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Abstract: 
In this lectures, we will introduce the basic concept  underpinning the 
coalgebraic methodology using classical automata theoretical models. We see 

an automaton as a computational model of a system involving a state space 

and a transition relation between those states. We will use coinductive 

definitions to define operations on languages, and the principle of 

coinduction to characterize language equivalence as the canonical behavioural 

equivalence between states of an automaton. In particular, we will illustrate 

the coalgebraic methodology by introducing (old and novel) algorithms on 

automata for efficiently calculating equivalence between states. We will 

extend our basic automaton model so to incorporate non-determinism, 

probabilistic and quantitative information as well. A specific instance of 

the latter class of automata characterizes a simple but very important data 

structure in computing: streams, that is, infinite sequences of data. We 

will present a coinductive calculus of streams, and study the simple stream 

transformation circuits, as used, for example, in audio, video, and signal 

processing applications. 

 

 

Outline of the program: 
5 lesson of 3 blocks each (1 block is of 45 minutes) 

5 working class of 3 blocks each. 

  

LESSON 1: DETERMINITIC AUTOMATA & COINDUCTION 
1) Definition and first example 

2) Language accepted by an automata 

3) Characterisation of language equivalence as greatest fix point 

4) Kleene fixed-point theorem 

5) Hopcroft partition-refinement algorithm 

6) Knaster-Tarski fixed point Theorem 

7) Naive algorithm for checking language equivalence 

8) Hopcroft and Karp algorithm 

9) Bisimulation up-to equivalence 

 

LESSON 2: OPERATIONS OF LANGUAGES 
1) Definition of several operations on languages 

2) Several proofs using different up-to techniques.  

 In particular: up-to-context 

3) Regular languages 

4) Context free Languages 

 

LESSON 3: NON-DETERMISTIC AUTOMATA 
1) Language equivalence vs. bisimulation 

2) Determinization 

3) Bisimulation up-to congruence 

4) HKC algorithm 

5) Brzozowski’s minimisation on non-deterministic automata 
 

LESSON 4: WEIGHTED AUTOMATA 
1) Semiring (examples) 

2) Definition of weighted automata 
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3) Language accepted (power series) 
4) Linearization 
5) Bisimulation  up-to congruence 
6) HKC algorithm for automata with weights on a field 
 
LESSON 5: STREAMS 
1) Streams 
2) Streams Differential Equations  
3) Stream Calculus 
4) Stream Circuits 
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Regular Expressions
e::= 0, 1, a, e+e, ee, e* 

Brzozowski derivatives defines a DA (RE,o,t)

1→0a0→0a a→1a b→1a
b≠a

e+f→e'+f'a
e→e'  f→f'  a a

ef→e'f+o(e)f'a
e→e'  f→f'  a a

e*→e'e*a
e→e'  a

e↓
e+f↓

f↓
e+f↓

e↓  f↓
ef↓1↓ e*↓
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Kleene Algebra
We can prove the soundness  

of Kleene Algebra Axiomatization  
by mean of coinduction

R={ (e+f,f+e) |  e,f ∈ RE } is a bisimulation:
1. e+f↓⟺e↓ or f↓⟺f+e↓
2. e+f   R   f+e

e'+f'
a

f'+e'
a

R

e↓
e+f↓

f↓
e+f↓

e+f→e'+f'a
e→e'  f→f'  a a

in a similar way, we can prove  
that (RE,+,0) is a monoid
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e'(f+g)+o(e)(f'+g') Ctx(R) (e'f+e'g)+(o(e)f'+o(e)g')〜～(e'f+o(e)f')+(e'g+o(e)g')
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e〜～ke+m
has solution e=k*m, i.e., k*m〜～kk*m + m

Moreover: 
1. k↓⇒k*m is the unique solution, i.e., f〜～kf+m⇒ f〜～k*m 
2. k*m is the smallest solution, i.e., f〜～kf+m⇒ k*m≲f 

language inclusion (≲) is νB' 
B':RelX-->RelX is defined as 

B'(R)={(x,y) | o(x) ≤ o(y) and for all a∈A t(x)(a) R t(y)(a)}

Can be proved by coinduction
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To show f〜～kf+m⇒ k*m≲f 

We prove that  
S = { (k*m,f) |  f〜～kf+m } 

is a simulation up-to 
1. k*m↓ ⇒ m↓ ⇒ kf+m↓ ⇒f↓ 
2. k*m                           

(k'k*)m+1m' 〜～ k'(k*m) +m' Ctx(S) k'f+m' ≲ (k'f +o(k)f')+m' 〜～ f'   
a a

f

S⊆B'(Slf(Ctx(S)))
Slf: RelRE-->RelRE 

Slf(S)= { (e,f) | e ≲ e' S f' ≲ f }
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We need to prove that these techniques are sound 

(they do NOT follow from Knaster-Tarski)

Proving soundness is rather complicated and error prone

In Milner's book there are two mistakes:

Weak Bisimulation up to weak bisimilarity

Weak Bisimulation up to equivalence



Desiderata
We would like to be able to prove soundness for 

• Different sort of up-to techniques (like Eqv, Bhv, Ctx, Slf) 

• Different sort of coinductive predicates (like 〜～ or ≲) 

• Different sort of systems (like DA or LTS) 

Moreover, we would like to prove the soundness of these 
techniques in a modular way: 

Ctx and Bhv are sound ⇒ Bhv∘Ctx is sound 
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The Double role of 
Coalgebra

G is sound if there exists a functor H:Coalg(FG)→Coalg(F)  
and a natural transformation κ:U⇒UH 

Coalg(FG) Coalg(F)

RelXRelX

H

Id
U U⇒

intuitively H  
transforms 

X⊆FGX  
into 

Y⊆FY

intuitively κ  
ensures  

that 
X⊆Y 

∃Z, Z ⊆ X ⊆ FGX   ⇒   ∃Z, Z ⊆ Y ⊆ FY  ⇒  Z ⊆ νF
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The Double role of 
Coalgebra

Coalgebras as
Systems

Coalgebras as 
Proofs

Functor F F: Set→Set
Type of the systems

F: RelX→RelX
Proof technique

F-coalgebra System X→FX Invariants X⊆FX

Final F-coalgebra Universe of 
Behaviours

Coinductive Predicate 
νF

FT-coalgebra F-sytem with 
branching T F-Invariants up-to T
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Compatible Functors
Actually, we need much less than a monad T...

G is said to be compatible with F iff there is λ:GF⇒FG 

Theorem: in a category C with countable coproducts, 
F-compatibility implies F-soundness

Compositionality Theorem  
If G1 and G2 are compatibile with F,  

then G1∘G2 is compatible with F 
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Set
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f*(S) 
= 

{ (x,y) | f(x) S f(y)}

RelX RelY

f*

∐f

⊥

∐f(R) 
= 

{ (f(x),f(y)) | x R y}

Category Rel 
objects: R⊆XxX 
arrows R⊆XxX→S⊆YxY: f:X→Y such that f(R)⊆f(S)  
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X FX
ɑ

p p

F

Ḟ { Ḟɑ

F=2xIdA

Ḟ(R)={ ((p,f), (q,g)) | p=q and for all a∈A f(a) R g(a)}
<o,t>:X→2xXA

Ḟ<o,t>(R)=B(R)

Actually, this can be defined for any bifibration

E

B

E

B

EX EFX EX
ɑ*Ḟ
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Pred

Set

p Bhv(P⊆X)={x | x〜～x'∈P}



Compatibility of Bhv
Theorem: Let (Ḟ,F) be a fibration map  

and ɑ:X→FX be an F-coalgebra 
then Beh is compatible with Ḟɑ



Compatibility of Bhv
Theorem: Let (Ḟ,F) be a fibration map  

and ɑ:X→FX be an F-coalgebra 
then Beh is compatible with Ḟɑ

Corollary:  
For the monotone predicate lifting (in Coalgebraic modal logic) 

up-to Beh is compatible



Compatibility of Bhv
Theorem: Let (Ḟ,F) be a fibration map  

and ɑ:X→FX be an F-coalgebra 
then Beh is compatible with Ḟɑ



Compatibility of Bhv
Theorem: Let (Ḟ,F) be a fibration map  

and ɑ:X→FX be an F-coalgebra 
then Beh is compatible with Ḟɑ

Whenever F preserves weak pullbacks  
the canonical relational lifting is a fibration map 



Compatibility of Bhv
Theorem: Let (Ḟ,F) be a fibration map  

and ɑ:X→FX be an F-coalgebra 
then Beh is compatible with Ḟɑ

Whenever F preserves weak pullbacks  
the canonical relational lifting is a fibration map 

Corollary:  
up-to language equivalence (at the beginning of this talk) 

and up-to bisimilarity (Milner) are compatible
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