
Dynamic and Heterogeneous Timed Systems

José Luiz Fiadeiro

Department of Computer Science, Royal Holloway University of London, UK

Joint work with Antónia Lopes (U Lisbon),
Benôıt Delahaye (U Nantes) and Axel Legay (INRIA Rennes)

IFIP WG1.3, January 11, 2017



Motivation

Dynamic and heterogeneous timed systems

Many software applications operating in cyberspace need to connect,
dynamically, to other software systems.

For example, systems for congestion avoidance or coordination of
self-driven convoys of cars need to be able to accommodate
interconnections that are established at run time between components in
ways that cannot be pre-determined at design time.

Components interconnected at run time will be likely to operate over
platforms with different time granularities (clock periods), resulting in a
timed heterogeneous system.



This talk

Summary

We investigate a suitable component algebra for such dynamic and timed
heterogeneous systems, i.e., formal methods through which we can
understand and reason in a compositional way about the behaviour of such
systems.

Along the way, we challenge some of the acquired practices in algebraic
development techniques, including the meaning of composition in the
context of component-based systems.



TIOA

Timed I/O automata

A TIOA is a tuple A = 〈Loc, l?,C, v?,E ,Act, Inv〉 where:

Loc is a finite set of locations;

l?∈Loc is the initial location;

C is a finite set of clocks;

v? is the initial clock valuation — a mapping C→ R≥0;

Act = Act I ∪ ActO ∪ Actτ is a finite set of actions partitioned into
input, output and internal actions, respectively;

E ⊆ Loc × 2Act × B(C)× 2C × Loc is a finite set of edges
— B(C) is a set of conditions over C (guards);

Inv : Loc → B(C) is a mapping that associates an invariant with every
location.

and, for all l∈Loc, there is (l , ∅, true, ∅, l ′) where Inv(l) implies Inv(l ′).



Execution

An execution starting in location l0 and valuation v0 is an infinite sequence

(l0, v0, d0)
S0,R0−→ (l1, v1, d1)

S1,R1−→ . . . where, for all i :

li∈Loc, vi is a clock valuation and di∈R>0;

Si⊆Act and Ri⊆C;

for all 0 ≤ t ≤ di , vi + t � Inv(li );

vi+1=(vi + di )
Ri ;

there is (li , Si ,Ci ,Ri , li+1)∈E such that vi + di � Ci .



Example

Ax waits for receiving a, after which it sends b (possibly receiving a at the
same time) within six time units but not before two times units have
passed (all a’s received in the meanwhile being ignored); then, Ax waits
for receiving a again.

∅

true

a?
x := 0

b!
x ≥ 2

x ≥ 2
b!, a?

∅

a?

x ≤ 6

A B



Example

An example of a partial execution of Ax is

(A, 0, 2)
{a},{x}−→ (B, 0, 3)

{b},∅−→ (A, 3, 5)
{a},{x}−→ (B, 0, 2)

which shows that (B, 0) is reachable at time 2 (after the first transition)
and at time 10 (= 2 + 3 + 5) (after three transitions).

∅

true

a?
x := 0

b!
x ≥ 2

x ≥ 2
b!, a?

∅

a?

x ≤ 6

A B



Composition

Given two compatible TIOAs A1 and A2 (disjoint sets of clocks, inputs
and outputs), A1 ‖ A2 = 〈Loc, l?,C, v?,E ,Act, Inv〉 where:

Loc = Loc1 × Loc2,

l? = (l?1 , l
?
2 ),

C = C1 ∪ C2,

v? = v?1 ∪ v?2 , i.e., the clock valuation for C induced by v?1 and v?2 ,

Act I = (Act I1\ActO2 ) ∪ (Act I2\ActO1 ),
ActO = (ActO1 \Act I2) ∪ (ActO2 \Act I1),

Inv((l1, l2))=Inv1(l1) ∧ Inv2(l2);

((l1, l2),S ,C ,R, (l ′1, l
′
2))∈E iff C = C1 ∧ C2, Si = S ∩ Acti ,

R = R1 ∪ R2 for (l1, S1,C1,R1, l
′
1)∈E1 and (l2,S2,C2,R2, l

′
2)∈E2.



Timed machines

A timed machine is a TIOA that executes in the context of a clock
granularity δ, i.e., its actions are always executed at multiples of δ.

Discrete timed I/O machine

A DTIOM is a pair M = 〈δM,AM〉 where δM∈R>0 and
AM = 〈Loc, l?,C, v?,E ,Act, Inv〉 is a TIOA such that v? assigns a
multiple of δM to every clock in C.

Execution

The executions M are those of AM restricted to transitions at every δM,

i.e., (l0, v0, d0)
S0,R0−→ (l1, v1, d1)

S1,R1−→ . . . where the durations di are δM.

Therefore, we represent executions of DTIOMs as sequences

(l0, v0)
S0,R0−→ (l1, v1)

S1,R1−→ . . .



Example

A partial execution of Mx = 〈δx ,Ax〉 with δx = 2 and Ax as below

(A, 0)
{a},{x}−→ (B, 0)

∅,∅−→ (B, 2)
{b},∅−→ (A, 4)

a is executed at time 2 — Mx remaining in the initial state for 2 time
units, nothing is executed at time 4, and b is executed at time 6.

∅

true

a?
x := 0

b!
x ≥ 2

x ≥ 2
b!, a?

∅

a?

x ≤ 6

A B



Composition of DTIOA can be extended to DTIOMs with the same clock
granularity.

Composition

Given two TIOAs A1 and A2 that are compatible, we define the
composition 〈δ,A1〉‖〈δ,A2〉 = 〈δ,A1‖A2〉.

What if the clock granularities are different, i.e., what should
〈δ1,A1〉‖〈δ2,A2〉 be?

What should parallel composition model?



Typically, we should have something like

JS1 ‖ S2K = JS1K ∩ JS2K

where JSK models the “behaviour” of S .

This is true of TIOA where JAK is the set of executions of A.

This is also true of DTIOM where J〈δ,A〉K is the set of executions of
〈δ,A〉.

However, if δ1 and δ2 are different, the executions of 〈δ1,A1〉 and of
〈δ2,A2〉 will have different time lines and, therefore, it doesn’t make much
sense to calculate the intersections of the corresponding sets of executions.



Traces

Timed trace

Let A be a finite set (of actions).

A time sequence τ is an infinite sequence of non-negative real
numbers such that: τ(0) = 0; τ(i) < τ(i + 1) for every i ∈ N; the set
{τ(i) : i ∈ N} is unbounded, i.e., time progresses.

An action sequence σ is an infinite sequence of elements of 2A — i.e.,
of sets of actions — such that σ(0) = ∅.
A timed trace is a pair 〈σ, τ〉.

δ-timed trace

Let A be a finite set and δ ∈ R>0.

A δ-timed trace is a pair 〈σ, τδ〉 where τδ(i) = i · δ for every i∈N.

A δ-timed property is a set of δ-timed traces.



Time refinement

Let ρ : N→ N be monotonically increasing and satisfy ρ(0) = 0.

Let τ , τ ′ be two time sequences. We say that τ ′ �ρ τ iff
τ(i) = τ ′(ρ(i)) for every i ∈ N.

We say that 〈σ′, τ ′〉 �ρ 〈σ, τ〉 iff τ ′ �ρ τ and, for every i ∈ N and
ρ(i) < j < ρ(i + 1), σ(i) = σ′(ρ(i)) and σ′(j) = ∅.

We say that Λ is r-closed iff λ′∈Λ whenever there exists λ∈Λ such
that λ′ �ρ λ for some ρ.

ρ

τ'(ρ(1))
λ'

λ

∅ ∅

∅

∅

0

0

∅∅

τ(1) τ(2) τ(3) τ(4)

���

���

���

���

���

���

���

���

���

���

���

���

τ'(ρ(2)) τ'(ρ(3)) τ'(ρ(4))
���

���

���

���

σ(1) σ(2) σ(3) σ(4)

σ'(ρ(1)) σ'(ρ(2)) σ'(ρ(3)) σ'(ρ(4))



Behaviour of timed machines

Execution

The executions M are those of AM restricted to transitions at every δM,

i.e., (l0, v0, d0)
S0,R0−→ (l1, v1, d1)

S1,R1−→ . . . where the durations di are δM.

Therefore, we represent executions of DTIOMs as sequences

(l0, v0)
S0,R0−→ (l1, v1)

S1,R1−→ . . .

Denotation

Every execution defines the δM-timed trace λ=〈σ, τδM〉 over Act where
σ(0)=∅ and, for all i ≥ 0, σ(i + 1) = Si .

We denote by JMK the r-closure of the set of such timed traces.



It now makes sense to calculate the intersection

J〈δ1,A1〉K ∩ J〈δ2,A2〉K

which is the set of timed-traces in which both components can agree.

We can actually conclude that, if δ1 and δ2 are not commensurate (i.e., do
not have a common divisor), that intersection is empty unless the two
machines do not share any actions: they will never be able to synchronise
on input/output pairs otherwise.

What if δ1 and δ2 are commensurate? Is there a machine M such that
JMK = J〈δ1,A1〉K ∩ J〈δ2,A2〉K?



Given M = 〈δ,A〉, we define its k-refinement Mk = 〈δ/k ,Ak〉 by dividing
every state of A in k copies such that the original transitions are
performed in the last ‘tick’, all previous ‘ticks’ performing no actions.

Refinement of timed machines

Given a TIOA A = 〈Loc, q0,C,E ,Act, Inv〉 and k ∈ N>0, its k-refinement
is the TIOA Ak = 〈Lock , qk0,C,Ek ,Act, Invk〉 where:

Lock = Loc × [0..k − 1];

qk0 = (q0, 0);

Invk(l , i) = Inv(l);

for every (l , S ,C ,R, l ′) of E , Ek consists of the edge
((l , k − 1), S ,C ,R, (l ′, 0)) and all edges of the form
((l , i), ∅, true, ∅, (l , i + 1)), i ∈ [0..k − 2].

Given a timed machine M = 〈δ,A〉, its k-refinement is Mk = 〈δ/k,Ak〉.



Example

∅

true

a?
x := 0

b!
x ≥ 2

x ≥ 2
b!, a?

∅

a?

x ≤ 6

A B

true

∅

true

∅

a?
x := 0

b!
x ≥ 2

x ≥ 2
b!, a?

∅

x ≤ 6

∅a?

x ≤ 6

A, 1 B , 0

B , 1A, 0



Compatibility of timed machines

Two DTIOMs Mi = 〈δi ,Ai 〉, i = 1, 2, are said to be δ-compatible (where
δ ∈ R>0) if δ is a common divisor of δ1 and δ2.

Heterogeneous composition of timed machines

The δ-composition of two δ-compatible DTIOMs is

M1 ‖δM2 =M1(δ1/δ) ‖ M2(δ2/δ) = 〈δ,A1(δ1/δ) ‖ A2(δ2/δ)〉

If δ is the greatest common divisor of δ1 and δ2, we use the notation
M1‖M2 and simply refer to the composition of M1 and M2.

Do we now have JM1‖M2K = JM1K ∩ JM2K?



Approximation

Timed properties

A timed property Λ′ refines a timed property Λ — Λ′ � Λ — if, for
every λ′∈Λ′, there exists λ∈Λ such that λ′ � λ.

A timed property Λ′ approximates a timed property Λ — Λ′ w Λ — if
Λ′ � Λ and, for every λ∈Λ, there exists λ′∈Λ′ such that λ′ � λ.

Timed machines

Given a timed machine M = 〈δ,A〉 and k ∈ N>0:

Every execution of M defines a unique execution of Mk

Because JMK is closed, JMkK ⊆ JMK and, hence, JMkK � JMK.

JMkK w JMK, which we also write Mk wM.



Theorem

Let Mi = 〈δi ,Ai 〉 be compatible and δ be the greatest common divisor of
δ1 and δ2.

JM1 ‖δM2K w JM1K ∩ JM2K

If JMK w JM1K ∩ JM2K then M wM1 ‖δM2

The machine M1 ‖δM2 approximates and is the best approximation of
the joint behaviour of M1 and M2, i.e., of JM1K ∩ JM2K.

This is important so that properties of the joint behaviour of the two
timed machines can be inferred from that of the composite machine or
that their joint behaviour can be simulated through a machine.



Dynamic homogoneous composition

Given two DTIOMs Mi = 〈δ,Ai 〉 and triples (li , vi , ti ) such that (li , vi ) is
a state of Mi reachable at time ti , we define

(li ,vi ,ti )n

i=1,2

Mi

as 〈δ,A〉 where A is obtained by replacing the initial location and clock
valuation of A1 ‖ A2 with (l1, l2) and v1 ∪ v2, respectively.

Dynamic heterogeneous composition

The δ-composition of two δ-compatible DTIOMs M1 and M2 at (li , vi , ti )
such that each (li , vi ) is a state of Mi reachable at time ti is:

δ

n(li ,vi ,ti )

i=1,2
Mi ,

((li ,0),vi ,ti )n

i=1,2

Mi (δi/δ)

.



Consistency

Consistency

A DTIOM M is said to be consistent if JMK6=∅.

How can we check that a timed machine is consistent without calculating
its semantic?

Refinement

Let k ∈ N>0. A DTIOM M is consistent iff its k-refinement Mk is
consistent. More generally, for arbitrary DTIOM M and M′,

if M′ �M and M′ is consistent, then so is M, and

if M′ wM, then M′ is consistent iff M is consistent.



Initializable

A DTIOM M is said to be initializable if, for every 0 ≤ t ≤ δM,
(l?, v? + t) � Inv(l?).

That is, a DTIOM is initializable if it can stay in the initial state until the
first tick of the clock.

Independent progress

A DTIOM M is said to make independent progress if, for every reachable
state (l , v), there is an edge (l ,A,C ,R, l ′) such that:

A ⊆ ActOM ∪ ActτM
v + δM � C

for all 0 ≤ t ≤ δM, (v + δM)R + t � Inv(l ′)

That is, if the DTIOM is able to make a transition from any reachable
state without forcing the environment to provide any input.



Theorem

Any initializable DTIOM that makes independent progress is consistent.

Can this be checked in a compositional way?

The fact that two DTIOMs M1 and M2 are such that δ1 and δ2 are
commensurate simply means that we can find a clock granularity in which
we can accommodate the transitions that the two DTIOMs perform: by
itself, this does not ensure that the two DTIOMs can jointly execute their
input/output synchronisation pairs.

For example, if δ1 = 2 and δ2 = 3 and M2 only performs
non-empty actions at odd multiples of 3, the two machines will
not be able to agree on their input/output synchronisation pairs.

For the DTIOMs to actually be able to interact with each other it is
necessary that their input/output synchronisation pairs can be performed
on a common multiple of δ1 and δ2.



Cooperative

A DTIOM M is said to be cooperative in relation to Q⊆ActM and a
multiple δ of δM if the following holds for every (l , v) reachable at a time
T such that (T + δM) is not a multiple of δ:

for every edge (l ,A,C ,R, l ′) ∈ EM such that v + δM � C and
(v + δM)R + t � InvM(l ′) for all 0 ≤ t ≤ δM — i.e., the machine
makes a transition at a time that is not a multiple of δ

there exists an edge (l ,A\Q,C ′,R ′, l ′′) such that v + δM � C ′ and,
for all 0 ≤ t ≤ δM, (v + δM)R

′
+ t � InvM(l ′′) — i.e., the machine

can make an alternative transition that does not perform any actions
in Q.

Essentially, being cooperative in relation to Q and δ means that the
machine will not force transitions that perform actions in Q at times that
are not multiples of δ.



DP-enabled

A DTIOM M is said to be DP-enabled in relation to J⊆Act IM and δ
multiple of δM if the following property holds for every B⊆J and state
(l , v) reachable at a time T such that (T+δM) is a multiple of δ:

for every edge (l ,A,C ,R, l ′) ∈ EM such that v + δM � C and, for all
0 ≤ t ≤ δM, (v + δM)R + t � InvM(l ′) — i.e., the machine can make
a transition

there exists an edge (l ,B ∪ (A\J),C ′,R ′, l ′′) such that v + δM � C ′

and, for all 0 ≤ t ≤ δM, (v + δM)R
′

+ t � InvM(l ′′) — i.e., the
machine can make an alternative transition that accepts instead B as
inputs and still performs the same outputs (and inputs outside J).

That is, a DTIOM is DP-enabled in relation to a set of inputs J and a
multiple δ of its clock granularity if, whenever it leaves a reachable state
at a multiple of δ, it can do so by accepting any subset of J, and if its
outputs are independent of the inputs in J that it receives.



Theorem

Let M1 and M2 be δ-compatible DTIOMs that can make independent
progress. If, for some δ′ multiple of δ1 and δ2,

M1 is DP-enabled in relation to Act I1 ∩ ActO2 and δ′,

M2 is DP-enabled in relation to Act I2 ∩ ActO1 and δ′,

both M1 and M2 are δ′-cooperative in relation to Act1 ∩ Act2,

then M1 ‖δM2 is initializable and makes independent progress (and,
hence, is consistent).



To conclude

Timed machines do not really provide a component algebra for
dynamic and heterogeneous timed systems.

We developed a component algebra based on networks of timed
machines, i.e., the components are networks, not individual machines.

The composition operator is dynamic, i.e., it takes into account the
time and the behaviour until that time of the networks be composed.

In this network algebra we investigated important properties for
run-time interconnection, including consistency and feasibility.

We also investigated how consistency and feasibility can be proved
compositionally, and at design time.



References

J. L. Fiadeiro, A. Lopes, B. Delahaye, and A. Legay (2016)

Dynamic Networks of Heterogeneous Timed Machines

Mathematical Structures in Computer Science, in print

J. L. Fiadeiro and A. Lopes (2016)

Heterogeneous and Asynchronous Networks of Timed Systems

Theoretical Computer Science, in print

B. Delahaye, J. L. Fiadeiro, A. Legay, and A. Lopes (2014)

Heterogeneous timed machines

LNCS 8687, 115-132, 2014.

B. Delahaye, J. L. Fiadeiro, A. Legay, and A. Lopes (2013)

A timed component algebra for services

LNCS 7892, 242-257, 2013.

J. L. Fiadeiro and A. Lopes (2013)

An interface theory for service-oriented design

Theoretical Computer Science, 503:1-30, 2013.




