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We are interested in proving
properties...

Each time we call method m1 if Pre holds (e.g. x positive)
then Post should hold (e.g. y positive)

Whenever m1 is executed, »
then m2 should be executed before m3 Control flow

After calling method m/ and then m2,
if Pre2 holds (for m2) then Post2 should hold (for m.2)

Otherwise (no m1), if Pre2’ then Post2’...

... and mZ2 should be called no later than 30
sec after ml1

Statically i Runtime




High
Abstraction

Low
Abstraction

Leaving out many other
techniques, e.g. Abstract
Interpretation, etc...

A Simplified View of Formal
Verification Techniques

Model
Checking

Theorem
Proving

Deductive
(Program)
Verification

Static

Runtime Trace
Checking

Runtime Assertion
Checking



Static (Program) Verification
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Runtime Verification

Automatic!

Monitor ]

Specification | -
>




Static vs Runtime Verification

Static verification

+ Reason about properties of all possible runs

+ High precision

+ (-) Often on a model / abstractions for automation
- Hard to achieve full automation (e.g. invariants)

- Loosing aspects of concrete runs

Runtime verification ‘e ®

+ Full precision (for current run) R kind
+ Full automation (from property) of properties...
- Cannot judge future runs

- Runtime overhead




Different Approaches to Different
Problems...

Data-Oriented
Properties
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Control-Oriented o
Properties

Static Runtime




Different Approaches to Different
Problems...

Data-Oriented
Properties

Control-Oriented
Properties

Static Runtime




Our Work

Combine the best of static and dynamic verification
= Data + Control

Combine different techniques but not too many
specification languages

How to achieve that? \
We ask The Force and get it!

ST/ RAV/(OXO)RSS @ Unified Static and Runtime Verification
of Object-Oriented Software

» A specification language: ppDATE )__/

= Atool based on top of KgY and &§HRYE s
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DATE

Dynamic Automata with Timers and Events

Action (create
DATEs; execute One

Java programs) monitor for
- each user

Trigger (Entry/
Exit points to code,
Synchronization)

BonTion: & interact\\.reset(); badlogin\c+ +;

Actions: goodlogin
- Local (DATE) & \\f. rese'l'[],'

System (program) Dyn.amic
variables creation of

- Can access logged in logged ouf monitors
context (eg,user) V when new
logout\\c=0; : users
@30*60 g badlogin

Timer \C>=2
(reset, pause, Monitors
resume) can
bad logins communicate
(channels)

* C. Colombo, G.J. Pace, and G. Schneider. Dynamic event-based runtime monitoring of real-time and contextual
properties. In FMICS'08, vol 5596 of LNCS, pp 135-149, 2009




ppDATE

DATE with Pre/Post-conditions (roughly!)

1‘6 triple add(o,key)¢ | users.contains(o,key) = true+ e \

associated with
state g 0 0

{{users.size < users.capacity} add {post} }

post

\\ (3int /; i > 0 && i < users.capacity;users.h[i] =o;) /

d Part of a ppDATE of adding a user in a login system




Can we write interesting properties?

Expressiveness:
ppDATESs are equivalent to DATES (encoding)

Data + Control-oriented

Context-dependent properties (identifiers help distinguishing
different calls of a method)

Properties about recursive calls (matching entry/exit points of
same call)

Real-time properties ...

Why a new language?
Separation of concerns between data and control

= No need to encode event history in data
= No need to encode data properties in automata
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JML Example

Precondition

( /*@ public normal_behavior
L requires a != null;
@ ensures (\forall int j; j >= 0 && j < a.length;

1 © \result >= a[jl);
LPostcondition @ ensures a.length > 0 ==
@ (\exists int j; j >= 0 && j < a.length;

@ \result == a[jl);
/—/\\ o/
Also: public static int max(int[] a) {
Assertions, int max = a[0], i = 1;
Invariants, while ( i < a.length ) {
\_ y if ( al[i] > max ) max = a[il;
++1i:




JML Translated to
Java Dynamic Logic

[Precondition =» <Prog> Postcondition }

->
<

int max = O;
if ( a.length > 0 ) max = a[0];
int i = 1;
while ( i < a.length ) {
if ( a[i] > max ) max = a[i];
++1;
}
>
\forall int j; (j >= 0 & j < a.length -> max >= al[j])
&
(a.length > 0 —>
\exists int j; (j >= 0 & j < a.length & max = a[j]))
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Partial Specification Evaluator

Example: Part of adding an element to an array

add(o)* | contains (o) ++ duplicate!

7(q1) ={ {size < capacity}add(o) {3 i.arr[i] =o} }




Partial Specification Evaluator

Example: Part of adding an element to an array

KeY tries to prove:
{size < capacity}add(o) {3i. arr[i] = o}

KeY cannot fully prove (automatically)

proof branch

...,arr[keylcapacity] = null
closed (automatically)
proof branch

..,marr[keylcapacity] = null F
not closed (automatically)




Partial Specification Evaluator

Example: Part of adding an element to an array

» partial proof analysis synthesises additional pre-conditions,
here
— arr[key%capacity| = null

7(q1) =
{ {pre N — arr|key%capacity| = null}add(o) {post} }
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Translation from ppDATE to DATE

given transition

O e | cond — act
q

and Hoare triple

7(q) =1 ...,{pre}m(a) {post}, ... }

There are 2 cases:

e =m(3)*




Translation from ppDATE to DATE

e | cond — act o
@ Plus 2 additional DATEs:

Q mAux(3, id)* | true — (if opPre() then h_,!) -@
q

mAux(3, id)" | opPost()
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public static boolean

add_ok_post (HashTable hasht, Object o, int key)
{ boolean r = false;
for (int i = 0 ; i <= users.capacity - 1 ; i++) {
if (users.h[i]l == o) { r = true ; break; }

return r;

}

\_ Java Program P )

LARVA

(Aspectl]:
;
EVENTS { ’ I I
add_entry(Object o,int key) = {HashTable users.add(o, key)}
by )

PROPERTY add {
STATES { NORMAL{q2;} STARTING{ql (add_ok);} }

.
TRANSITIONS { q1 -> q2 [add_entry\users.contains(o, key) < 0] } Complle)
}

CINVARIANTS {
HashTable {h.length == capacity}
HashTable {h != null}
HashTable {size >= 0 && size <= capacity}
HashTable {capacity >= 1}
}
CONTRACTS {
CONTRACT add_ok {
PRE {size < capacity &% key > 0 }
METHOD {HashTable.add}
POST {(\exists int i; i>= 0 && i < capacity; h[i]l == o)}
ASSIGNABLE {size, h[*]1}}
}

DATE description D )

. J

Weaved Program
P bl




Besides....

* Formal semantics for ppDATEs (SOS) -> Complex!
Rich structure
Try to be close to implementation (LARVA)

* Proof of correctness of the translation ppDATEs to DATEs
Trace semantics (counter-examples and violating traces)

* Two case studies
Mondex: an electronic purse
SoftSlate: open source Java shopping cart web application




Conclusion

* Approach to combine static and runtime verification
Expressive language for data- and control-oriented
Verification tool
Formal semantics and correctness of translation

ON-GOING

*  Optimize the monitor (using static analysis techniques)
FUTURE:

» Feedback from RV to improve static verification

» User-friendly interface to write properties

 Distributed setting
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Auxiliary Slides




Context-Dependency in ppDATESs

A coffee machine . (i) {cups < limit} brew() {cups == \old(cups)+1}
sars 9° (ii) {true} cleanF() {cups == 0}

ta: brew' | true skip( )h : brewt | cups < limit +» skip

, . (iii) {cups < limit} brew() {cups == \old(cups)}
9 (iv) {true} cleanF() {cups == \old(cups)}

ty: cleanF* | true akip( )t3: brewt | true 3 skip

bad

- Hoare triples makes no reference to the state of the machine (there is no info about
whether the machine is active or not)

- The state of the machine is implicitly defined by the states of the ppDATE
- If the ppDATE is in state g, the machine is not active.

- If it is in state q’, then it is active.

- On each state the Hoare triples are context-dependent

- This is why we can describe properties with the same precondition, but with different
post-conditions, depending on which state of the ppDATE they are




ppDATE Definition
LARVA Script

IMPORTS { main.UserInterface ; main.Hashtable ; }

GLOBAL {
PROPERTY prop-deposit {
PINIT { (prop-deposit-temp, UserInterface) }

}
}
TEMPLATES {
TEMPLATE prop-deposit-temp (UserInterface uf) {
TRIGGERS {
login_exit(String un, int pwd)
= {UserInterface f.login(un, pwd)exit()} where {uf = f}
logout_entry()
= {UserInterface f.logout()entry} where {uf = f}
deposit_entry(int val)
= {UserInterface f.deposit(val)entry} where {uf = f}

}
PROPERTY prop_deposit { CINVARIANTS { i
STaTES { HashTable {\typeof(h) == \type(Object[1)}
ACCEPTING { q2 ; } HashTable {arr.length == capacity}
BAD { bad ; } HashTable {arr != null}
STARTING { q1 (add_ok) ; } HashTable {size >= 0 && size <= capacity}
} HashTable {capacity >= 1}
TRANSITIONS { }
ql -> q2 [login_exit \ f.getUser() != null] HTRIPLES {
ql -> bad [deposit_entry] HT add_ok {
g2 -> q1 [logout_entry \ f.getUser() != null ] PRE {size < capacity}
q2 -> q2 [deposit_entry \ f.getUser() != null] METHOD {Hashtable.add}
POST {(\exists int i; i>= 0 && i < capacity; arr[i] == o)}
ASSIGNABLE {size, arr[+]}
}
}

35




ppDATE Templates

Definition

one-at-a-time = A C, S : cond, trigger.

start-[ q

st | true-—)skip( )S‘ | C 5 skip

[ o

S+ | true + skip

bad




ppDATE Templates

Instantiation

inst(one-at-a-time, cups < limit,brew) =

- e |

brew! | true skip( )brov* | cups < limit + skip

| ‘ |

brew+ | true ~ skip

¥
l bad l




Translation from ppDATE to DATE

DATE : if e =m(3)*

Q mAux(3, id)* | cond — (act ; if opPre() then h_,!)
q

Q mAux(3, id)* | —cond + (if opPre() then h_,!) O
q ~ q

mAux(3, id)" | opPost()




Case Study: SoftSlate Commerce
(Shopping cart web application)

LOGIN - LOGOUT

(1) A user has to be logged in the application in
order to perform a purchase, 1.e., the checkout
of a purchase can only happen between a login
and a logout.

(11) If a user is logged in, then that user cannot
successfully log in again in the application until
she logs out from it.

(1) If a user is not logged-in, then that user
cannot successfully log out from the
application.

(iv) A user can only proceed to the checkout
section if her status is a valid one.

(v) A user who 1s not a costumer cannot
proceed to the checkout section.

PURCHASE CHECKOUT

(1) The checkout of a purchase should be performed
following the four required steps.

(2) It is not be possible to buy zero or less items.

(3) The expiration date of the credit card should not
earlier than the current date.

(4) The price of a product should be positive.

(5) Before a purchase is completed, taxes should be
processed.

(6) The total cost should be equal to the sum of the
prices of all the products to be purchased.

(7) If the price of an item changes, then its price in the
order of the user should be updated.




Case Study: SoftSlate Commerce
(Shopping cart web application)

Found a strange design decision: each user associated with one session
generated two instances of class User for a given real user (prop (111) thus
violated)

Violation of property (4)

Violation of property (7): prices modified by administrator propagated to
DB but not the user cart

(a) no monitoring (b) monitoring S (c) monitoring S’
800 ms 1,300 ms 1,100 ms
10,500 ms 15,500 ms 13,000 ms
120,000 ms 190,000 ms 150,000 ms




Case Study: Mondex

(An electronic purse application)

 ppDATE: 10 states and 25 transitions
« 25 DATESs: 106 states and 196 transitions

monitoring monitoring
without static verif. using static verif.
10 8 ms 120 ms 15 ms
100 50 ms 3,500 ms 90 ms
1000 250 ms 330,000 ms 375 ms

Transactions no monitoring

Overhead: Postcondition monitoring

KeY proves 2 Hoare triples fully -> not checked at runtime
KeY proves 24 Hoare triples partially -> conditionally checked at runtime

Why the gain? Preconditions were false -> no postcondition checking




pDATE for Mondex

|

Initial ]

transfer_initialisé*(f,L,v,mbax)/ f.name != Lname &&
ret = SUCCESS
start_to’/ pto.equals(t) && / pfrom = f; pto = t; pvalue = v;
ret == SUCCESS && Awaiting both start fronf/ pfro &&
m.id == pto.name o SOCRSS &
m.ld == pfrom.name

( Awaiting from ] [ Awaiting to

start_from"/ pfrom.equals(f) && L
ret == SUCCESS && .equal
m.id == pfrom.name pto t== 5 S &&
Parties initialised m.id == pto.name
req’ Lty o UL R 1eq? plrom.equals(f) && ret — SUCCESS &&
m.id = pfrom.name && m.id == pfrom.name && m.paydetalls.value = pvalue &&

m.paydetalls.value == pvalue && \ pvalue <= pfrom.balance
pvalue > pfrom.balance [ Maney deducted ]

] vall pto.equals(t) && ret == SUCCESS &&
m.id == pto.name && m.paydetalls.value = pvalue

[ BAD STATE

A |
( Maney deposited ]
ack’ pﬁt')(l!n.equals(f) && ret== SUCCESS &&

GOOD STATE ]

42







ppDATE
Formally...

( Set of states 1 A function tagging each state with
\ Hoare triples
IT € Q — P(condgys x X X postcondsys)j

(Q:taBy qO)H)

X
\L Initial state J

4

Transition relation
t C Q X trigger X condsysuv X action X Q.

.
L Set of bad states J




ppDATE

Transitions

trigger ::= systemtrigger
| actevent?

systemtrigger ::= methodname* | methodname’

action = sk|p Conditions are BIMLE

_ (Boolean JML Expressions)
V=¢€ .

| * For the sake of presentation
actevent: just think of them as normal
create(template, args) boolean conditions

action ; action

if condg, SM/ ~
Program Terminating, side-effect free

(no system events, no writing on
system variables)




ppDATE
BIMLE

— any side-effect free Boolean Java expression is a BJMLE,
— if a and b are BJMLESs, and x is a variable of type t, the following expressions
are BJMLEs:
— la, a&&b, and al |b
—a ==>b (“aimplies b”)
— a <==> b (“ais equivalent to b”)
— (\forall t x; a)
(“for all x of type t, a holds”)
— (\exists t x; a)
(“there exists x of type t such that a”)
— (\forall t x; a; b)
(“for all x of type t fulfilling a, b holds”)
— (\exists t x; a; b)
(“there exists an x of type t fulfilling a,
such that b”)
— replacing any sub-expression e in a BJMLE with \old(e) gives a BJIMLE,
— replacing any sub-expression in a BJMLE with \result gives a BJMLE, (well-
typedness is context dependent, see Def.5)

46




ppDATE Network

( Set of ppDATE W
emplates

( Set of ppDATES 1

==l

v

Templates are created
M,V v
= ( 0, Tppa) with the action create

[ Set of ppDATE Initial valuation of
(global) variables variables in V'




ppDATE

Formal Semantics

Will not go into
« SOS semantics - Complex! = ® @ details...

* Rich structure
Communicating “automata” (channel broadcasting)
Program (system) and monitor (ppDATE) variables
Actions are arbitrary programs with side effects
Dynamic creation of ppDATESs (templates)

* [Try to be] close to the implementation (LARVA)




ppDATE

Semantics

Every time the system generates an event (entry or exit of a
method):

All ppDATESs with enabled transitions execute the
assocliated actions, simultaneously

Action events (4/) will be stored in a buffer

After all enabled transitions are fired, every transition
becoming enabled by events in the buffer, are fired

The buffer 1s emptied and the procedure 1s repeated until
no more transitions are enabled




ppDATE

Semantics

* Small steps for local configurations

* Big steps for global configurations




ppDATE

Local Configurations

« Given a ppDATE m, a local configuration is a tuple (m, g, p)
g 1s the current state

p allows to monitor potential violations of Hoare triples

 Stores which exit event (systemevent) should cause a check of
which postconditions, under the given system variable valuation




ppDATE

Big Step Semantics for Global Configurations

* Given a ppDATE network pn = (M,V,vo, Tppa)
a global configuration 1s a tuple (L, v) such that:

L 1s the set of local configurations
v 1s a ppDATE variable valuation with domain V'

\

( Transitive closure of relation 1
( Extended global L small step global )

configuration

e .

(L,v, {e},0) —* (L',v',0,0)
(L, V) (e,0

VAR

{ (system event, system variable valuation) J

shift

(L',v")

\




ppDATE
Small Step Rule for Extended Global
Configurations

All local conf. s.t. m has enabled
transition whose trigger is activated

by events in E

Len={l|l € L,enabled(l,e,0,v),e € E}
Local conf. that will not change ]; Lych = L\Len
(e,0,v)

-

A
4 — I ’

Local conf. changing Len ={U' |1 € Len,1 »U'e € E}

after small step of L,, Acts ={a |l € Len, toBeEzecuted(l,e,0,v,a),e € E}
mergeParaMctsu({[[a]]o,Ja € Acts}) = (v, E’, New/)

Lnew = {(m, qom, 0) | m € NB’UJ’}
iter L' = Loy ULpep U Lnew
/ (L,v, E,0) — (L',v', E',6)

If undefined (conflict in parallel read/write)

P
Execute all actions to be executed in parallel.
then execution aborts




ppDATE

Small Step Rules for Local Configurations

checkOnEzit((m, q, p), afd, 0,m")
nextState((m, q, p), afd, 0,v,q)

entry,
(atpoﬂ/) , 1 ’
(m, q, P) R— (m’ qa.p U {(aidv ™, 0)})
A n’ - checkOnEzit((m, q, p), a‘t!’d, 0,m")
nextState((m, q, p), afd, 0,v,q")

3 ’
(m, q, P) — (m’ q, P)

checkOnEzit((m, q, p), ai’d, 0,m")
3 ¢’ - nextState((m,q, p), a;!’d, 0,v,q")

entrys
(O‘fd,e,ll) T ’
(m’ q, P) — (m’ q,p U {(aid’ ™, 0)})

nextState((m, g, p), G;rd, 0,v,q")

exit
(O';.rd,o,l/) ,
(m, q, P) — (m7 q, P)

e € actevent

neztState((m, q, p),e,0,v,q")

(e,8,v)
(m, q, P) — (m, q,, P)

act
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