of boxes, respectively.

t ; s is drawn st t � s is drawn t
s

. (2.1)

In any SMT there are specific ⌃-terms generating the underlying symmetric monoidal structure:
these are id1 : 1 ! 1, represented as , the symmetry �1,1 : 1 + 1 ! 1 + 1, represented as

, and the unit object for �, that is, id0 : 0 ! 0, whose representation is an empty space .
Graphical representation for arbitrary identities id

n

and symmetries �
n,m

are generated according
to the pasting rules in (2.1).

The axioms of symmetric strict monoidal categories (Fig. 2.1) are naturally displayed in the
graphical language. Compatibility of � and ; is already implicit in the representation of (t ; s) �

(t0 ; s0) and (t � s) ; (t0 � s0) as the same string diagram:

st
st 00

Similarly, associativity of ; , � and compatibility of � with the unit are also implicit in the
graphical representation. We then have two sliding axioms yielding compatibility of ; with the
identity and naturality of symmetry:

t = t = t . (SM1)
t

= t . (SM2)

Finally, we have that �1,1 is self-inverse, that is,

= . (SM3)
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t ; s is drawn st t � s is drawn t
s

. (2.1)
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these are id1 : 1 ! 1, represented as , the symmetry �1,1 : 1 + 1 ! 1 + 1, represented as

, and the unit object for �, that is, id0 : 0 ! 0, whose representation is an empty space .
Graphical representation for arbitrary identities id

n

and symmetries �
n,m

are generated according
to the pasting rules in (2.1).
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st
st 00
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t = t = t . (SM1)
t
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= . (SM3)
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Abstract
String diagrams are a powerful and intuitive graphical syntax for
terms of symmetric monoidal categories (SMCs). They find many
applications in computer science and are becoming increasingly
relevant in other fields such as physics and control theory.

An important role in many such approaches is played by equa-
tional theories of diagrams, typically oriented and applied as
rewrite rules. This paper lays a comprehensive foundation for this
form of rewriting. We interpret diagrams combinatorially as typed
hypergraphs and establish the precise correspondence between dia-
gram rewriting modulo the laws of SMCs on the one hand and dou-
ble pushout (DPO) rewriting of hypergraphs, subject to a soundness
condition called convexity, on the other. This result rests on a more
general characterisation theorem in which we show that typed hy-
pergraph DPO rewriting amounts to diagram rewriting modulo the
laws of SMCs with a chosen special Frobenius structure.

We illustrate our approach with a proof of termination for the
theory of non-commutative bimonoids.

1. Introduction
Symmetric monoidal categories (SMCs) are categories where ar-
rows can be composed sequentially ( ; ) and in parallel (�). The
interplay between these two kinds of composition is commonplace,
and indeed SMCs have found many applications in computer sci-
ence, physics and related fields. Focussing on computer science,
they feature in concurrency theory, where they describe the con-
current nature of executions of Petri nets [30] as well as serving
as their compositional algebra [9, 39], quantum information, where
they model quantum circuits [11, 12], and in systems theory, where
they provide a calculus of signal flow graphs [2, 5, 7].

In each case, the algebra of SMCs gives us a syntax to talk
about domain-specific artefacts. However, the two composition op-
erations in an SMC are related by functoriality, and symmetries
are natural: this imposes a non-trivial structural equality relation
on terms from the outset—something that in process algebra is
referred to as structural congruence—that makes using ordinary
tree-like syntax ineffectual. Functoriality means that, given terms
A,B,C,D where A,B and C,D can be composed sequentially:

(A� C) ; (B �D) = (A ; B)� (C ; D). (1)

As a consequence, this syntax is intrinsically 2-dimensional, and so
diagrams—in this context often referred to as string diagrams—are
a more efficient representation for arrows of SMCs. Indeed, both
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sides of the equation above are represented diagrammatically as

A B

C D

and so (1) is built into the representation, along with equational
properties such as associativity of both composition operations.

The history of string diagrams begins with Feynman and Pen-
rose, but they remained just a tool for private calculations, ulti-
mately excluded from papers. This was likely due to a lack of
foundational results that justified their use: the careful mathe-
matician checked each step in a diagrammatic proof using stan-
dard term-based means. This changed with the 1991 paper [21] of
Joyal and Street who formalised diagrams as topological structures
and understood diagrammatic manipulation as homotopy. Their
framework allowed them to show that the resulting diagrams-up-
to-homotopy-equivalence served as a description for the arrows
of free braided monoidal categories, of which SMCs are a special
case. Subsequently, the use of diagrammatic notation exploded, see
e.g. the survey [37]. The results of Joyal and Street mean that we
have a formal description of the nature of 2-dimensional syntax,
and so of the arrows of free braided monoidal categories.

Most applications, however, do not feature free categories but
rather rely on the presence of additional equations: for example,
algebraic structures such as bimonoids and Frobenius monoids are
commonplace. Adding equations to a theory of string diagrams
means that diagrammatic proofs include rewriting: if the left hand
side of an equation can be found in a larger string diagram, it can be
deleted and replaced with its right hand side.1 From a mathematical
point of view, one can formulate rewrite rules as generator 2-
cells (this data structure is variously called a computad [40] or a
polygraph [10]) and consider the resulting free 2-category, where
the 2-cells witness the possible rewriting trajectories. This does not
solve the problem of how to implement rewriting, and the approach
of Joyal and Street does not offer an immediate solution either; we
do not have an off-the-shelf rewriting theory for their diagrams.

One of the fundamental difficulties with working with terms
modulo the laws of SMCs is finding matches. For example, con-
sider the following rewrite rule

U V W�
then, using naturality, we ought to be able to find a match in

VU

U

W

which, viewed as a term, does not contain the l.h.s. as a subterm.

1 Diagram rewriting may represent e.g. a system whose topology dynami-
cally changes during execution.

1 2016/4/30

But rewriting modulo the axioms of PROPs is tough...
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Joyal and Street who formalised diagrams as topological structures
and understood diagrammatic manipulation as homotopy. Their
framework allowed them to show that the resulting diagrams-up-
to-homotopy-equivalence served as a description for the arrows
of free braided monoidal categories, of which SMCs are a special
case. Subsequently, the use of diagrammatic notation exploded, see
e.g. the survey [37]. The results of Joyal and Street mean that we
have a formal description of the nature of 2-dimensional syntax,
and so of the arrows of free braided monoidal categories.

Most applications, however, do not feature free categories but
rather rely on the presence of additional equations: for example,
algebraic structures such as bimonoids and Frobenius monoids are
commonplace. Adding equations to a theory of string diagrams
means that diagrammatic proofs include rewriting: if the left hand
side of an equation can be found in a larger string diagram, it can be
deleted and replaced with its right hand side.1 From a mathematical
point of view, one can formulate rewrite rules as generator 2-
cells (this data structure is variously called a computad [40] or a
polygraph [10]) and consider the resulting free 2-category, where
the 2-cells witness the possible rewriting trajectories. This does not
solve the problem of how to implement rewriting, and the approach
of Joyal and Street does not offer an immediate solution either; we
do not have an off-the-shelf rewriting theory for their diagrams.

One of the fundamental difficulties with working with terms
modulo the laws of SMCs is finding matches. For example, con-
sider the following rewrite rule

U V W�
then, using naturality, we ought to be able to find a match in

VU

U

W

which, viewed as a term, does not contain the l.h.s. as a subterm.

1 Diagram rewriting may represent e.g. a system whose topology dynami-
cally changes during execution.
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system on S⌃ consisting of the following rule:
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Infinitely many critical pairs: one for each diagram ɸ
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Future Works

We need tools for supporting combinatorial reasoning 
1) Implementing rewriting with Interfaces  (for 

arbitrary matches and rules) 
2) Automatically proving confluence 
3) (Semi-)Automatically check equivalence 

Most of the theory of convex DPO rewriting  
has to be developed


