
A Framework for
Static and Runtime Verification of

Data- and Control-Oriented Properties

IFIP WG 1.3 meeting
Binz, January 2016

1

Gerardo Schneider
Dept. of Computer Science and Eng.

Sweden
gerardo@cse.gu.se

http://www.cse.chalmers.se/~gersch/

Joint work with

Wolfgang Ahrendt, Mauricio Chimento and Gordon Pace

2

After calling method m1 and then m2,
if Pre2 holds (for m2) then Post2 should hold (for m2)
Otherwise (no m1), if Pre2’ then Post2’…

Each time we call method m1 if Pre holds (e.g. x positive)
then Post should hold (e.g. y positive)

… and m2 should be called no later than 30
sec after m1

Whenever m1 is executed,
then m2 should be executed before m3

Statically Runtime

Data

Control flow

Time

3

High
Abstraction

Low
Abstraction

Static Runtime

Runtime Assertion
Checking

Runtime Trace
Checking

Model
Checking

Deductive
(Program)

Verification

Theorem
Proving

System

Specification

Static
Verif.
tool

Proof

No Proof

4

System

Specification

Static
Verif.
tool

Proof

No Proof

Partial Proof
+ simplified
specification

5

System

Specification

RV
tool

System

Monitor

Verifier

6

¨  Static verification
+ Reason about properties of all possible runs
+ High precision
+  (-) Often on a model / abstractions for automation
-  Hard to achieve full automation (e.g. invariants)
-  Loosing aspects of concrete runs

¨  Runtime verification
+ Full precision (for current run)
+ Full automation (from property)
-  Cannot judge future runs
-  Runtime overhead

7

8

Data-Oriented
Properties

Control-Oriented
Properties

Static Runtime

?

9

Data-Oriented
Properties

Control-Oriented
Properties

Static Runtime

¨  Combine the best of static and dynamic verification
¡  Data + Control

¨  Combine different techniques but not too many
specification languages

10

¨  : Unified Static and Runtime Verification
of Object-Oriented Software
¡  A specification language: ppDATE

¡  A tool based on top of and

How to achieve that?
¨  We ask The Force and get it!

11

ppDATE

Prog. P
Deduc&ve(
Verifier(

ppDATE
Specifica&on(
Transla&on(

Monitor

Monitor(
Generator(

Static
Par&al((

Specifica&on(
Evalua&on(

(partial)
Proofs

DATE

Prog. P”
(weaved)

Aspects

Code(
Instrumenta&on(

Weaving(
Code(

S

S’

Prog. P’

D

KeY

LARVA

12

ppDATE

Prog. P
Deduc&ve(
Verifier(

ppDATE
Specifica&on(
Transla&on(

Monitor

Monitor(
Generator(

Static
Par&al((

Specifica&on(
Evalua&on(

(partial)
Proofs

DATE

Prog. P”
(weaved)

Aspects

Code(
Instrumenta&on(

Weaving(
Code(

S

S’

Prog. P’

D

Timer
(reset, pause,
resume)

Trigger (Entry/
Exit points to code,
Synchronization)

Condition Action (create
DATEs; execute
Java programs)

One
monitor for

each user

Dynamic
creation of
monitors

when new
users

Monitors
can

communicate
(channels)

Conditions &
Actions:
-  Local (DATE) &
System (program)
variables
-  Can access
context (eg,user)

13

* C. Colombo, G.J. Pace, and G. Schneider. Dynamic event-based runtime monitoring of real-time and contextual
properties. In FMICS'08, vol 5596 of LNCS, pp 135-149, 2009

q  Part of a ppDATE of adding a user in a login system

14

Hoare triple
associated with
state q

Expressiveness:
¨  ppDATEs are equivalent to DATES (encoding)

¡  Data + Control-oriented
¡  Context-dependent properties (identifiers help distinguishing

different calls of a method)
¡  Properties about recursive calls (matching entry/exit points of

same call)
¡  Real-time properties …

15

Why a new language?
¨  Separation of concerns between data and control

¡  No need to encode event history in data
¡  No need to encode data properties in automata

16

ppDATE

Prog. P
Deduc&ve(
Verifier(

ppDATE
Specifica&on(
Transla&on(

Monitor

Monitor(
Generator(

Static
Par&al((

Specifica&on(
Evalua&on(

(partial)
Proofs

DATE

Prog. P”
(weaved)

Aspects

Code(
Instrumenta&on(

Weaving(
Code(

S

S’

Prog. P’

D

KeY

17

18

19

Precondition è <Prog> Postcondition

20

ppDATE

Prog. P
Deduc&ve(
Verifier(

ppDATE
Specifica&on(
Transla&on(

Monitor

Monitor(
Generator(

Static
Par&al((

Specifica&on(
Evalua&on(

(partial)
Proofs

DATE

Prog. P”
(weaved)

Aspects

Code(
Instrumenta&on(

Weaving(
Code(

S

S’

Prog. P’

D

21

Example: Part of adding an element to an array

22

Example: Part of adding an element to an array

23

Example: Part of adding an element to an array

24

ppDATE

Prog. P
Deduc&ve(
Verifier(

ppDATE
Specifica&on(
Transla&on(

Monitor

Monitor(
Generator(

Static
Par&al((

Specifica&on(
Evalua&on(

(partial)
Proofs

DATE

Prog. P”
(weaved)

Aspects

Code(
Instrumenta&on(

Weaving(
Code(

S

S’

Prog. P’

D

25

There are 2 cases:

26

Plus 2 additional DATEs:

27

ppDATE

Prog. P
Deduc&ve(
Verifier(

ppDATE
Specifica&on(
Transla&on(

Monitor

Monitor(
Generator(

Static
Par&al((

Specifica&on(
Evalua&on(

(partial)
Proofs

DATE

Prog. P”
(weaved)

Aspects

Code(
Instrumenta&on(

Weaving(
Code(

S

S’

Prog. P’

D

LARVA

LARVA
(AspectJ:

P’&D,
compile)

System

28

DATE description D

Java Program P’

Weaved Program
P’’

•  Formal semantics for ppDATEs (SOS) -> Complex!
•  Rich structure
•  Try to be close to implementation (LARVA)

•  Proof of correctness of the translation ppDATEs to DATEs
•  Trace semantics (counter-examples and violating traces)

•  Two case studies
•  Mondex: an electronic purse
•  SoftSlate: open source Java shopping cart web application

29

•  Approach to combine static and runtime verification
•  Expressive language for data- and control-oriented
•  Verification tool
•  Formal semantics and correctness of translation

ON-GOING

•  Optimize the monitor (using static analysis techniques)

FUTURE:

•  Feedback from RV to improve static verification

•  User-friendly interface to write properties

•  Distributed setting

 30

31

•  W. Ahrendt, G.J. Pace, and G. Schneider. A Unified Approach for Static and
Runtime Verification: Framework and Applications. In ISoLA’12, vol 7609 of
LNCS, pp.312-326, 2012.

•  W. Ahrendt, M. Chimento, G. Pace and G. Schneider. A Specification
Language for Static and Runtime Verification of Data and Control Properties.
In FM'15, vol. 9109 of LNCS, pp.108-125, 2015.

•  W. Ahrendt, M. Chimento, G. Pace and G. Schneider. StaRVOOrS: A Tool for
Combined Static and Runtime Verification of Java. In RV'15, vol. 9333 of
LNCS, pp.297-305, 2015.

•  W. Ahrendt, G. Pace, and G. Schneider. Starvoors - Episode II, Strengthen and
Distribute the Force. In ISoLA’16, vol 9952 of LNCS, pp.402-415, 2016.

•  W. Ahrendt, M. Chimento, G. Pace and G. Schneider. Combined Static and
Runtime Verification of Data- and Control-Oriented Properties. Submitted

http://www.cse.chalmers.se/~chimento/starvoors

32

33

34

A coffee machine

- Hoare triples makes no reference to the state of the machine (there is no info about
whether the machine is active or not)
- The state of the machine is implicitly defined by the states of the ppDATE
- If the ppDATE is in state q, the machine is not active.
- If it is in state q’, then it is active.
- On each state the Hoare triples are context-dependent
- This is why we can describe properties with the same precondition, but with different
post-conditions, depending on which state of the ppDATE they are

35

36

37

38

PURCHASE CHECKOUT

(1) The checkout of a purchase should be performed
following the four required steps.

(2) It is not be possible to buy zero or less items.

(3) The expiration date of the credit card should not
earlier than the current date.

(4) The price of a product should be positive.

(5) Before a purchase is completed, taxes should be
processed.

(6) The total cost should be equal to the sum of the
prices of all the products to be purchased.

(7) If the price of an item changes, then its price in the
order of the user should be updated.

39

LOGIN - LOGOUT

(i) A user has to be logged in the application in
order to perform a purchase, i.e., the checkout
of a purchase can only happen between a login
and a logout.

(ii) If a user is logged in, then that user cannot
successfully log in again in the application until
she logs out from it.

(iii) If a user is not logged-in, then that user
cannot successfully log out from the
application.

(iv) A user can only proceed to the checkout
section if her status is a valid one.

(v) A user who is not a costumer cannot
proceed to the checkout section.

•  Found a strange design decision: each user associated with one session
generated two instances of class User for a given real user (prop (iii) thus
violated)

•  Violation of property (4)

•  Violation of property (7): prices modified by administrator propagated to
DB but not the user cart

40

•  KeY proves 2 Hoare triples fully -> not checked at runtime

•  KeY proves 24 Hoare triples partially -> conditionally checked at runtime

•  Why the gain? Preconditions were false -> no postcondition checking

•  ppDATE: 10 states and 25 transitions

•  25 DATEs: 106 states and 196 transitions

•  Overhead: Postcondition monitoring

41

42

43

44

45

Conditions are BJMLE
(Boolean JML Expressions)
•  For the sake of presentation

just think of them as normal
boolean conditions

46

47

Templates are created
with the action create

•  SOS semantics - Complex!

•  Rich structure
•  Communicating “automata” (channel broadcasting)

•  Program (system) and monitor (ppDATE) variables

•  Actions are arbitrary programs with side effects

•  Dynamic creation of ppDATEs (templates)

•  [Try to be] close to the implementation (LARVA)

48

Every time the system generates an event (entry or exit of a
method):

•  All ppDATEs with enabled transitions execute the
associated actions, simultaneously

•  Action events (h!) will be stored in a buffer

•  After all enabled transitions are fired, every transition
becoming enabled by events in the buffer, are fired

•  The buffer is emptied and the procedure is repeated until
no more transitions are enabled

49

•  Small steps for local configurations

•  Big steps for global configurations

50

51

•  Given a ppDATE m, a local configuration is a tuple
•  q is the current state

•  allows to monitor potential violations of Hoare triples
•  Stores which exit event (systemevent) should cause a check of

which postconditions, under the given system variable valuation

52

•  Given a ppDATE network
a global configuration is a tuple such that:
•  L is the set of local configurations
•  is a ppDATE variable valuation with domain V

53

54

