
A General Account of
Coinduction Up-To

Filippo Bonchi
CNRS, Ens-Lyon

Joint work with Daniela Petrisan, Damien Pous and Jurriaan Rot

A Fruitful Approach

Concurrency
Theory

Automata
Theory

COALGEBRASCOALGEBRA

A Fruitful Approach

Concurrency
Theory

Automata
Theory

Coalgebraic Methods for Automata
Filippo Bonchi (ENS Lyon, France)

Marcello Bonsangue (Leiden University, the Netherlands)

Jurrian Rot (ENS Lyon, France)

Summer School

10 – 15 July 2016
East China Normal University, Shanghai, P.R. of China

Abstract:
In this lectures, we will introduce the basic concept underpinning the
coalgebraic methodology using classical automata theoretical models. We see

an automaton as a computational model of a system involving a state space

and a transition relation between those states. We will use coinductive

definitions to define operations on languages, and the principle of

coinduction to characterize language equivalence as the canonical behavioural

equivalence between states of an automaton. In particular, we will illustrate

the coalgebraic methodology by introducing (old and novel) algorithms on

automata for efficiently calculating equivalence between states. We will

extend our basic automaton model so to incorporate non-determinism,

probabilistic and quantitative information as well. A specific instance of

the latter class of automata characterizes a simple but very important data

structure in computing: streams, that is, infinite sequences of data. We

will present a coinductive calculus of streams, and study the simple stream

transformation circuits, as used, for example, in audio, video, and signal

processing applications.

Outline of the program:
5 lesson of 3 blocks each (1 block is of 45 minutes)

5 working class of 3 blocks each.

LESSON 1: DETERMINITIC AUTOMATA & COINDUCTION
1) Definition and first example

2) Language accepted by an automata

3) Characterisation of language equivalence as greatest fix point

4) Kleene fixed-point theorem

5) Hopcroft partition-refinement algorithm

6) Knaster-Tarski fixed point Theorem

7) Naive algorithm for checking language equivalence

8) Hopcroft and Karp algorithm

9) Bisimulation up-to equivalence

LESSON 2: OPERATIONS OF LANGUAGES
1) Definition of several operations on languages

2) Several proofs using different up-to techniques.

 In particular: up-to-context

3) Regular languages

4) Context free Languages

LESSON 3: NON-DETERMISTIC AUTOMATA
1) Language equivalence vs. bisimulation

2) Determinization

3) Bisimulation up-to congruence

4) HKC algorithm

5) Brzozowski’s minimisation on non-deterministic automata

LESSON 4: WEIGHTED AUTOMATA
1) Semiring (examples)

2) Definition of weighted automata

10-15/07/2016
Shangai

3) Language accepted (power series)
4) Linearization
5) Bisimulation up-to congruence
6) HKC algorithm for automata with weights on a field

LESSON 5: STREAMS
1) Streams
2) Streams Differential Equations
3) Stream Calculus
4) Stream Circuits

Biographical notes:

Filippo Bonchi is first class Chargé de Recherche CNRS at
École Normale Supérieure de Lyon, in France. He received his
PhD degree in Computer Science in 2008 from the University
Pisa, Italy. After that, he was hired as an ERCIM fellow at
the Centrum voor Wiskunde and Informatica in Amsterdam and
at the Ecole Polytechnique in Paris. Since 2013, he is
involved in the project PACE involving the BASICS lab in
Shanghai.

His research interests concerns logic and semantics of programming languages,
with particular interest in graphical, algebraic and coalgebraic
specifications. In February 2015, his algorithm (developed in collaboration
with Damien Pous) appeared as cover story of the Communication of the ACM.

Marcello Bonsangue is associate professor in Computer Science
at Leiden University, The Netherlands. He received his PhD
degree in Computer Science in 1996 from the Free University
in Amsterdam, The Netherlands. After that, he worked as
postdoc at the Centrum voor Wiskunde and Informatica in
Amsterdam, and has been a research fellow of the Royal
Netherlands Academy of Arts and Sciences (in Dutch: KNAW) at
Leiden University. He has been teaching at East China Normal
University (ECNU) in Shanghai, and at the University of

Electronic Science and Technology of China (UESTC) in Chengdu, P.R. of China.
Currently, he is the programme director of the Master in Computer Science
and the coordinator for international cooperations with the Leiden Institute
of Advanced Computer Science (LIACS) of Leiden University.

Jurriaan Rot is a postdoctoral research at the École Normale
Supérieure de Lyon, in France. He received his PhD degree cum
laude in October 2015 from Leiden University, The
Netherlands. He is interested in theoretical computer science
in general, and coalgebra, formal languages and verification
in particular.

3) Language accepted (power series)
4) Linearization
5) Bisimulation up-to congruence
6) HKC algorithm for automata with weights on a field

LESSON 5: STREAMS
1) Streams
2) Streams Differential Equations
3) Stream Calculus
4) Stream Circuits

Biographical notes:

Filippo Bonchi is first class Chargé de Recherche CNRS at
École Normale Supérieure de Lyon, in France. He received his
PhD degree in Computer Science in 2008 from the University
Pisa, Italy. After that, he was hired as an ERCIM fellow at
the Centrum voor Wiskunde and Informatica in Amsterdam and
at the Ecole Polytechnique in Paris. Since 2013, he is
involved in the project PACE involving the BASICS lab in
Shanghai.

His research interests concerns logic and semantics of programming languages,
with particular interest in graphical, algebraic and coalgebraic
specifications. In February 2015, his algorithm (developed in collaboration
with Damien Pous) appeared as cover story of the Communication of the ACM.

Marcello Bonsangue is associate professor in Computer Science
at Leiden University, The Netherlands. He received his PhD
degree in Computer Science in 1996 from the Free University
in Amsterdam, The Netherlands. After that, he worked as
postdoc at the Centrum voor Wiskunde and Informatica in
Amsterdam, and has been a research fellow of the Royal
Netherlands Academy of Arts and Sciences (in Dutch: KNAW) at
Leiden University. He has been teaching at East China Normal
University (ECNU) in Shanghai, and at the University of

Electronic Science and Technology of China (UESTC) in Chengdu, P.R. of China.
Currently, he is the programme director of the Master in Computer Science
and the coordinator for international cooperations with the Leiden Institute
of Advanced Computer Science (LIACS) of Leiden University.

Jurriaan Rot is a postdoctoral research at the École Normale
Supérieure de Lyon, in France. He received his PhD degree cum
laude in October 2015 from Leiden University, The
Netherlands. He is interested in theoretical computer science
in general, and coalgebra, formal languages and verification
in particular.

COALGEBRASCOALGEBRA

Coinduction
(lattice theoretic)

Knaster-Tarski fixed point:
L a complete lattice and B:L-->L a monotone map

νB =∪{x | x ⊆B(x)}

Coinduction
(lattice theoretic)

Knaster-Tarski fixed point:
L a complete lattice and B:L-->L a monotone map

νB =∪{x | x ⊆B(x)}

∃y, x ⊆ y ⊆ B(y)
x ⊆ νB

Coinduction
(lattice theoretic)

The post fixed points of B are called
invariants or bisimulations

Knaster-Tarski fixed point:
L a complete lattice and B:L-->L a monotone map

νB =∪{x | x ⊆B(x)}

∃y, x ⊆ y ⊆ B(y)
x ⊆ νB

Language Equivalence
A Deterministic Automaton (DA) is a triple (X,o,t)
• X is the set of states
• o:X-->2 is the output function
• t:X-->XA is the transition function

(a coalgebra for the functor 2xIdA)

Language Equivalence

B:RelX-->RelX
B(R)={(x,y) | o(x)=o(y) and for all a∈A t(x)(a) R t(y)(a)}

A Deterministic Automaton (DA) is a triple (X,o,t)
• X is the set of states
• o:X-->2 is the output function
• t:X-->XA is the transition function

(a coalgebra for the functor 2xIdA)

Language Equivalence

B:RelX-->RelX
B(R)={(x,y) | o(x)=o(y) and for all a∈A t(x)(a) R t(y)(a)}

Language equivalence (〜～) is νB

A Deterministic Automaton (DA) is a triple (X,o,t)
• X is the set of states
• o:X-->2 is the output function
• t:X-->XA is the transition function

(a coalgebra for the functor 2xIdA)

Language Equivalence

B:RelX-->RelX
B(R)={(x,y) | o(x)=o(y) and for all a∈A t(x)(a) R t(y)(a)}

Language equivalence (〜～) is νB

By coinduction, to show x〜～y
is enough to find R such that

{(x,y)} ⊆ R and
R ⊆B(R)

A Deterministic Automaton (DA) is a triple (X,o,t)
• X is the set of states
• o:X-->2 is the output function
• t:X-->XA is the transition function

(a coalgebra for the functor 2xIdA)

Language Equivalence

B:RelX-->RelX
B(R)={(x,y) | o(x)=o(y) and for all a∈A t(x)(a) R t(y)(a)}

Language equivalence (〜～) is νB

By coinduction, to show x〜～y
is enough to find R such that

{(x,y)} ⊆ R and
R ⊆B(R)

A Deterministic Automaton (DA) is a triple (X,o,t)
• X is the set of states
• o:X-->2 is the output function
• t:X-->XA is the transition function

(a coalgebra for the functor 2xIdA)

Naive Algorithm

Naive Algorithm

Naive Algorithm

Naive Algorithm

Naive Algorithm

Naive Algorithm

Naive Algorithm

Naive Algorithm

Naive Algorithm

Naive Algorithm

Naive Algorithm

Naive Algorithm

Naive Algorithm

Naive Algorithm

Naive Algorithm

Naive Algorithm

Naive Algorithm

Naive Algorithm

Naive Algorithm

Naive Algorithm

Naive Algorithm

Naive Algorithm

Naive Algorithm

Naive Algorithm

Naive Algorithm
R is not a bisimulation,

but a bisimulation up-to equivalence

Naive Algorithm
R is not a bisimulation,

but a bisimulation up-to equivalence

Eqv: RelX-->RelX
R ⊆B(Eqv(R))

Hopcroft and Karp algorithm

Hopcroft and Karp algorithm
• In the worst case, the naive algorithm explores n2 pairs

Hopcroft and Karp algorithm
• In the worst case, the naive algorithm explores n2 pairs

• The Hopcroft and Karp algorithm (1971) builds a
bisimulation up-to equivalence: it visits at most n pairs.
The complexity is thus (almost) linear.

Hopcroft and Karp algorithm
• In the worst case, the naive algorithm explores n2 pairs

• The Hopcroft and Karp algorithm (1971) builds a
bisimulation up-to equivalence: it visits at most n pairs.
The complexity is thus (almost) linear.

• For Non-Deterministic automata, there are smarter up-
to techniques which allow for an exponential speed up

Hopcroft and Karp algorithm
• In the worst case, the naive algorithm explores n2 pairs

• The Hopcroft and Karp algorithm (1971) builds a
bisimulation up-to equivalence: it visits at most n pairs.
The complexity is thus (almost) linear.

• For Non-Deterministic automata, there are smarter up-
to techniques which allow for an exponential speed up

Hopcroft and Karp algorithm
• In the worst case, the naive algorithm explores n2 pairs

• The Hopcroft and Karp algorithm (1971) builds a
bisimulation up-to equivalence: it visits at most n pairs.
The complexity is thus (almost) linear.

• For Non-Deterministic automata, there are smarter up-
to techniques which allow for an exponential speed up

Hopcroft and Karp algorithm
• In the worst case, the naive algorithm explores n2 pairs

• The Hopcroft and Karp algorithm (1971) builds a
bisimulation up-to equivalence: it visits at most n pairs.
The complexity is thus (almost) linear.

• For Non-Deterministic automata, there are smarter up-
to techniques which allow for an exponential speed up

Regular Expressions
e::= 0, 1, a, e+e, ee, e*

Brzozowski derivatives defines a DA (RE,o,t)

Regular Expressions
e::= 0, 1, a, e+e, ee, e*

Brzozowski derivatives defines a DA (RE,o,t)

e↓
e+f↓

f↓
e+f↓

e↓ f↓
ef↓1↓ e*↓

Regular Expressions
e::= 0, 1, a, e+e, ee, e*

Brzozowski derivatives defines a DA (RE,o,t)

1→0a0→0a a→1a b→1a
b≠a

e+f→e'+f'a
e→e' f→f' a a

ef→e'f+o(e)f'a
e→e' f→f' a a

e*→e'e*a
e→e' a

e↓
e+f↓

f↓
e+f↓

e↓ f↓
ef↓1↓ e*↓

Kleene Algebra
We can prove the soundness

of Kleene Algebra Axiomatization
by mean of coinduction

Commutativity: e+f〜～f+e

Kleene Algebra
We can prove the soundness

of Kleene Algebra Axiomatization
by mean of coinduction

Commutativity: e+f〜～f+e

R={ (e+f,f+e) | e,f ∈ RE } is a bisimulation:

Kleene Algebra
We can prove the soundness

of Kleene Algebra Axiomatization
by mean of coinduction

Commutativity: e+f〜～f+e

R={ (e+f,f+e) | e,f ∈ RE } is a bisimulation:
1. e+f↓⟺e↓ or f↓⟺f+e↓ e↓

e+f↓
f↓

e+f↓

Kleene Algebra
We can prove the soundness

of Kleene Algebra Axiomatization
by mean of coinduction

Commutativity: e+f〜～f+e

R={ (e+f,f+e) | e,f ∈ RE } is a bisimulation:
1. e+f↓⟺e↓ or f↓⟺f+e↓
2. e+f R f+e

e'+f'
a

f'+e'
a

R

e↓
e+f↓

f↓
e+f↓

e+f→e'+f'a
e→e' f→f' a a

Kleene Algebra
We can prove the soundness

of Kleene Algebra Axiomatization
by mean of coinduction

R={ (e+f,f+e) | e,f ∈ RE } is a bisimulation:
1. e+f↓⟺e↓ or f↓⟺f+e↓
2. e+f R f+e

e'+f'
a

f'+e'
a

R

e↓
e+f↓

f↓
e+f↓

e+f→e'+f'a
e→e' f→f' a a

in a similar way, we can prove
that (RE,+,0) is a monoid

Kleene Algebra
Distributivity: e(f+g)〜～ef+eg

Kleene Algebra
Distributivity: e(f+g)〜～ef+eg

R={ (e(f+g) ,ef+eg) | e,f,g ∈ RE } is a bisimulation:

Kleene Algebra
Distributivity: e(f+g)〜～ef+eg

R={ (e(f+g) ,ef+eg) | e,f,g ∈ RE } is a bisimulation:
1. e(f+g)↓⟺ef+eg↓

Kleene Algebra
Distributivity: e(f+g)〜～ef+eg

R={ (e(f+g) ,ef+eg) | e,f,g ∈ RE } is a bisimulation:
1. e(f+g)↓⟺ef+eg↓
2. e(f+g) R ef+eg

e'(f+g)+o(e)(f'+g') (e'f+o(e)f')+(e'g+o(e)g')

a a

ef→e'f+o(e)f'a
e→e' f→f' a a

e+f→e'+f'a
e→e' f→f' a a

Kleene Algebra
Distributivity: e(f+g)〜～ef+eg

R={ (e(f+g) ,ef+eg) | e,f,g ∈ RE } is a bisimulation:
1. e(f+g)↓⟺ef+eg↓
2. e(f+g) R ef+eg

Re'(f+g)+o(e)(f'+g') (e'f+o(e)f')+(e'g+o(e)g')

a a

ef→e'f+o(e)f'a
e→e' f→f' a a

e+f→e'+f'a
e→e' f→f' a a

Kleene Algebra
Distributivity: e(f+g)〜～ef+eg

R={ (e(f+g) ,ef+eg) | e,f,g ∈ RE } is a bisimulation:
1. e(f+g)↓⟺ef+eg↓
2. e(f+g) R ef+eg

R

R is NOT a bisimulation,
but a bisimulation up to Bhv∘Ctx

e'(f+g)+o(e)(f'+g') (e'f+o(e)f')+(e'g+o(e)g')

a a

ef→e'f+o(e)f'a
e→e' f→f' a a

e+f→e'+f'a
e→e' f→f' a a

Kleene Algebra
Bhv: RelRE-->RelRE

Bhv(R)= { (e,f) | e〜～e' R f'〜～f }

Kleene Algebra
Bhv: RelRE-->RelRE

Bhv(R)= { (e,f) | e〜～e' R f'〜～f }

Ctx: RelRE-->RelRE

e R f
e Ctx(R) f 0 Ctx(R) 0 1 Ctx(R) 1 a Ctx(R) a

e Ctx(R) e' f Ctx(R) f'
e+f Ctx(R) e'+f'

e Ctx(R) e' f Ctx(R) f'
ef Ctx(R) e'f'

e Ctx(R) f
e* Ctx(R) f*

Kleene Algebra

e'(f+g)+o(e)(f'+g') (e'f+o(e)f')+(e'g+o(e)g')

e(f+g) R ef+eg

a a

Bhv(Ctx(R))

R is NOT a bisimulation,
but a bisimulation up to Bhv∘Ctx

R={ (e(f+g) ,ef+eg) | e,f,g ∈ RE }

Kleene Algebra

e'(f+g)+o(e)(f'+g') (e'f+o(e)f')+(e'g+o(e)g')

e(f+g) R ef+eg

a a

Bhv(Ctx(R))

R is NOT a bisimulation,
but a bisimulation up to Bhv∘Ctx

e'(f+g)+o(e)(f'+g') Ctx(R) (e'f+e'g)+(o(e)f'+o(e)g')〜～(e'f+o(e)f')+(e'g+o(e)g')

R={ (e(f+g) ,ef+eg) | e,f,g ∈ RE }

Kleene Algebra

e'(f+g)+o(e)(f'+g') (e'f+o(e)f')+(e'g+o(e)g')

e(f+g) R ef+eg

a a

Bhv(Ctx(R))

R is NOT a bisimulation,
but a bisimulation up to Bhv∘Ctx

e'(f+g)+o(e)(f'+g') Ctx(R) (e'f+e'g)+(o(e)f'+o(e)g')〜～(e'f+o(e)f')+(e'g+o(e)g')

R={ (e(f+g) ,ef+eg) | e,f,g ∈ RE }

R⊆B(Bhv(Ctx(R)))

Arden's rule
Given two regular expressions k and m, the equation

e〜～ke+m
has solution e=k*m, i.e., k*m〜～kk*m + m

Moreover:
1. k↓⇒k*m is the unique solution, i.e., f〜～kf+m⇒ f〜～k*m
2. k*m is the smallest solution, i.e., f〜～kf+m⇒ k*m≲f

Arden's rule
Given two regular expressions k and m, the equation

e〜～ke+m
has solution e=k*m, i.e., k*m〜～kk*m + m

Moreover:
1. k↓⇒k*m is the unique solution, i.e., f〜～kf+m⇒ f〜～k*m
2. k*m is the smallest solution, i.e., f〜～kf+m⇒ k*m≲f

Can be proved by coinduction

Arden's rule
Given two regular expressions k and m, the equation

e〜～ke+m
has solution e=k*m, i.e., k*m〜～kk*m + m

Moreover:
1. k↓⇒k*m is the unique solution, i.e., f〜～kf+m⇒ f〜～k*m
2. k*m is the smallest solution, i.e., f〜～kf+m⇒ k*m≲f

language inclusion (≲) is νB'
B':RelX-->RelX is defined as

B'(R)={(x,y) | o(x) ≤ o(y) and for all a∈A t(x)(a) R t(y)(a)}

Can be proved by coinduction

Arden's rule
To show f〜～kf+m⇒ k*m≲f

We prove that
S = { (k*m,f) | f〜～kf+m }

is a simulation up-to

Arden's rule
To show f〜～kf+m⇒ k*m≲f

We prove that
S = { (k*m,f) | f〜～kf+m }

is a simulation up-to
1. k*m↓ ⇒ m↓ ⇒ kf+m↓ ⇒f↓
2. k*m

(k'k*)m+1m' 〜～ k'(k*m) +m' Ctx(S) k'f+m' ≲ (k'f +o(k)f')+m' 〜～ f'
a a

f

Arden's rule
To show f〜～kf+m⇒ k*m≲f

We prove that
S = { (k*m,f) | f〜～kf+m }

is a simulation up-to
1. k*m↓ ⇒ m↓ ⇒ kf+m↓ ⇒f↓
2. k*m

(k'k*)m+1m' 〜～ k'(k*m) +m' Ctx(S) k'f+m' ≲ (k'f +o(k)f')+m' 〜～ f'
a a

f

S⊆B'(Slf(Ctx(S)))
Slf: RelRE-->RelRE

Slf(S)= { (e,f) | e ≲ e' S f' ≲ f }

Proving Soundness
We need to prove that these techniques are sound

(they do NOT follow from Knaster-Tarski)

Proving Soundness
We need to prove that these techniques are sound

(they do NOT follow from Knaster-Tarski)

Proving soundness is rather complicated and error prone

Proving Soundness
We need to prove that these techniques are sound

(they do NOT follow from Knaster-Tarski)

Proving soundness is rather complicated and error prone

In Milner's book there are two mistakes:

Weak Bisimulation up to weak bisimilarity

Weak Bisimulation up to equivalence

Desiderata
We would like to be able to prove soundness for

• Different sort of up-to techniques (like Eqv, Bhv, Ctx, Slf)

• Different sort of coinductive predicates (like 〜～ or ≲)

• Different sort of systems (like DA or LTS)

Moreover, we would like to prove the soundness of these
techniques in a modular way:

Ctx and Bhv are sound ⇒ Bhv∘Ctx is sound

The Double role of
Coalgebra

Coalgebras as
Systems

Coalgebras as
Proofs

Functor F F: Set→Set
Type of the systems

F: RelX→RelX
Type of the Proof

F-coalgebra System X→FX Invariants X⊆FX

Final F-coalgebra Universe of
Behaviours

Coinductive Predicate
νF

The Double role of
Coalgebra

Coalgebras as
Systems

Coalgebras as
Proofs

Functor F F: Set→Set
Type of the systems

F: RelX→RelX
Type of the Proof

F-coalgebra System X→FX Invariants X⊆FX

Final F-coalgebra Universe of
Behaviours

Coinductive Predicate
νF

An up-to technique is a functor G: RelX→RelX

An F-invariant up-to G is a coalgebra X⊆FGX

The Double role of
Coalgebra

An up-to technique is a functor G: RelX→RelX

An F-invariant up-to G is a coalgebra X⊆FGX

The Double role of
Coalgebra

An up-to technique is a functor G: RelX→RelX

An F-invariant up-to G is a coalgebra X⊆FGX

G is sound if there exists a functor H:Coalg(FG)→Coalg(F)
and a natural transformation κ:U⇒UH

Coalg(FG) Coalg(F)

RelXRelX

H

Id
U U⇒

The Double role of
Coalgebra

An up-to technique is a functor G: RelX→RelX

An F-invariant up-to G is a coalgebra X⊆FGX

G is sound if there exists a functor H:Coalg(FG)→Coalg(F)
and a natural transformation κ:U⇒UH

Coalg(FG) Coalg(F)

RelXRelX

H

Id
U U⇒

intuitively H
transforms

X⊆FGX
into

Y⊆FY

intuitively κ
ensures

that
X⊆Y

The Double role of
Coalgebra

G is sound if there exists a functor H:Coalg(FG)→Coalg(F)
and a natural transformation κ:U⇒UH

Coalg(FG) Coalg(F)

RelXRelX

H

Id
U U⇒

intuitively H
transforms

X⊆FGX
into

Y⊆FY

intuitively κ
ensures

that
X⊆Y

∃Z, Z ⊆ X ⊆ FGX ⇒ ∃Z, Z ⊆ Y ⊆ FY ⇒ Z ⊆ νF

Generalised Powerset
Construction

Silva, Bonchi, Bonsangue, Rutten - FSTTCS 2010

X

FTX

ɑ

a functor F, a monad (T,η,μ) and a distributive law λ:TF ⇒FT

Generalised Powerset
Construction

Silva, Bonchi, Bonsangue, Rutten - FSTTCS 2010

X

FTX

ɑ

TX

TFTX

Tɑ

a functor F, a monad (T,η,μ) and a distributive law λ:TF ⇒FT

Generalised Powerset
Construction

Silva, Bonchi, Bonsangue, Rutten - FSTTCS 2010

X

FTX

ɑ

TX

TFTX

Tɑ

FTTX

λTX

a functor F, a monad (T,η,μ) and a distributive law λ:TF ⇒FT

Generalised Powerset
Construction

Silva, Bonchi, Bonsangue, Rutten - FSTTCS 2010

X

FTX

ɑ

TX

TFTX

Tɑ

FTTX

λTX

Fμ

a functor F, a monad (T,η,μ) and a distributive law λ:TF ⇒FT

Generalised Powerset
Construction

Silva, Bonchi, Bonsangue, Rutten - FSTTCS 2010

X

FTX

ɑ

TX

TFTX

Tɑ

FTTX

λTX

Fμ

η

a functor F, a monad (T,η,μ) and a distributive law λ:TF ⇒FT

Generalised Powerset
Construction

Silva, Bonchi, Bonsangue, Rutten - FSTTCS 2010

X

FTX

ɑ

TX

TFTX

Tɑ

FTTX

λTX

Fμ

η

a functor F, a monad (T,η,μ) and a distributive law λ:TF ⇒FT

X

2x(𝓟X)A

𝓟X

ɑ

{-}

ɑ#

Generalised Powerset
Construction

Silva, Bonchi, Bonsangue, Rutten - FSTTCS 2010

X

FTX

ɑ

TX

TFTX

Tɑ

FTTX

λTX

Fμ

η

a functor F, a monad (T,η,μ) and a distributive law λ:TF ⇒FT

X

2x(𝓟X)A

𝓟X

ɑ

{-}

ɑ#
NDA DA

Generalised Powerset
Construction

Silva, Bonchi, Bonsangue, Rutten - FSTTCS 2010

X

FTX

ɑ

TX

TFTX

Tɑ

FTTX

λTX

Fμ

η

a functor F, a monad (T,η,μ) and a distributive law λ:TF ⇒FT

Generalised Powerset
Construction

Silva, Bonchi, Bonsangue, Rutten - FSTTCS 2010

X

FTX

ɑ

TX

TFTX

Tɑ

FTTX

λTX

Fμ

η

a functor F, a monad (T,η,μ) and a distributive law λ:TF ⇒FT

Coalg(FT) Coalg(F)H

SetSet Id

U U⇒η

Theorem

The Double role of
Coalgebra

Coalgebras as
Systems

Coalgebras as
Proofs

Functor F F: Set→Set
Type of the systems

F: RelX→RelX
Proof technique

F-coalgebra System X→FX Invariants X⊆FX

Final F-coalgebra Universe of
Behaviours

Coinductive Predicate
νF

FT-coalgebra F-sytem with
branching T F-Invariants up-to T

Compatible Functors
Actually, we need much less than a monad T...

Compatible Functors
Actually, we need much less than a monad T...

Theorem: a category C with countable coproducts
F,G:C→C and λ:GF ⇒FG. Then

Coalg(FG) Coalg(F)H

CC Id

U U⇒κ

Compatible Functors
Actually, we need much less than a monad T...

Theorem: a category C with countable coproducts
F,G:C→C and λ:GF ⇒FG. Then

Coalg(FG) Coalg(F)H

CC Id

U U⇒κ

G is said to be compatible with F iff there is λ:GF⇒FG

Compatible Functors
Actually, we need much less than a monad T...

G is said to be compatible with F iff there is λ:GF⇒FG

Compatible Functors
Actually, we need much less than a monad T...

G is said to be compatible with F iff there is λ:GF⇒FG

Theorem: in a category C with countable coproducts,
F-compatibility implies F-soundness

Compatible Functors
Actually, we need much less than a monad T...

G is said to be compatible with F iff there is λ:GF⇒FG

Theorem: in a category C with countable coproducts,
F-compatibility implies F-soundness

Compositionality Theorem
If G1 and G2 are compatibile with F,

then G1∘G2 is compatible with F

Coinductive Predicates
Hermida and Jacobs - Information and Computation 1998

Category Rel
objects: R⊆XxX
arrows R⊆XxX→S⊆YxY: f:X→Y such that f(R)⊆f(S)

Coinductive Predicates
Hermida and Jacobs - Information and Computation 1998

Rel

Set

p

Category Rel
objects: R⊆XxX
arrows R⊆XxX→S⊆YxY: f:X→Y such that f(R)⊆f(S)

Coinductive Predicates
Hermida and Jacobs - Information and Computation 1998

X

Rel

Set

p

Category Rel
objects: R⊆XxX
arrows R⊆XxX→S⊆YxY: f:X→Y such that f(R)⊆f(S)

Coinductive Predicates
Hermida and Jacobs - Information and Computation 1998

X

Rel

Set

p

RelX

Category Rel
objects: R⊆XxX
arrows R⊆XxX→S⊆YxY: f:X→Y such that f(R)⊆f(S)

Coinductive Predicates
Hermida and Jacobs - Information and Computation 1998

X Y
f

Rel

Set

p

RelX

Category Rel
objects: R⊆XxX
arrows R⊆XxX→S⊆YxY: f:X→Y such that f(R)⊆f(S)

Coinductive Predicates
Hermida and Jacobs - Information and Computation 1998

X Y
f

Rel

Set

p

f*(S)
=

{ (x,y) | f(x) S f(y)}

RelX RelY

f*

Category Rel
objects: R⊆XxX
arrows R⊆XxX→S⊆YxY: f:X→Y such that f(R)⊆f(S)

Coinductive Predicates
Hermida and Jacobs - Information and Computation 1998

X Y
f

Rel

Set

p

f*(S)
=

{ (x,y) | f(x) S f(y)}

RelX RelY

f*

∐f

⊥

∐f(R)
=

{ (f(x),f(y)) | x R y}

Category Rel
objects: R⊆XxX
arrows R⊆XxX→S⊆YxY: f:X→Y such that f(R)⊆f(S)

Coinductive Predicates
Hermida and Jacobs - Information and Computation 1998

X FX
ɑ

p p

F

ḞRel

Set

Rel

Set

RelX RelFX RelXɑ*Ḟ

Coinductive Predicates
Hermida and Jacobs - Information and Computation 1998

X FX
ɑ

p p

F

ḞRel

Set

Rel

Set

RelX RelFX RelXɑ*Ḟ { Ḟɑ

Coinductive Predicates
Hermida and Jacobs - Information and Computation 1998

X FX
ɑ

p p

F

ḞRel

Set

Rel

Set

RelX RelFX RelXɑ*Ḟ { Ḟɑ

Coinductive Predicates
Hermida and Jacobs - Information and Computation 1998

X FX
ɑ

p p

F

ḞRel

Set

Rel

Set

RelX RelFX RelXɑ*Ḟ { Ḟɑ

F=2xIdA

Coinductive Predicates
Hermida and Jacobs - Information and Computation 1998

X FX
ɑ

p p

F

ḞRel

Set

Rel

Set

RelX RelFX RelXɑ*Ḟ { Ḟɑ

F=2xIdA

Ḟ(R)={ ((p,f), (q,g)) | p=q and for all a∈A f(a) R g(a)}

Coinductive Predicates
Hermida and Jacobs - Information and Computation 1998

X FX
ɑ

p p

F

ḞRel

Set

Rel

Set

RelX RelFX RelXɑ*Ḟ { Ḟɑ

F=2xIdA

Ḟ(R)={ ((p,f), (q,g)) | p=q and for all a∈A f(a) R g(a)}
<o,t>:X→2xXA

Coinductive Predicates
Hermida and Jacobs - Information and Computation 1998

X FX
ɑ

p p

F

ḞRel

Set

Rel

Set

RelX RelFX RelXɑ*Ḟ { Ḟɑ

F=2xIdA

Ḟ(R)={ ((p,f), (q,g)) | p=q and for all a∈A f(a) R g(a)}
<o,t>:X→2xXA

Ḟ<o,t>(R)=B(R)

Coinductive Predicates
Hermida and Jacobs - Information and Computation 1998

X FX
ɑ

p p

F

ḞRel

Set

Rel

Set

RelX RelFX RelXɑ*Ḟ { Ḟɑ

F=2xIdA

Ḟ(R)={ ((p,f), (q,g)) | p=q and for all a∈A f(a) R g(a)}
<o,t>:X→2xXA

Ḟ<o,t>(R)=B(R)

Actually, this can be defined for any bifibration

Coinductive Predicates
Hermida and Jacobs - Information and Computation 1998

X FX
ɑ

p p

F

Ḟ { Ḟɑ

F=2xIdA

Ḟ(R)={ ((p,f), (q,g)) | p=q and for all a∈A f(a) R g(a)}
<o,t>:X→2xXA

Ḟ<o,t>(R)=B(R)

Actually, this can be defined for any bifibration

E

B

E

B

EX EFX EX
ɑ*Ḟ

Compatibility of Bhv
Bhv: RelX-->RelX

Bhv(R)= { (x,y) | x〜～x' R y'〜～y }

Compatibility of Bhv
Bhv: RelX-->RelX

Bhv(R)= { (x,y) | x〜～x' R y'〜～y }

X

FX

Ω

FΩ

[-]

F[-]

Compatibility of Bhv
Bhv: RelX-->RelX

Bhv(R)= { (x,y) | x〜～x' R y'〜～y }

X

FX

Ω

FΩ

[-]

F[-]

x〜～y⟺[x]=[y]
def

Compatibility of Bhv
Bhv: RelX-->RelX

Bhv(R)= { (x,y) | x〜～x' R y'〜～y }

X

FX

Ω

FΩ

[-]

F[-]

x〜～y⟺[x]=[y]
def

RelX RelΩ RelX[-]*∐[-]

Compatibility of Bhv
Bhv: RelX-->RelX

Bhv(R)= { (x,y) | x〜～x' R y'〜～y }

X

FX

Ω

FΩ

[-]

F[-]

x〜～y⟺[x]=[y]
def

RelX RelΩ RelX[-]*∐[-]

∐[-](R)={ ([x'],[y']) | x' R y' }

Compatibility of Bhv
Bhv: RelX-->RelX

Bhv(R)= { (x,y) | x〜～x' R y'〜～y }

X

FX

Ω

FΩ

[-]

F[-]

x〜～y⟺[x]=[y]
def

RelX RelΩ RelX[-]*∐[-]

∐[-](R)={ ([x'],[y']) | x' R y' }

[-]*∐[-](R)={ (x,y) | [x]=[x'] R [y']=[y] }

Compatibility of Bhv
Bhv: RelX-->RelX

Bhv(R)= { (x,y) | x〜～x' R y'〜～y }

X

FX

Ω

FΩ

[-]

F[-]

x〜～y⟺[x]=[y]
def

RelX RelΩ RelX[-]*∐[-]

Bhv{
∐[-](R)={ ([x'],[y']) | x' R y' }

[-]*∐[-](R)={ (x,y) | [x]=[x'] R [y']=[y] }

Compatibility of Bhv
Bhv: RelX-->RelX

Bhv(R)= { (x,y) | x〜～x' R y'〜～y }

X

FX

Ω

FΩ

[-]

F[-]

x〜～y⟺[x]=[y]
def

Bhv{
∐[-](R)={ ([x'],[y']) | x' R y' }

[-]*∐[-](R)={ (x,y) | [x]=[x'] R [y']=[y] }

EX EΩ EX
[-]*∐[-]

Compatibility of Bhv
Bhv: RelX-->RelX

Bhv(R)= { (x,y) | x〜～x' R y'〜～y }

X

FX

Ω

FΩ

[-]

F[-]

x〜～y⟺[x]=[y]
def

Bhv{EX EΩ EX
[-]*∐[-]

Compatibility of Bhv
Bhv: RelX-->RelX

Bhv(R)= { (x,y) | x〜～x' R y'〜～y }

X

FX

Ω

FΩ

[-]

F[-]

x〜～y⟺[x]=[y]
def

Bhv{EX EΩ EX
[-]*∐[-]

Pred

Set

p Bhv(P⊆X)={x | x〜～x'∈P}

Compatibility of Bhv
Theorem: Let (Ḟ,F) be a fibration map

and ɑ:X→FX be an F-coalgebra
then Beh is compatible with Ḟɑ

Compatibility of Bhv
Theorem: Let (Ḟ,F) be a fibration map

and ɑ:X→FX be an F-coalgebra
then Beh is compatible with Ḟɑ

Corollary:
For the monotone predicate lifting (in Coalgebraic modal logic)

up-to Beh is compatible

Compatibility of Bhv
Theorem: Let (Ḟ,F) be a fibration map

and ɑ:X→FX be an F-coalgebra
then Beh is compatible with Ḟɑ

Compatibility of Bhv
Theorem: Let (Ḟ,F) be a fibration map

and ɑ:X→FX be an F-coalgebra
then Beh is compatible with Ḟɑ

Whenever F preserves weak pullbacks
the canonical relational lifting is a fibration map

Compatibility of Bhv
Theorem: Let (Ḟ,F) be a fibration map

and ɑ:X→FX be an F-coalgebra
then Beh is compatible with Ḟɑ

Whenever F preserves weak pullbacks
the canonical relational lifting is a fibration map

Corollary:
up-to language equivalence (at the beginning of this talk)

and up-to bisimilarity (Milner) are compatible

References
• Bonchi, Petrisan, Pous, Rot: Coinduction up-to in a

fibrational setting. LICS 2014

• Bonchi, Petrisan, Pous, Rot: Lax bialgebra and up-to
technique for weak bisimulation. CONCUR 2015

• Bonchi, Petrisan, Pous, Rot: A general account of
bisimulation up-to. Submitted to ACTA

• Rot: Enhanced coinduction. Ph.D. Thesis, Leiden Univ.

