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The converse implication Is

In a terminating system,
checking joinability of critical pairs is easy
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Example

Two unary symbols f,g:1-->1
r(f(x)) r(X) (g (x)) g (X)

rivially, the system is terminating

Critical pair

T(r(g(x)))

f(g(x)) f(g(x))

For all terms, rewriting is confluent
Every term has a unigue normal form
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S0, the system is not confluent

But it is ground confluent:

it Is confluent for all the ground terms

The implication is anymore
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A rewriting rule is a span

[ < K R
A rewriting step Is a commuting diagram
[« K R
v _| v |_ v
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where the two squares are pushouts
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Critical pair analysis is useless:
joinability of critical pairs does not entall local confluence
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DPO Rewrltlng with Borrowed Contexts
| Ehrig and Koenig 2004

o Graphmal Encodmg of Process s Calculi -
Bonchl Koenig, Gadducci 2009 - Gadducci 2007

Foundatlonal studies of Computads INn cospans categones
(Gadducci, Heckel 1997 - Sassone, Sobocinski 2005

Ubiquitous in o
computer science: 1ather than rewriting graphs,
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A rewriting rule Is a span
< K "R

A rewriting step Is a commuting diagram

standard DPO 2 N A where the two
IS an instance sguares are
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initial object0 G- >H
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Confluence| (Kapuretal. 1990)  (Plump 1993)

.............................................................................................................................................................................................................

Decidable Decidable

CONHUENCE| (1 huth-Bendix 1970)  (This talk)

Plump's notion of l"strongly joinable’
Koenig et al. 2011
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Freely Generated PROPs

A signature 2 is a set of gates with arity and coarity

(o] }r

The set of 2-diagrams is generated by the following grammar

101 O oo HOL 0; €2

DO HCHdE :f{

c,d ::

The PROP freely generated by 2, Ts, has
as arrows the 2-diagrams
modulo the laws of strict symmetric monoidal categories
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Symmetric Monoidal
Theories

An SMT is a pair (2,E) where
e 2 IS asignature and
e Eis a setof equations |=r, for 2-diagrams I,r:n-->m

Special Frobenius Algebra

Commutative monoid [t o

Pt =D [

Commutative comonoid ro| to

P g G TOq =

151-Dd-1]]

iﬁ
:
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terms are DAGs rather than Trees |

~variables are linear (cannot be copied or dlscarded)

These features make SMTs fundamental for
Quantum Informations,
Concurrency Theory,
“Linear Logics and
i Control Theory.

i - ” The celebrated

| interest on SMTs: | theoretical physicist
i an entire workshop | John Baez
‘reinvented”

at Simons Institute |

(Berkley) | DPO rewriting
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PROP Rewriting

By orienting the equations of an SMTs,
one obtains a rewriting system

It the system is terminating and confluent,
one can check equivalence via rewriting

More generally, rewriting is important for completeness proofs
that often rely on normal forms

But rewriting modulo the axioms of PROPs is tough...

| U Vi— = |Wi—

French School of Rewriting
(Yves la Font,
Samuel Mimram,
Philippe Malboss, ...)

| — -
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____Lafont 2003 - Mimram 2014
;; A finite rewriting system,
ccan generate infinitely many critical pairs_ 7‘

"—A e e e e —

One rule (directed Yang-Baxter)

Infinitely many critical pairs: one for each diagram ¢
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Rewriting Modulo
Symmetric Monoidal Structure
(LICS 2016)

One solution to both problems: DPO rewriting with interfaces!

It the theory contains It the theory does contain
a | a special Frobenius structure,
then then
PROP rewriting PROP rewriting
DPO rewriting convex DPO rewriting
with interface/g, /\ with interfaces
We know how to prove ChalIgr?gﬁwsthi(;/vS?/otr%ising
confluence research paths...
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SMTs with Special Frobenius Structures are closely related to

Like term rewriting plays a crucial role for equational logic,
hopeftully, (with interfaces!) may play
analogous role for Geometric Logic....

SMTs with Special Frobenius Structures are closely related to
Relational Structures
(more precisely, to Cartesian Bicategories of Relations by
Carboni and Walters)

A functorial semantics for them is still not understood
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Future Works

Most of the theory of convex DPO rewriting
has to be developed

We need tools for supporting combinatorial reasoning

1) Implementing rewriting with Interfaces (for
arbitrary matches and rules)
2) Automatically proving confluence

3) (Semi-)Automatically check equivalence



