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{ Some examples that motivated this approach

< points to the carrier set of a standard model of the respective signature.

Constructive signatures

e Nat = N
S={nat}, T=0, F={ zero:1— nat,

succ : nat — nat }.
o Lists(X,Y) > X* x [

S=A{list}, T={X,Y}, F={ nil:Y — list,
cons : X X list — list }.

o List(X) = def Lists(X,1) e X*,

alternatively:

S ={list}, T={X,Noi}, F={[..]: X* = list}.



e Bintree(X) = binary trees of finite depth with node labels from X

S ={btree}, T ={X} F={ empty:1 — btree,
bjoin : btree x X x btree — btree }.

o Tree(X,Y) = finitely branching trees of finite depth with node labels from X and
edge labels from Y
S ={tree,trees}, T={X,Y}, F={ join: X Xtrees — tree,
nil . 1 — trees,
cons . Y X tree x trees — trees }.

e Reg(BS) = regular expressions over BS

S =A{reg}, T={BS}, F = { par:regx reg— reg,

(parallel Composition)
seq :reg X reqg — reg, (soquontial composition)

iter : reg — reg, iteration )

base : BS — reg } embedding of base sets)



o CCS(Act) = Calculus of Communicating Systems
S = { proc}, I = {Act},

F = { pre: Act — proc, (prefixing by an action)
cho : proc X proc — proc, (choice)
par : proc X proc — proc, (parallelism)
res : proc X Act — proc, (restriction)
rel : proc x Act — proc }. (relabelling)

Destructive signatures
e coNat = N U {oo}

S={nat}, T=10, F={pred:nat— 1+ nat}.

o coList(X) e X*U X" (coList(1) = coNat)
S =Alist}, T={X} F ={split:list > 1+ X x list}.

e coBintree(X) = binary trees of finite or infinite depth with node labels from X

S ={btree}, T ={X}, F ={split:btree — 1+ btree x X X btree}.
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e coTree(X,Y) = finitely or infinitely branching trees of finite or infinite depth with
node labels from X and edge labels from Y

S =A{tree}, T = {X,Y}, F ={ root:tree — X,
subtrees : tree — etrees,

split . etrees — 1 +Y X tree X etrees }.

o ['BTree(X,Y) e finitely branching trees of finite or infinite depth with node labels
from X and edge labels from Y

S =Atree}, T={X,Y,N.1}, F={ root:tree — X,
subtrees : tree — (Y X tree)* }.

o Inftree(X,Y ) = finitely branching trees of infinite depth with node labels from X
and edge labels from Y

S ={tree}, T={X,Y,N.1}, F={ root:tree — X,
subtrees : tree — (Y x tree)™ }.



o DAut(X,Y) = YX" — behaviors of deterministic Moore automata with input from
X and output from Y

S = {state}, T={X,Y}, F={ §:state— state’,
B : state - Y }.

o Acc(X) =4 DAut(X,2)  P(X) = 2% — hehaviors of deterministic acceptors of
languages over X

o Stream(X) =45 DAut(1,X) co X"
S ={stream}, T={X}, F ={ head: stream — X,

tail : stream — stream },

alternatively:

S = {stream}, I ={X,N}, F ={get:stream — X"}

o Infbintree(X) = binary trees of infinite depth with node labels from X

S ={btree}, T ={X}, F =1 root:btree — X,
left, right : btree — btree }.



o PAut(X,Y) c> (1 4+ Y)*" — partial automata
S ={state}, IT={X,Y}, F={ §:state— (1+ state)?,
B state - Y }.

o NAut(X,Y) = (Y*)X" = behaviors of non-deterministic image finite automata
S{state}, I = {X,Y,N.i}, F=/{ §:state — (state*)~,
B state - Y }.

o WAut(X,Y, CM) = ((CM x Y)*)*" = behaviors of CM-weighted automata
S = {state}, T = {X,Y,CM,N.i}, F=1{ 0:state — ((state x CM)*)*,
B state - Y }.

o SAut(X,Y) > (([0,1] x Y)*)X" = behaviors of stochastic automata
S = {state}, T = {X,Y,[0,1],No1}, F=1{ ¢§:state — ((state x [0,1])*)%,
B state =Y }.

e Proctree(Act) = process trees whose edges are labelled with actions

S ={tree}, T = {Act,N.1}, F={ 0 tree — (Act x tree)* }.



e (Class(Z) = behaviors of a class with n methods

S = { state}, T = {Xy,.... X, Y1,.... Y, F1, ..., E,},
F = { m;:state — ((state x ;) + E)Y |1 <i<n}.



[ Z-polynomial types }

Let S be a finite set and Z be a set of nonempty sets (of indices), implicitly including
the one-element set 1 = {e}, the two-element set 2 = {0,1} and the m-element set
n] ={1,...,n} forall n > 1. 1, 2 and |n| are omitted in the listings of index sets of
sample signatures.

The set T(S5,7Z) of Z-polynomial types over S is inductively defined as follows:

e SUZCT(S,I).
o Forall I € Z and {e;j}icr CT(S,Z), [1,c;ei, 1 ic;ei € T(S,Z).

Foralle I € Z,n > 1ande,eq,...,e, € T(S,Z) we use the following short notations:

e1 X -+ X ey =def Hze[n] €,
et en =dg e @

e! —def Hie] <

e" = def e[”],

e’ =def €T Hn>1 e,

e* = def 1+e™.
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[ Signatures }

A signature > = (S, 7, F') consists of sets S and Z as above and a finite set F' of typed
function symbols (“operations”) [ :e — ¢ with e, e’ € T(S,Z).

f:e— e € Fis a constructor if ¢ € S and a destructor if e € S.

Y. is constructive if F' consists of constructors and for all s € S, Z implicitly contains
{s} and {f € F' | ran(f) = s}.
Y is destructive if F' consists of destructors and for all s € S, Z implicitly contains {s}

and {f € F | dom(f) = s}.
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[ Terms and coterms }

A —o— B denotes the set of partial functions from A to B.
L C A* is prefix closed if for all w € A* and a € A, wa € L implies w € L.
A deterministic tree is a partial function f : A* —o— B with prefix closed domain.

f may be written as a kind of record:
ty = fle{o = b rw) | T € def(t) N A}

f is well-founded if there is n € N with |w| < n for all w € def(t), intuitively: all
paths emanating from the root are finite.

dtr(A, B) denotes the set of all deterministic trees from A* to B.
wdtr(A, B) denotes the set of all wellfounded trees of dtr(A, B).

Let ¥ = (S,Z, F) be a signature, V' be an S-sorted set,

ELy, = |JZ U{sel}, (edge labels)
NLsy = |JZUV U {tup}. (node labels)
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Let > be constructive.

The set C'Tx(V) Y-terms over V is the greatest T(S,Z)-sorted set M of subsets of
dtr(ELy, NLy, ) with the following properties: Let I € Z and {e;}ie; € T(S,Z).

—_

o V[ =1.
eforallse Sandte M, teV
or t = c{sel = t'} for somec:e— s € Fandt € M.
e Forallt € My _ . andi€l, t= tup{i — t; | © € I} for some t; € M, ..
o Forallt € My _, .., t=i{sel — t'} for somei € I and t' € M,..

@ I @ 5 @ s tup Ha;el €i @ Hz‘ef €

(N}

AN TN TN N TN
=~ W
— — N N~

sel _ sel
)
C) € C) €; C) €;
(1) (2/6) (377) 4) &)
i€l se S c:e—>seC

I el x €V
Terms with their respective types.
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The elements of C'Ty, =45 CTx(0) are called ground X-terms.

T5(V) =gef CTx(V) Nwdtr(ELy, NLy y) is the least T (S, T)-sorted set M of subsets of
dtr(ELy, NLy v) with (1) and the following properties:

Let I € Z and {e;}ier € T(S,Z).

o Forallse S, V, C M. (6)
eftorallc:e—se Fandte M, c{sel »t} € M,. (7)
o Forallt; e M., i€l tup{i = t;[iel} e My_,.. (8)
e Foralli€ I andt € M, i{sel =t} € My _ ., (9)

Ty =ger T2(0).
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Let > be destructive.

The set D'Tx(V) of ¥-coterms over V is the greatest T (.S, Z)-sorted set M of subsets
of dtr(ELy, NLsy) with (1), (4), (5) and the following property:

e Forall s e Sandt e M, thereisx € V, and for all d : s — e € F thereis t; € M,

witht =a{d —>t;|d:s—e€ F}. (10)
@ I % fup) Hiere: @ [Licr e
_ sel
d i
Y } Y
Q € Q €; Q €;
(1) (10/11) (4) &)
iel x €V

I el d:s—ecD

Coterms with their respective types.



The elements of DTy, =45 DTx(1) are called ground Y-coterms.

Examples

JOR

head tail
¥ Y
© jol
head tail
4 N
@ JOR
head ail
v BN

Stream(N)-coterm that represents the stream of natural numbers



Acc({x,y, z})-coterm that represents an acceptor of all words over {x,y, z}

contaimning x or z
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cols (V') =gy DTx(V) Nwdtr(ELy, NLyy) is the least T (S, Z)-sorted set M of subsets
of dtr(ELys, NLyy) with (1), (8), (9) and the following property:

eforallseS, xeV,,d:is—vec Fandtye M, a{d - t;|d:s e € F} € M, (11)

COTE —def COTg(l).

The set Tx(V') of well-founded Y-terms over V', however, is defined as if 3 were
constructive:

Tx (V') is the least T (S, T)-sorted set M of subsets of dtr(ELy, NLyy) with (1), (6), (8),
(9), but the following property instead of (7):

eforallse S, d:s—wecFandtye M., e{ld—ty|d:s—>ec F}e M,  (12)
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[ >-algebras and Y-functors }

Type compatible 7(S,Z)-sorted sets

A T(S,Z)-sorted set A is type compatible if for all I € Z,

[ ] A] = [,
o for all {e;}icr € T(S,Z)
e there are
T =(m A e = Aedier and o= (40 Ae, = AL, ¢ )ier

such that (Afp._, ¢, 7) is a product and (Aqp._, ¢;, ¢) is a sum or coproduct of (A, )ier.

Let A be type compatible, I € Z and {e; };c; € T (5, 7).
(1) For all @ € Ay,_,, there are unique i € I and b € A, such that ;(b) = a.
(2) For all a,b € Ay, _, ¢, a=bif for all i € I, mi(a) = m(b).
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Let A, B be type compatible T (S, Z)-sorted sets.
A T(S,Z)-sorted function h : A — B is type compatible if for all [ € Z,

® hy =idy,
o for all {e;}ic; € T(S,Z), hyy,_,e; = [ lics Pe; and Ay e, = ey Pe;-

Set>? denotes the subcategory of Set”"%) with type compatible T(.S,Z)-sorted sets as
objects and type compatible T (S, Z)-sorted functions as morphisms.

e € T(S,Z) induces the projection functor F, : Set®? — Set that maps every object
and morphism of Set>? to its respective e-component.

Lifting S-sorted to 7 (5, Z)-sorted relations

Let A = (Ac)ecer(s.1) be a type compatible T (S, Z)-sorted set, n > 0 and R, C A} for all
seS.

Forall I € Z, R; =4 A} and for all {e; }ier € T(5,7),

RHie]@z‘ —def {(al, .. .,CLn) - Aﬁ e ‘ V’L - [ . (7TZ'(CL1), e ,Wi(an» - Rei}7

el ™

RHiGIGi —def {(l/i(al)a ) [/i(an)) ‘ (a17 Tt a’”) = Rei’ S [} < Anﬂielei.
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Let X = (S,Z, F) be a signature.

A Y-algebra A = (A, Op) consists of a type compatible T (S, Z)-sorted set A and an
F'-sorted set
Op — (fA : AE’ — A€/>f26—>€/€F

of functions.

Let A, B be Y-algebras. A type compatible T(S,Z)-sorted function h : A — B is a
Y-homomorphism if for all f:e — ¢ € F,
he/ofA = fBohe.

tS’I

Al gy, denotes the subcategory of Set”* with Y-algebras as objects and 2-homomorphisms

as morphisms.

If ¥ is constructive, then C'Ty (V) is a Y-algebra:
Let I € Z and {e;} CT(S,I).

eforallc:ie—seC teCTe(V),, V(t) =4 c{sel — t}.
e forallt, e CIx(V)e, i € I,and k € I, mp(tup{i = t; | i € I}) =g ts.
eforall:elandt e CTE<V)€Z., LZ’(t) = def i{sel — t}.

Tx(V) is a X-subalgebra of CTx (V).
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If ¥ is destructive, then DT (V) is a Y-algebra:
Let I € 7 and {e;} CT(S,T).

eforalld: s »ee€ D, xeViand t), € DI5(V).,d :s— € € D,
APV (x{d =t | d : s — € € D}) =4 ta.

e For all ¢; € DTE(V)(%, re€l, and kel Wk,(tup{i — ; ‘ 1€ ]}) =def Tk

e foralli eI andt e DIx(V),,, ti(t) =g i{sel — t}.

coTx (V') is a X-subalgebra of DTy (V).

Let e € T(S,Z), I € T and {e;}ic; C T(S,Z).

{ci: A., = A. | i € I} is a set of constructors for e if [¢];cr: [ [, Ac, — A¢ s iso.

el
{di+ Ac = A., | i € I} is a set of destructors for e if (d;);c;: A. — [[,-; A, is iso.

e The injections of A for a sum type form a set of constructors for this type.
e The projections of A for a product type form a set of destructors for this type.

e If ¥ is constructive and A is initial in Algs, then for all s € S, {fA| f:e — s € F}
is a set of constructors for s.

o If ¥ is destructive and A is final in Algy, then foralls € S, {f*| f:s —e € F}is
a set of destructors for s.

22



Let X = (S,Z, F) be a constructive signature.
Y induces the functor Hs : Set® — Set”:
For all A, B € Set®, h € Set®(A,B) and s € S,

HE<A>S - Hf:e—>SEFA@7
H2<h>5 - Hf:e—weF he’

23



Let X = (S,Z, F) be a destructive signature.
Y induces the functor Hs : Set® — Set”:
For all A, B € Set®, h € Set®(A,B) and s € S,

HE<A>S - Hf:5—>eEFA@7
H2<h>s - Hf:s%eEFhe’

Forallse Sand f:s >e € F,

j— A .
AS g <f >f.s—>eEF% Hz(A)S

24



HNAut(X,Y)(A)state - (A:tate)X X Y7
HWAut(X,Y,CM)(A)state — ((Astate X CM)*)X X Ya
HSAut(X,Y)(A)state = ((Astate X [07 1])*)X XY.

Win(A, CM) = {f: A— CM | |supp(f)| < w},

Djin(A) = /A= 0 1] [ [supp(f)] <w, X2 f(supp(f)) = 1}.
BNAut(X,Y)(A)state - Pﬁn(Astate)X X Y7
BWAut(X,Y,CM)(A)state — Wﬁn(Astatea CM>X X Y,
Csaut(x v)(A) state = ({((ai,pi)i—y € (Astate X [0,1])* | Do, pi=1}* x Y,
BSAut(X,Y)(A)state - Dﬁn(Astate)X XY.

Do exist surjective natural transformations

71 Hyaw(xy) = Byauw(xy),
T Hyauw(xy,om)y — Bwaw(x.y,om),
73 Csauw(xy) — Bsaut(xy)

and an injective natural transformation 74 : Csau(xy) = Haaur(x,y) *



{ Term folding und state unfolding }

Let X = (S5,Z,C) be a constructive signature, A = (A,Op) be a X-algebra, V be an
S-sorted set of “variables” and ¢ : V' — A be an S-sorted valuation of V.

The extension of g,
g* : TEO/) — A,

is the T (S, Z)-sorted function that is inductively defined as follows:
Let I € 7 and {e;}ier € T(S,Z).

—_

® g7 =1idj.

o For all s € S and x € Vi, gi(x) = gs(x).

eforallc:e—sc FandtcTs(V), g(c{sel —t})=cA(g’(t)).

e forallt,; € Ix(V),, i€ I,and k € I, m(gl*—[ie]ei({tup —ti|iel})) =g ().
o Forall k€ I and t € Ty (V),,, g]*_[idei(k{sel — t}) = ulg: (1))

I TN TN N /N
W Do
— N Nt

Intuitively, ¢* evaluates each wellfounded >-term over V in A.
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Theorem FREE
g* is the only Y-homomorphism from 7% (V') to A that satisfies (2):

mey

V — Tz(v>

The restriction of g* to ground terms does not depend on ¢ and is denoted by

fold™: Ty, — A.

Since g* is the only Y-homomorphism from T%(V) to A that satisfies (2), fold” is the
only X-homomorphism from T, to A, i.e., 1% is initial in Algs,.

A is reachable (or generated) if fold” is epi.

A is equationally consistent if fold is mono.
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Let X = (5,Z, D) be a destructive signature, 4 = (A, Op) be a X-algebra, V' be an

S-sorted set of “colors” and g : A — V' be an S-sorted coloring of A.

The coextension of g,
A — DT(V),

is the T (5, Z)-sorted function that is inductively defined as follows:
Let I € 7 and {e;}ier C T (S, ).

og}-éé = idj.

oForallSESandaeAs,g5 a) = gs(a){d — g7 (d*(a)) | d: s — e € D}.

(
o For all a € A[y_, ¢, gH 6[67( a) = tup{z — g (mi(a)) | i € I}.
i

eforal ke landac A, 9., o (u(a)) = k{sel — g7 (a)}.

O

[ntuitively, g unfolds each “state” @ € A into the YX-coterm that represents the “behavior”

of a wrt. A.

In particular, the coextension id’ : A — DTx(A) “runs” (the destructors of) A on its

arguments.
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Theorem COFREE

g™ is the only Y-homomorphism from A to DT%(V) that satisfies (5):

V root =g4.f At.t(€)

DTx(V)

The restriction of ¢ to ground coterms does not depend on ¢ and is denoted by

unfold™: A — DT,

Since ¢* is the only Y-homomorphism from A to DT%(V) that satisfies (5), unfold™
the only >-homomorphism from A to DTy, i.e., D% is final in Algs.

A is observable (or cogenerated) if unfold is mono.

A is behaviorally complete if unfold is epi.

1S
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{ From constructors to destructors and backwards }

Lambek’s Lemma
(1) Suppose that Algr has an initial object o : F(A) = A. « is iso.
(2) Suppose that coAlgr has a final object 5 : A — F(A). [ is iso.

Lambek’s Lemma allows us to transform every constructive or destructive signature >
into a destructive resp. constructive signature co>. such that

DT, s = Cly resp. T.x = cols.

Here are the details:
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Let ¥ = (5,Z,C) be a constructive signature,

D = {s:s—=]]
co¥. = (S,Z,D).

ce—seC © ’ s € S}D
By Lambek’s Lemma (1), the initial Hy-algebra

CT .
o= {a,: Ho(Tx), © 23<C 1 | s € S)

is iso. Hence there is the Hx-coalgebra
{Ozs_l X TZ,S — HE(TE)S | S € S}
that corresponds to the coX-algebra A = (T%, Op) with s** = a;! for all s € S.

Since coX. is destructive, Theorem COFREE implies that D7, s is final in Alg..s.

C'Tx is also final in Alg..x:
C'Ty; is a coX-algebra: Let I € T and {e;} C T(S,Z).
eforallc:e—=seC,teCly,,

s“T2(c{sel — t}) =gop c{sel — t}.

31



@ g @ Hc:e—)sEC €

CTx:

sel

Y

sel

Oe Oe
etorallt, e Clx,., i€l and k € I, mp(tup{i = t; | 1 € I}) =g ts.
eftorallielandt e Cly,, 1(t) =4 i{sel = t}.

C'Ty, and DT,,5, are coX-isomorphic. Equivalently,
unfoldCTE Oy — DT, 5
is bijective.
@ s

Y

sel < g C@ Hc:e—)seC €
Q e sel

¥

(e




Let ¥ = (S,Z, D) be a destructive signature,

¢ - {S:Hd:s%eeDe_>S|S€S}7
coX = (S,Z,0).

By Lambek’s Lemma (2), the final Hy-coalgebra

(@)

a={a,: DTy, 557" Hy(DTy), | s € S}

is iso. Hence there is the Hx-algebra

{as_l : HE(DTE)S — DTE’S | S € S}

that corresponds to the coX-algebra A = (DT%, Op) with s* = a_! for all s € S.

Since coY. is constructive, Theorem FREE implies that 7, s, is initial in Alg..s.

coTy, is also initial in Alg..x:
coTs is a coX-algebra: Let I € Z and {e;} C T(S,Z).
eforallse S, c:e—+secCandt;ccioly, d:s—=ecD,
s“P(tup{d =ty | d:s—e€D}) =4 e{d—ty|d:s—e€ D}
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tup Hd:s—)eED € f&

d S d

Oe Oe
e forallt; € colx,,i €I, and k € I, mp(tup{t —t; | i € I}) =45 L.
e Foralli e I andt € colx,,, t;(t) =4 1{sel — t}.

Y

T.o5. and coTy, are coX-isomorphic. Equivalently,
fold®™™ : Tips: — coTs:
is bijective.

@S

sel 1 %
(600
‘ fold™>

-

ﬁﬂp Hd:s—)eeD € < i d
(fOldCOTE>_1

Y

d Qe
e

34



[ Iterative >-equations }

Let ¥ = (S,Z, F') be a constructive or destructive signature and V' be a finite S-sorted
set. An S-sorted function

E: 'V — TE(V)
with img(E) NV = () is called a system of iterative Y-equations.
F is usually written as {x = E(x) | z € V'}.

Let 3 be constructive, A = (A4, Op) be a Y-algebra and A" be the set of S-sorted
functions from V to A.

g€ AV solves F in Aif "o IV = g.

FE turns Ty (V) into a coX-algebra: Let s € S, I € T and {¢;} C T(S,Z).

o For all v € V,, s'5V)(2) =, s=V)(E(2)).

eforallcie —sec F teTs(V)., sV (c{sel — t}) =4 c{sel — t}.
etorallt, e Ix(V)e, i € I,and k € I, m(tup{i —t; | i € I}) =4 ts.
etorallielandt e Tx(V)., t;(t) =g i{sel — t}.



Theorem SOL
(unfold®Ts)~1

D TcoZ — CTE

mcey;

V =
solves I/ in C'Tx, uniquely.

'szold,TZ V)
%

Tx(V)

Proof. See Theorem SOL (coalgebraic version) in Fixpoints, Categories, and (Co)Algebraic
Modeling. l:l

Example

Let V' = {blink, blink'}. The following system of List(Z)-equations over V has a unique
solution in CTlyzy and thus defines two elements of C'T7;q(z):

blink = cons{sel — tup{l — 0,2 — blink'}},
blink! = cons{sel — tup{1l — 1,2 — blink}}.

(1)

Infinite terms that are representable as unique solutions of iterative equations are called
rational. A >-term is rational iff it has only finitely many subterms.

Let ¥ be destructive and h be the bijection between Tx(V') and T,,5(V) that is the
identity on V and agrees with (fold®’=)~" on Ty = coTx..
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Corollary h o E has a unique solution in DTx,.

Proof. DTy is a coX-algebra: For all s € S,
sPE(e{d =ty |dis—e€F}) =44 s{sel —tup{d —tq|d:s—e€F}}.

By Theorem SOL, h o E has a unique solution in C'T,,s.. Since C'T,,x is final in Alg.ocox,
C'Teox 1s cocoX-isomorphic to A =4 DT pox. A is a X-algebra: For all s € S and
d:s—eandt; € A.,d:s—>ee F,

dY(e{s — s{sel — tup{d =ty |d:s—e € F}}}) =4 ta
unfold”® : A — DT is bijective: The inverse maps e{d — t; | d: s — e € F} € DT, to
e{s — s{sel —» tup{d - t;|d:s—e€ F}}}.

Hence C'T,.,5; = A = DTy, and thus the solutions of ho E in C'T,,s. and DTy, respectively,
coincide up to isomorphism. l:I

Example

Let V' = {esum,osum}. Given the following system F of Acc(Z)-equations over V,
h o E has a unique solution in DT..z) and thus defines two elements of DT4..(z):

esum = {0 — tup({x — esum | x € even} U{x — osum | x € odd}), f — 1},

(2)

osum = e{d — tup{x — osum | x € even} U{x — esum | x € odd}), 8 — 0}.
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{ Typed theories

Let X = (S,Z, F) be a signature.
The set dery, of derived Y-operations is inductively defined as follows:
Let I € 7 and {e;} CT(S,T).

o /' C dery.

eforallec T(S,Z)andie€l,i:e— I € ders.
eforall f:e—¢, g:¢ —é €dery, gof:e— e €dery.

o |[..;ei — e, tiie;— [],.; e € dery (also written as id if I is a singleton).

eltorall fi:e—e eders,i€l,(fi): e— ]l e €ders.
eltorall fi:e; vecders, i€l [fi| ]l..;e; — e€ders.
e \-abstraction:
Forall¢;:e; —e, fi:e;,—ée Eders, 1 €1, Mc,.fitier e — € € ders.
e x-abstraction:
Foralld; e —e;, fi:e —e Eders,i €1, k{d;. [i}icr € — e € dery.

Th(¥) = (S,Z,F Udery) is called the (algebraic) ¥-theory.
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Let A = (A, Op) be a Y-algebra.

The Th(X)-algebra B = Th(A) with B|y = A and the following interpretation of dersy,
is called the theory of A.

Let I € 7 and {e;} CT(S,T).

e Forall e € T(S,Z), id® = id.
eforalleec T(S,Z),i€l anda € A, P = \p.i.

e Compositions, projections, injections, product and coproduct extensions are defined
as usually.

eforall ¢;:e; —e, fiie;—¢€ €derg, i € I, such that {cP | i € I} is a set of
constructors for e, for all k € I,

()‘{Ci-fi}iel)s o Cf = f,f.

eforall di:e—e;, fi:e¢ —e €ders, i €I, such that {d¥ | i € I} is a set of
destructors for e, for all k € I,

df o (lf{dz’-fz'}z’el)g = f]?‘
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The following lemma implies that A- and x-abstractions are well-defined:

(1) Let {f; : Ae, = A | i € I} be a set of constructors for e.
For all a € A, there are unique i € I and b € A, such that f(b) = a.

(2) Let {fi : Ac = A, | i € I} be a set of destructors for e.
For all a,b € A., a =0 if fi(a) = fi(b) for all i € I.

For ease of notation, Th(.A) may be regarded as the category with T(S,Z) as the set of
objects and the operations of Th(A) as morphisms:

Every Th(A)-morphism f : e — €' denotes the interpretation of some derived -
operation in A.

Example

Let p:e—2and f,g:e — e be Th(A)-morphisms. The conditional
if pthen felseg:e— ¢

can be derived as follows:

idp M (id.T). f,(id.0).
if pthen felse g = e<—’]>>e><2 u ﬂ O>g}e’.
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Recursive equations

factorial : N — N
factorial = MO0.1, (+1).() o {(id, factorial o (—1))}

factorial : N*> — N?
factorial = [id, factorialo(x <—x —1)o (y <= x*y)| o (x =0) or
factorial = if x =0 then id else factorial o (x <—x — 1) o (y < x * y)
where (x = 0)(m,n) = if m =0 then ty(m,n) else t5(m,n)
(x =0)(m,n) =if m=0then 1 else 0
(<~ 2 —1)(m,n)=(m—1,n)
(y <~ zxy)(m,n) = (m,m=n)

zip : XN x XN —» xN

zip = k{head.head o my, tail.tail o zip o (mwy, tail o mwy)}

Where do such equations have unique solutions?
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