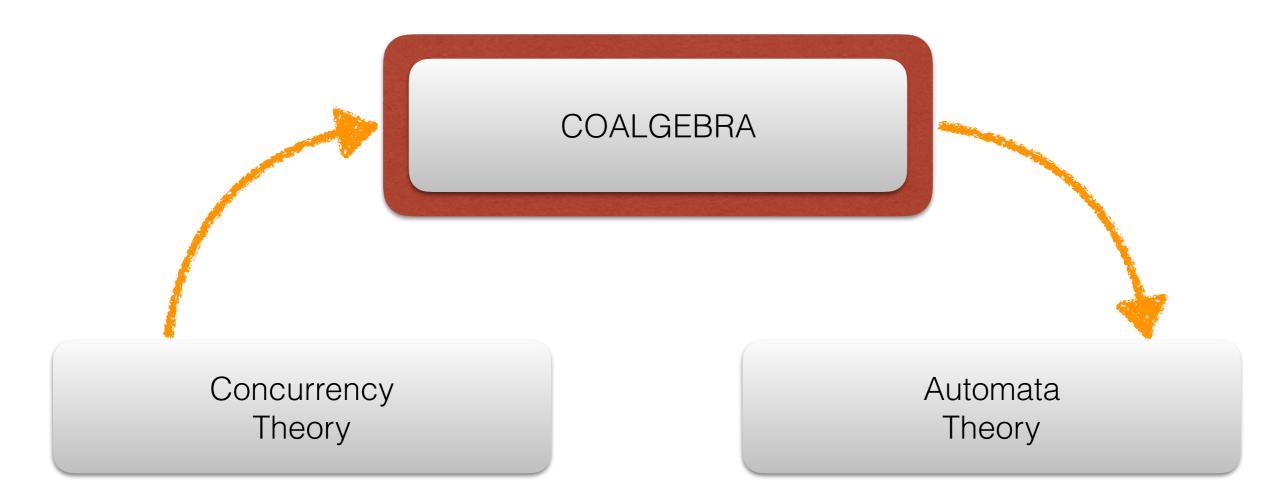
A General Account of Coinduction Up-To

Filippo Bonchi CNRS, Ens-Lyon

Joint work with Daniela Petrisan, Damien Pous and Jurriaan Rot

A Fruitful Approach



A Fruitful Approach

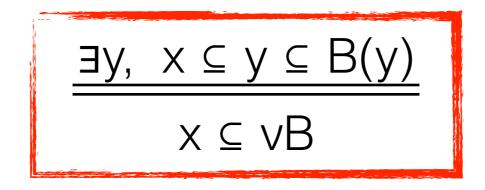


Coinduction (lattice theoretic)

 $\label{eq:Lagrangian} \begin{array}{l} \underline{Knaster-Tarski \ fixed \ point:} \\ \textbf{L} \ a \ complete \ lattice \ and \ B: \textbf{L}--> \textbf{L} \ a \ monotone \ map \\ vB = U\{x \mid x \subseteq B(x)\} \end{array}$

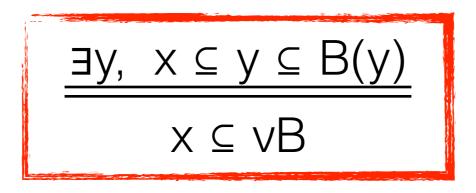
Coinduction (lattice theoretic)

 $\label{eq:Lagrangian} \begin{array}{l} \underline{Knaster-Tarski \ fixed \ point:}\\ \textbf{L} \ a \ complete \ lattice \ and \ B: \textbf{L}--> \textbf{L} \ a \ monotone \ map \\ vB = U\{x \mid x \subseteq B(x)\} \end{array}$



Coinduction (lattice theoretic)

 $\label{eq:Lagrangian} \begin{array}{l} \underline{Knaster-Tarski \ fixed \ point:} \\ \textbf{L} \ a \ complete \ lattice \ and \ B: \textbf{L}--> \textbf{L} \ a \ monotone \ map \\ vB = U\{x \mid x \subseteq B(x)\} \end{array}$



The post fixed points of B are called *invariants* or *bisimulations*

A Deterministic Automaton (DA) is a triple (X,o,t)

- X is the set of states
- o:X-->2 is the output function
- t:X-->X^A is the transition function (a coalgebra for the functor 2xId^A)

A Deterministic Automaton (DA) is a triple (X,o,t)

- X is the set of states
- o:X-->2 is the output function
- t:X-->X^A is the transition function

 (a coalgebra for the functor 2xId^A)

B:Relx-->Relx

 $B(R)=\{(x,y) \mid o(x)=o(y) \text{ and for all } a \in A t(x)(a) R t(y)(a)\}$

A Deterministic Automaton (DA) is a triple (X,o,t)

- X is the set of states
- o:X-->2 is the output function
- t:X-->X^A is the transition function

 (a coalgebra for the functor 2xId^A)

B:Relx-->Relx

 $B(R)=\{(x,y) \mid o(x)=o(y) \text{ and for all } a \in A t(x)(a) R t(y)(a)\}$

Language equivalence (\sim) is vB

A Deterministic Automaton (DA) is a triple (X,o,t)

- X is the set of states
- o:X-->2 is the output function
- t:X-->X^A is the transition function (a coalgebra for the functor 2xId^A)

B:Relx-->Relx

 $B(R)=\{(x,y) \mid o(x)=o(y) \text{ and for all } a \in A t(x)(a) R t(y)(a)\}$

Language equivalence (\sim) is vB

By coinduction, to show $x \sim y$ is enough to find R such that $\{(x,y)\} \subseteq R$ and $R \subseteq B(R)$

A Deterministic Automaton (DA) is a triple (X,o,t)

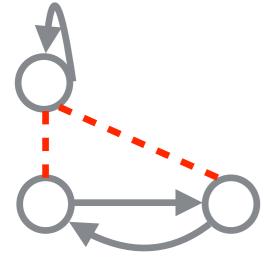
- X is the set of states
- o:X-->2 is the output function
- t:X-->X^A is the transition function (a coalgebra for the functor 2xId^A)

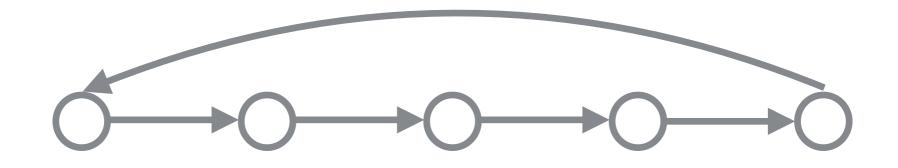
B:Relx-->Relx

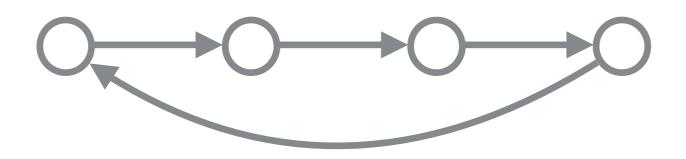
 $B(R)=\{(x,y) \mid o(x)=o(y) \text{ and for all } a \in A t(x)(a) R t(y)(a)\}$

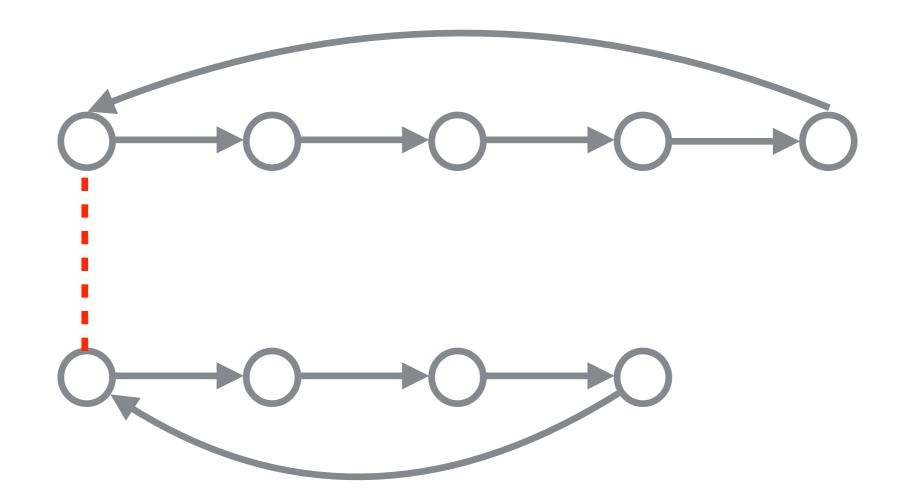
Language equivalence (\sim) is vB

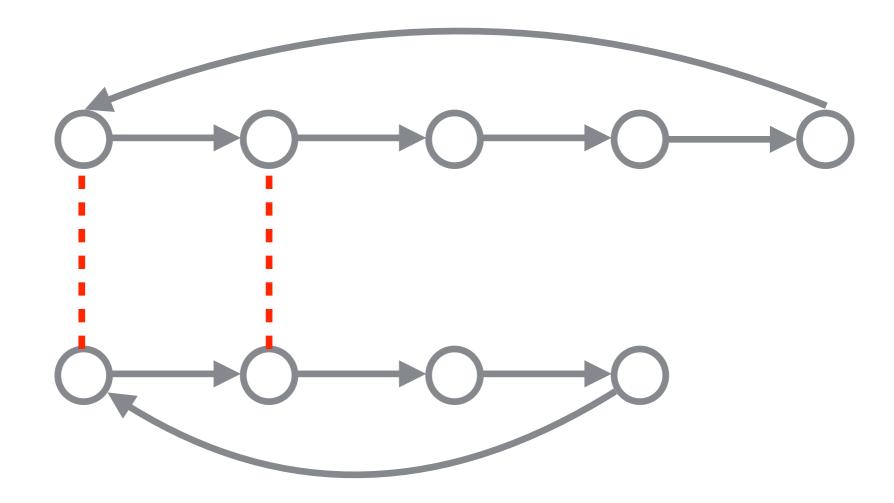
By coinduction, to show $x \sim y$ is enough to find R such that $\{(x,y)\} \subseteq R$ and $R \subseteq B(R)$

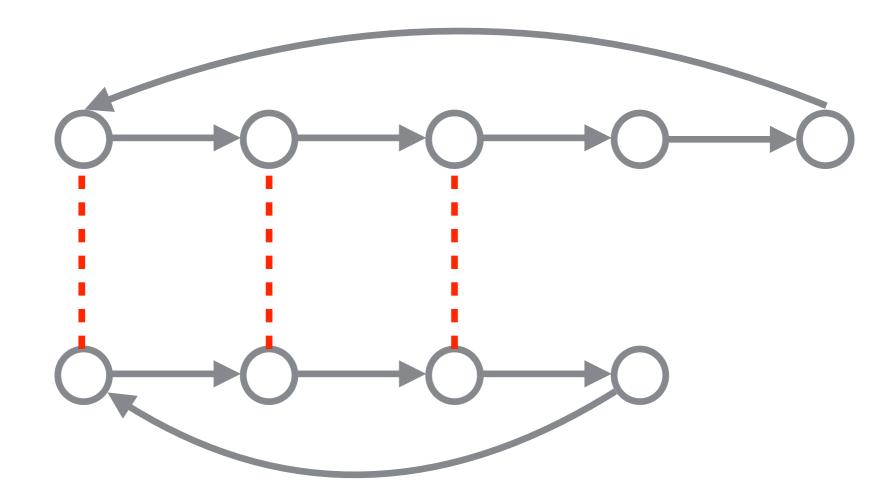


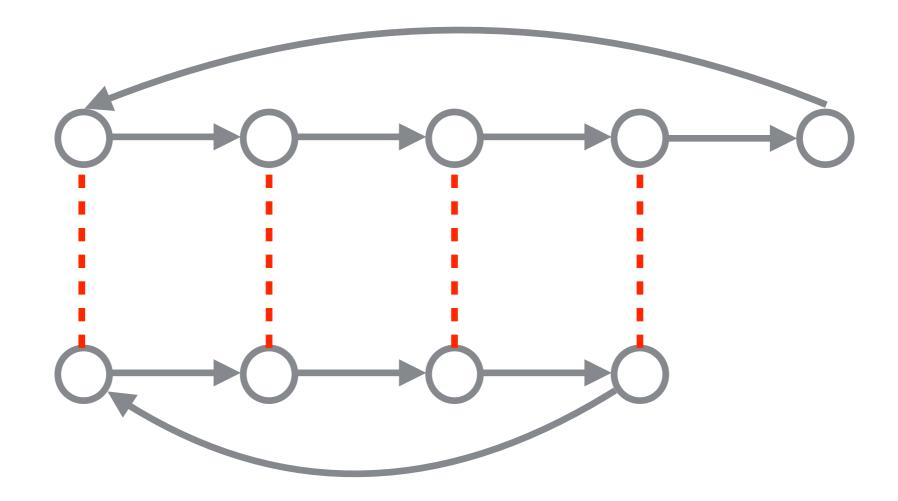


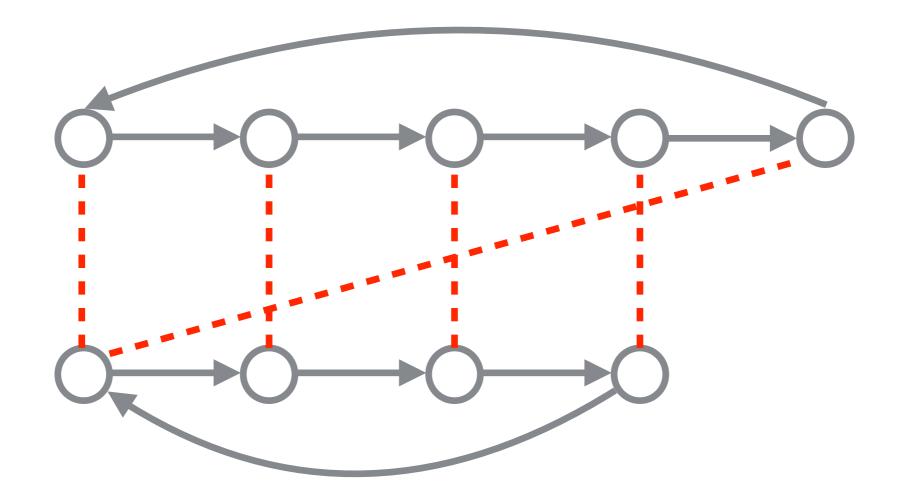


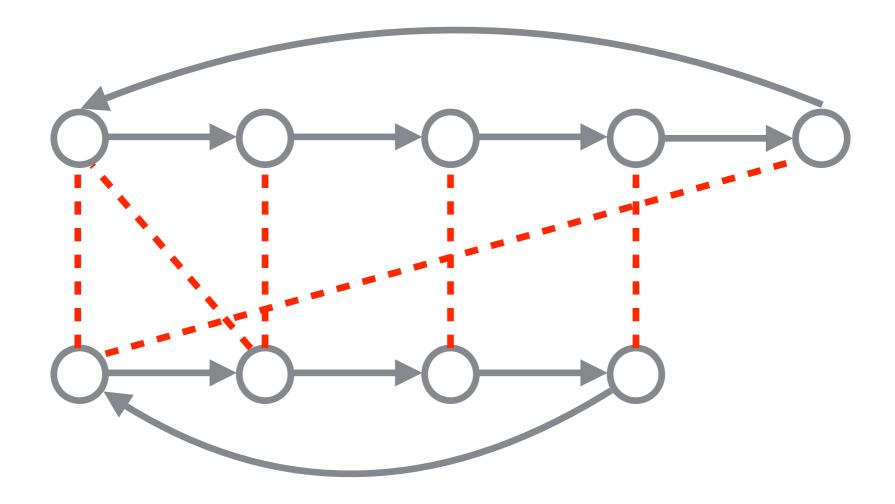


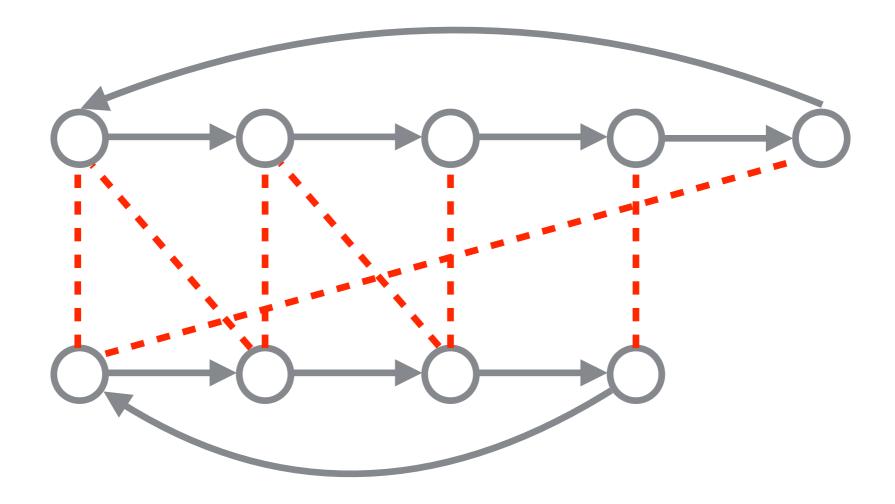


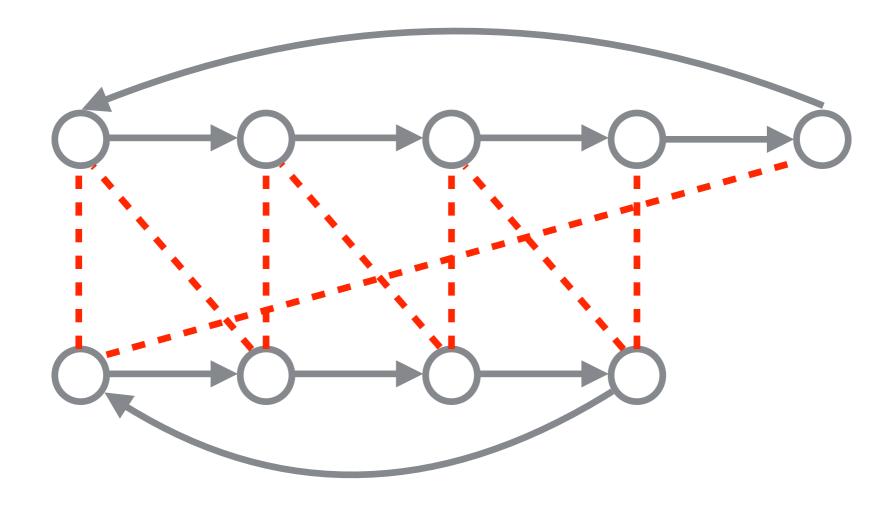


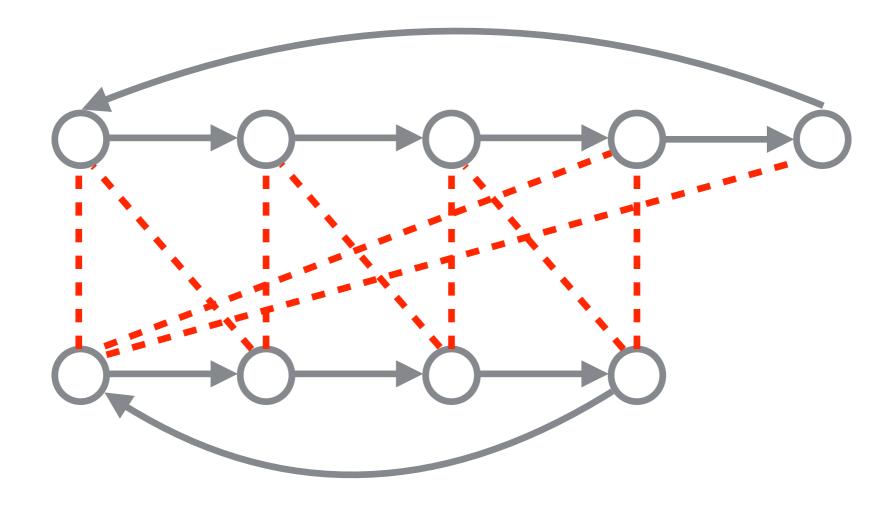


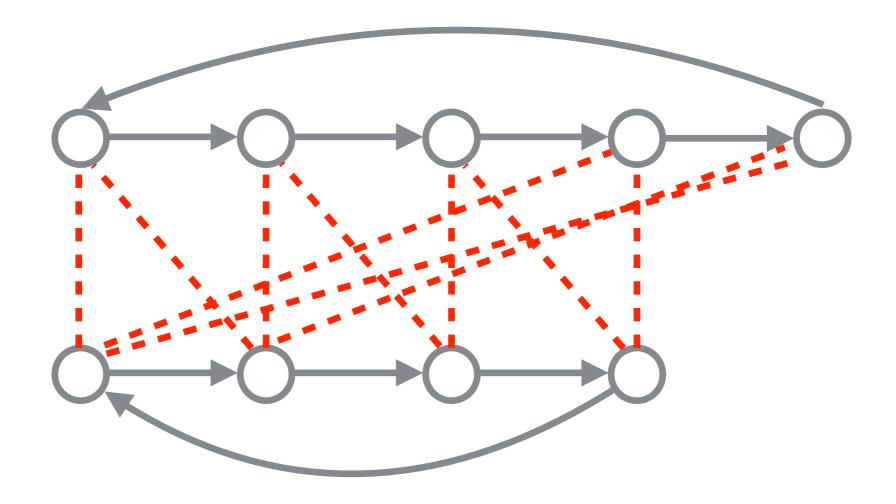


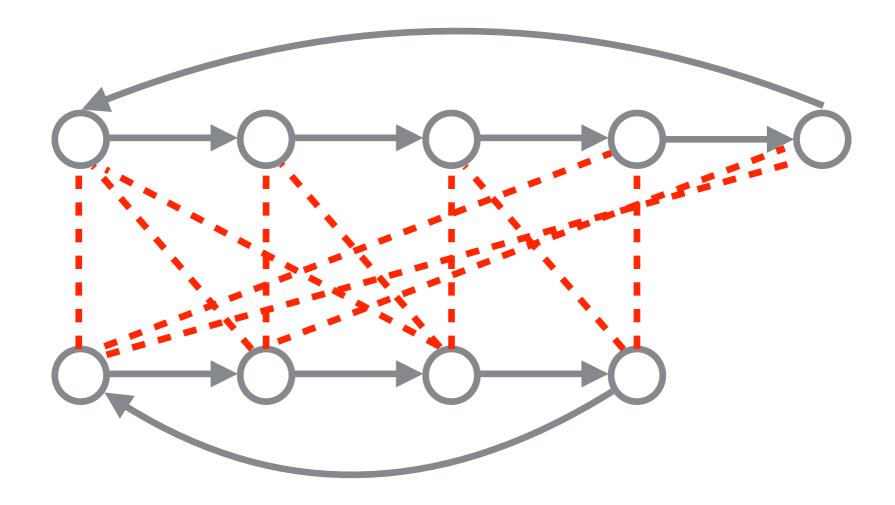


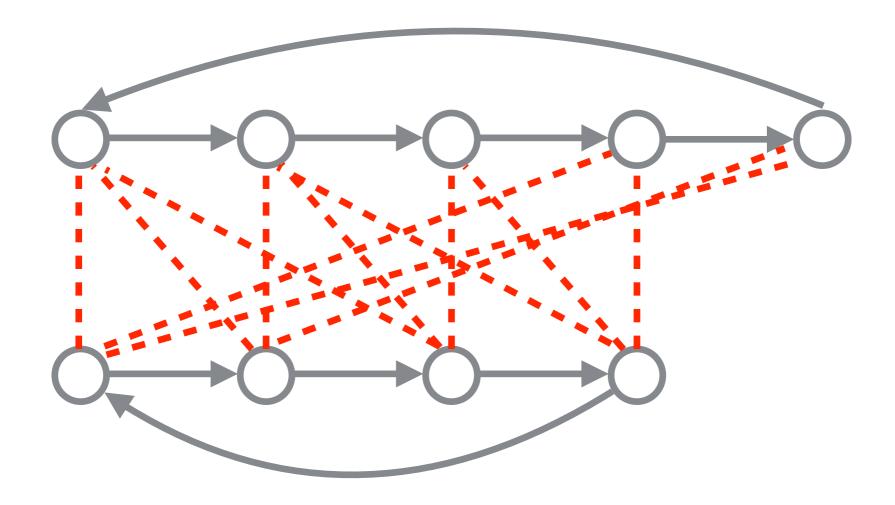


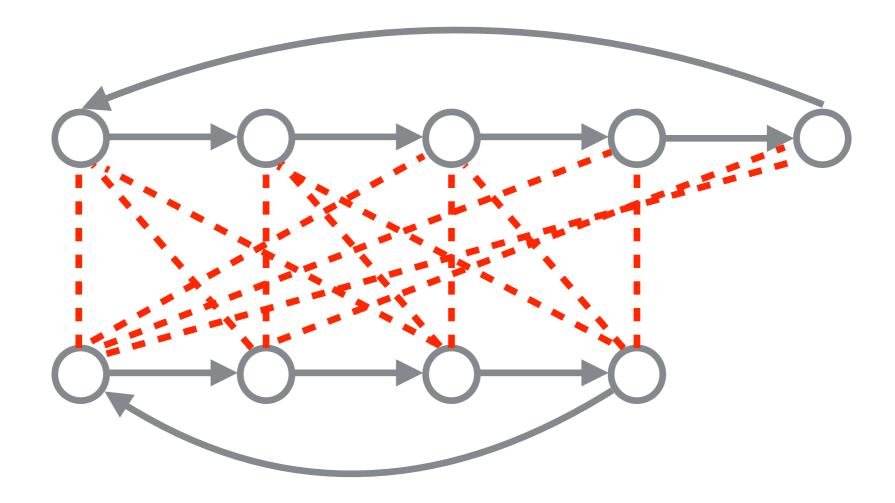


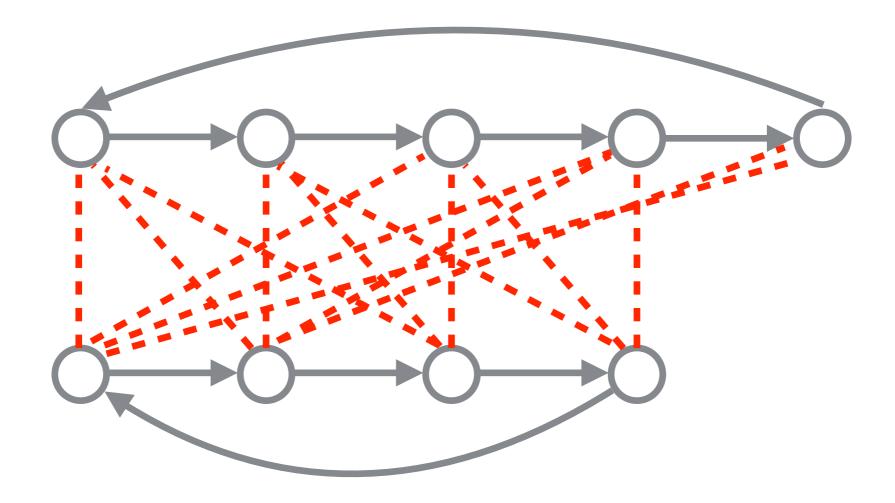


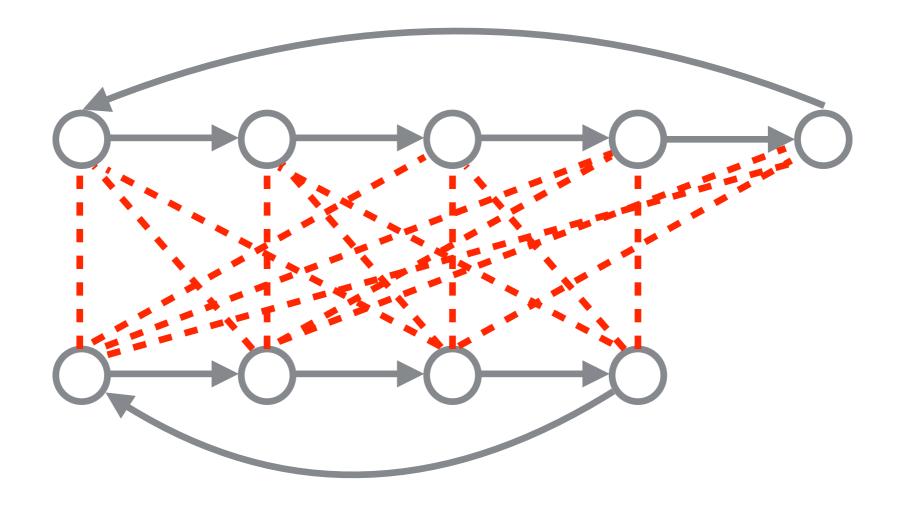


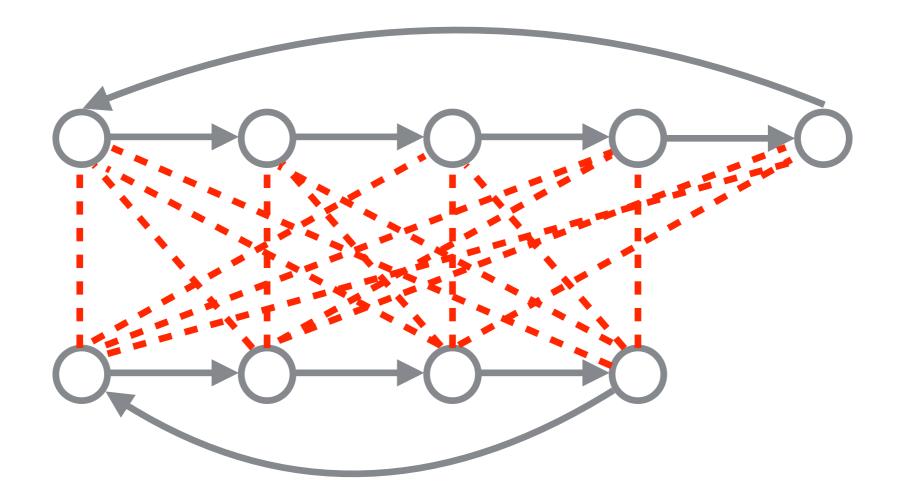


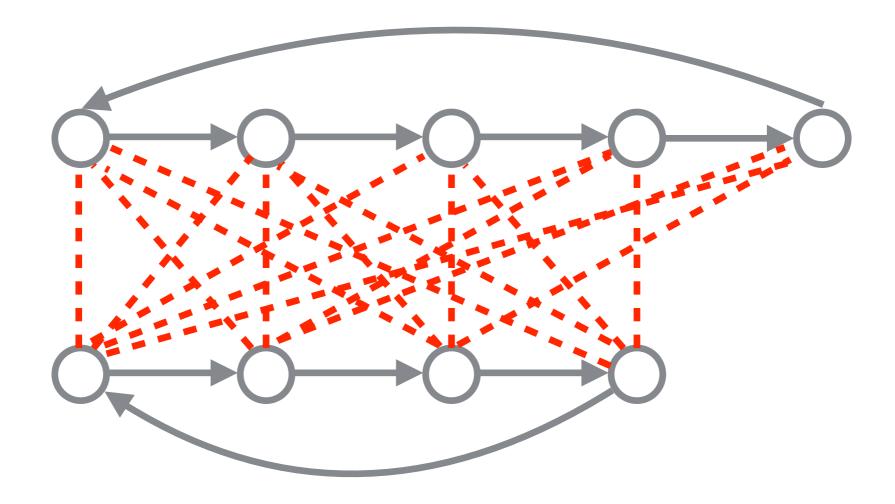


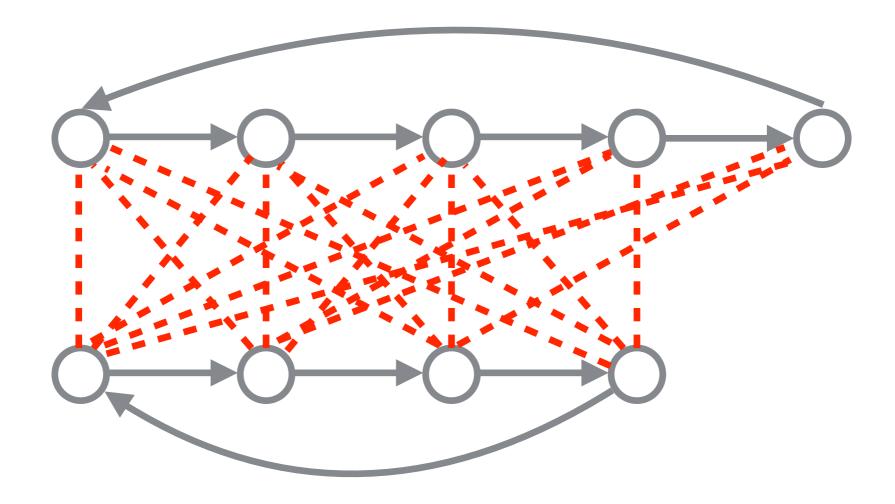


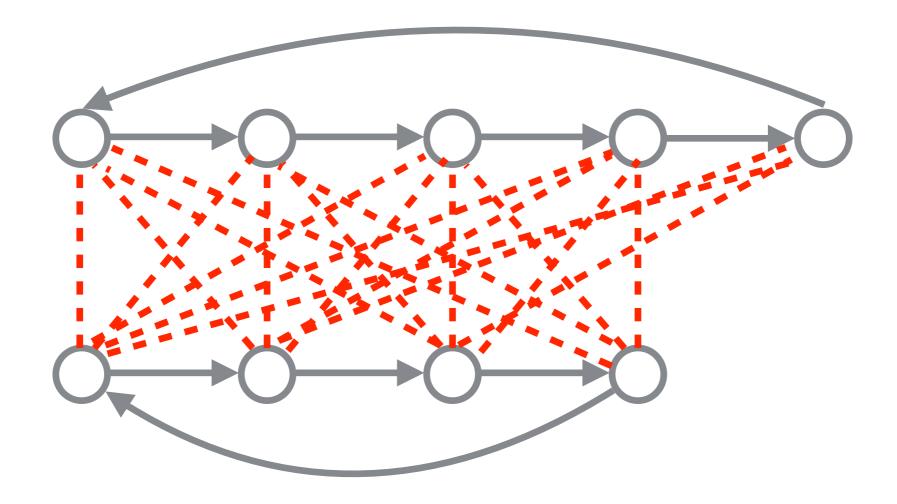


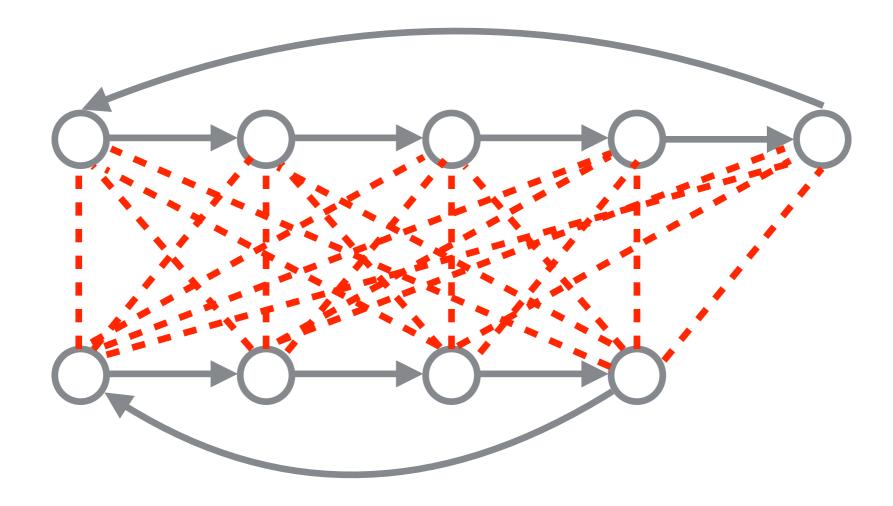


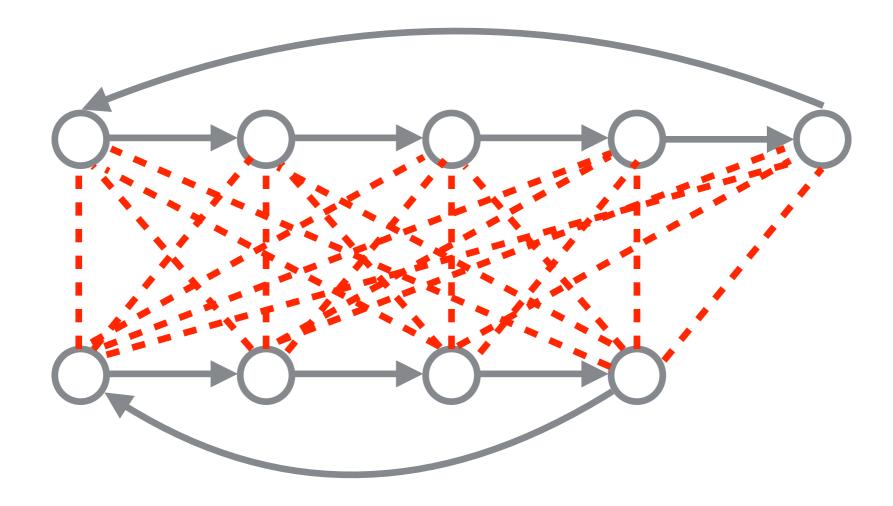


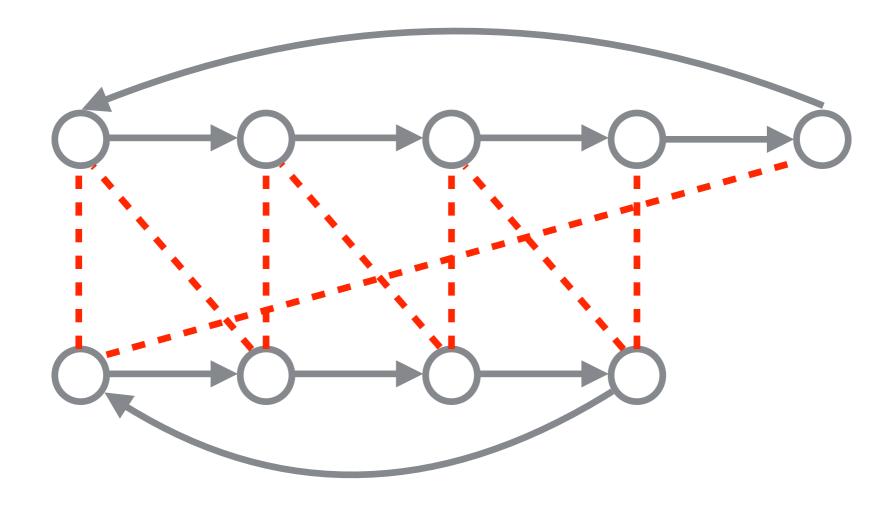


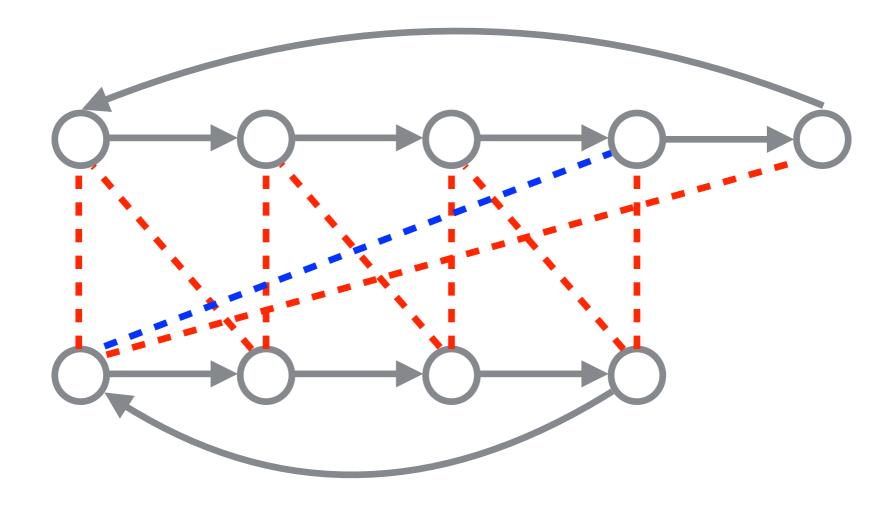




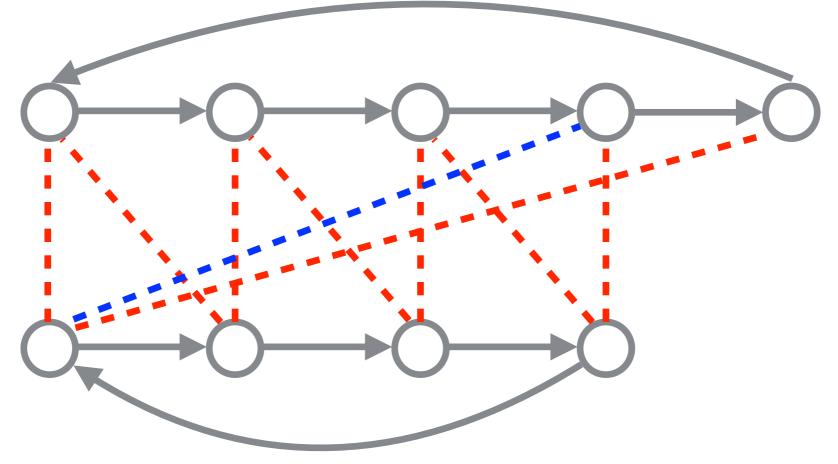






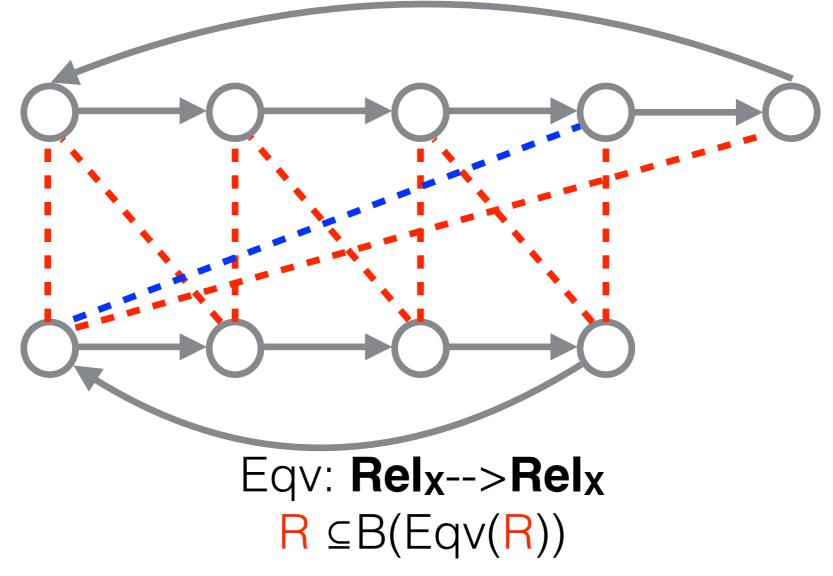


R is not a bisimulation, but a bisimulation up-to equivalence



Naive Algorithm

R is not a bisimulation, but a bisimulation up-to equivalence



• In the worst case, the naive algorithm explores n² pairs

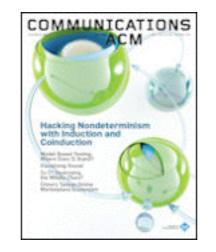
- In the worst case, the naive algorithm explores n² pairs
- The Hopcroft and Karp algorithm (1971) builds a bisimulation up-to equivalence: it visits at most n pairs. The complexity is thus (almost) linear.

- In the worst case, the naive algorithm explores n² pairs
- The Hopcroft and Karp algorithm (1971) builds a bisimulation up-to equivalence: it visits at most n pairs. The complexity is thus (almost) linear.
- For Non-Deterministic automata, there are smarter upto techniques which allow for an exponential speed up

- In the worst case, the naive algorithm explores n² pairs
- The Hopcroft and Karp algorithm (1971) builds a bisimulation up-to equivalence: it visits at most n pairs. The complexity is thus (almost) linear.
- For Non-Deterministic automata, there are smarter upto techniques which allow for an exponential speed up

- In the worst case, the naive algorithm explores n² pairs
- The Hopcroft and Karp algorithm (1971) builds a bisimulation up-to equivalence: it visits at most n pairs. The complexity is thus (almost) linear.
- For Non-Deterministic automata, there are smarter upto techniques which allow for an exponential speed up

- In the worst case, the naive algorithm explores n² pairs
- The Hopcroft and Karp algorithm (1971) builds a bisimulation up-to equivalence: it visits at most n pairs. The complexity is thus (almost) linear.
- For Non-Deterministic automata, there are smarter upto techniques which allow for an exponential speed up



Regular Expressions

e::= 0, 1, a, e+e, ee, e*

Brzozowski derivatives defines a DA (RE,o,t)

Regular Expressions

e∷= 0, 1, a, e+e, ee, e*

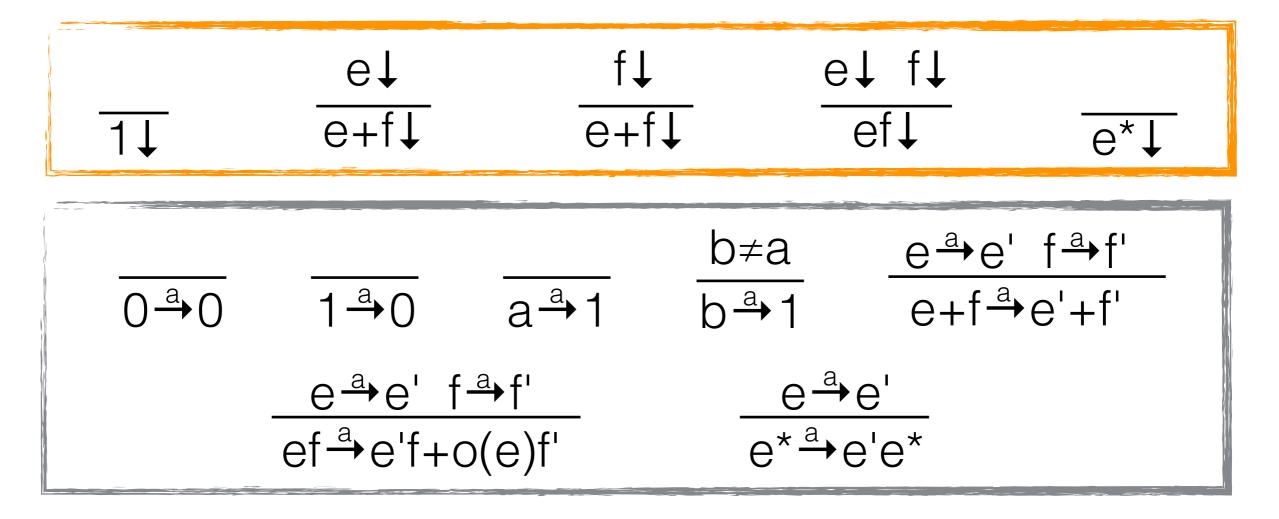
Brzozowski derivatives defines a DA (RE,o,t)

$$\frac{e\downarrow}{1\downarrow} \qquad \frac{e\downarrow}{e+f\downarrow} \qquad \frac{f\downarrow}{e+f\downarrow} \qquad \frac{e\downarrow f\downarrow}{ef\downarrow} \qquad \frac{e^{*}\downarrow}{e^{*}\downarrow}$$

Regular Expressions

e∷= 0, 1, a, e+e, ee, e*

Brzozowski derivatives defines a DA (RE,o,t)



We can prove the soundness of Kleene Algebra Axiomatization by mean of coinduction

Commutativity: $e+f \sim f+e$

We can prove the soundness of Kleene Algebra Axiomatization by mean of coinduction

Commutativity: e+f~f+e

 $R=\{(e+f,f+e) \mid e,f \in RE\}$ is a bisimulation:

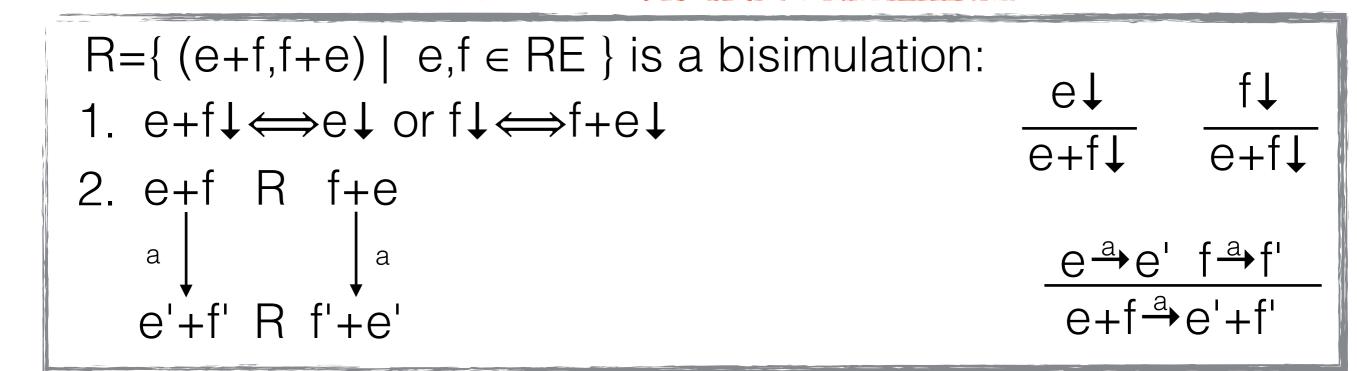
We can prove the soundness of Kleene Algebra Axiomatization by mean of coinduction

Commutativity: e+f~f+e

 $R=\{ (e+f,f+e) \mid e,f \in RE \} \text{ is a bisimulation:} \\ 1. e+f\downarrow \iff e \downarrow \text{ or } f\downarrow \iff f+e \downarrow \qquad \frac{e \downarrow}{e+f\downarrow} \qquad \frac{f \downarrow}{e+f\downarrow} \qquad \frac{f \downarrow}{e+f\downarrow}$

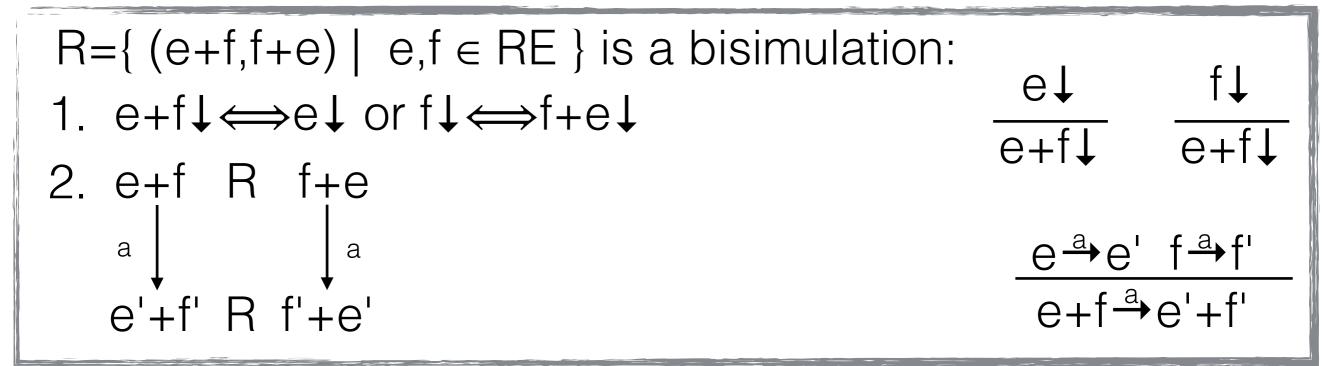
We can prove the soundness of Kleene Algebra Axiomatization by mean of coinduction

Commutativity: e+f~f+e



We can prove the soundness of Kleene Algebra Axiomatization by mean of coinduction

in a similar way, we can prove that (RE,+,0) is a monoid



Distributivity: e(f+g)~ef+eg

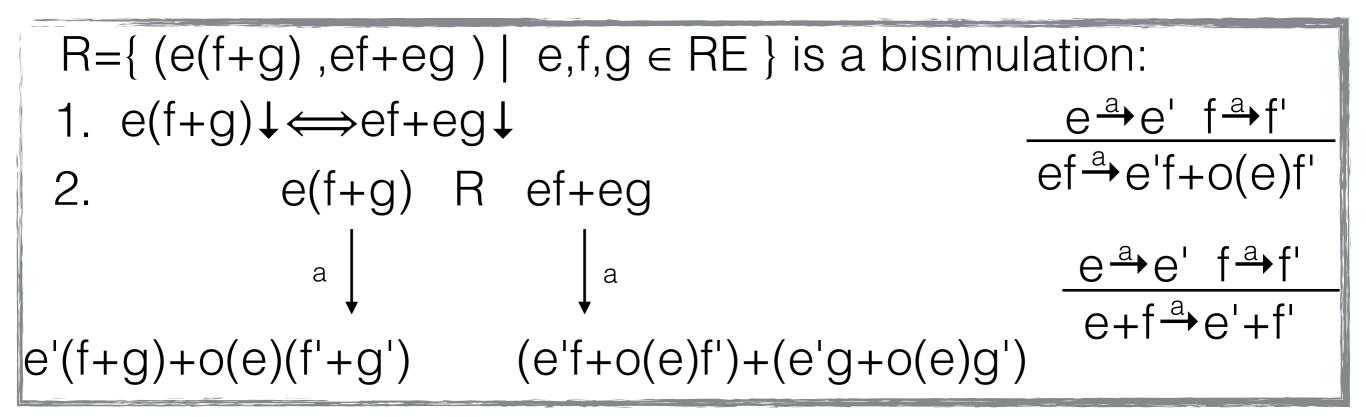
Distributivity: e(f+g)~ef+eg

 $R=\{(e(f+g), ef+eg) | e, f, g \in RE\}$ is a bisimulation:

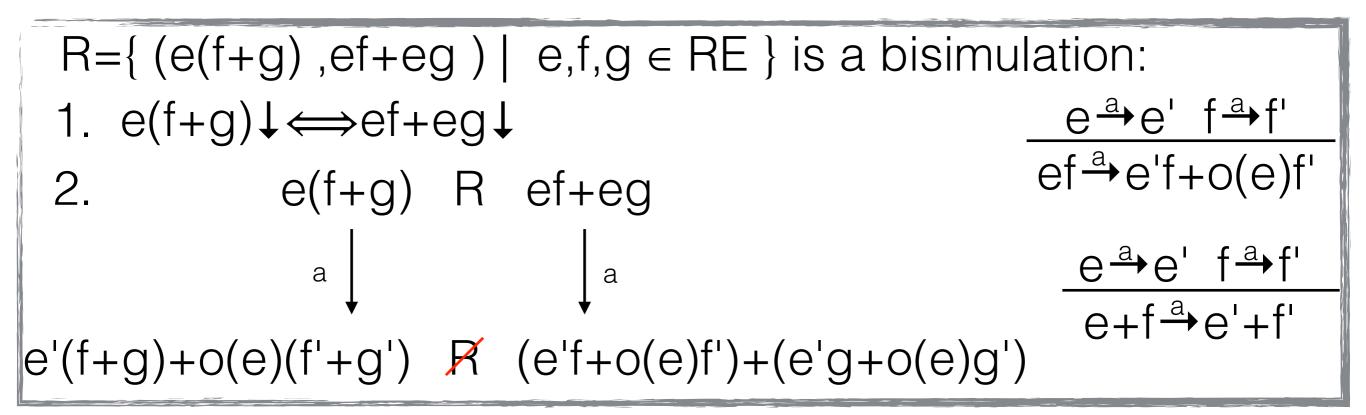
Distributivity: e(f+g)~ef+eg

R={ (e(f+g), ef+eg) | e,f,g ∈ RE } is a bisimulation: 1. $e(f+g)\downarrow \iff ef+eg\downarrow$

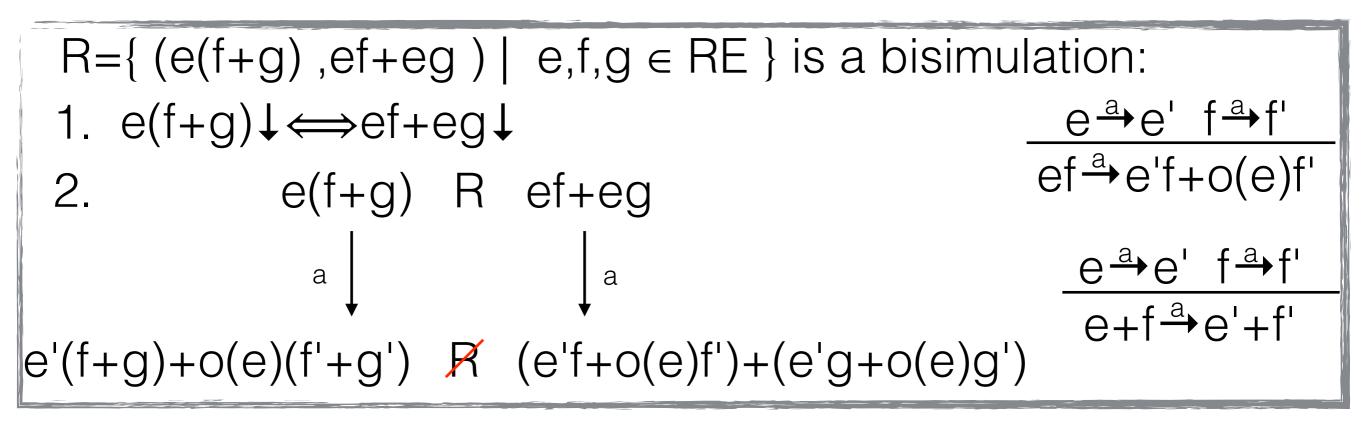
Distributivity: e(f+g)∼ef+eg



Distributivity: $e(f+g) \sim ef+eg$



Distributivity: e(f+g)∼ef+eg



R is NOT a bisimulation, but a bisimulation up to BhvoCtx

Bhv: $Rel_{RE} \rightarrow Rel_{RE}$ Bhv(R)= { (e,f) | e~e' R f'~f }

Bhv: $Rel_{RE} \rightarrow Rel_{RE}$ Bhv(R)= { (e,f) | e~e' R f'~f }

Ctx: Rel_{RE}-->Rel_{RE}

e R f

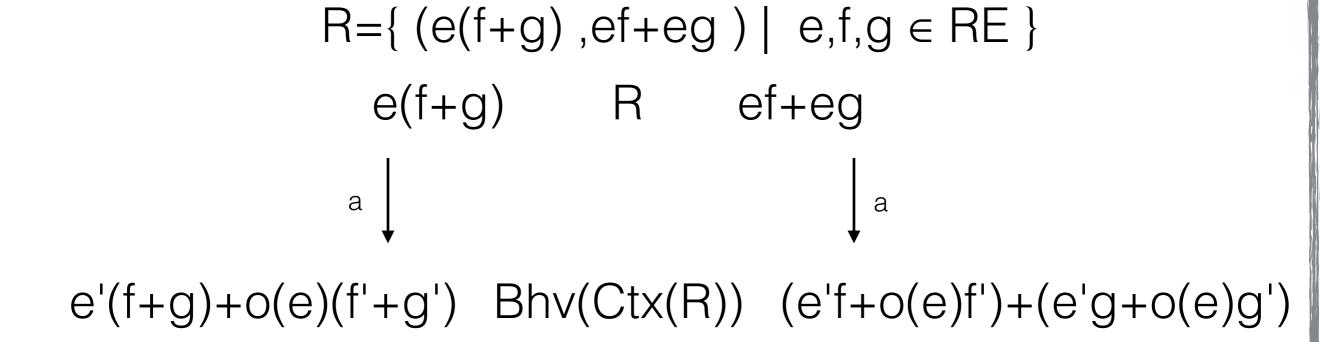
e+f Ctx(R) e'+f'

e Ctx(R) f 0 Ctx(R) 0 1 Ctx(R) 1 a Ctx(R) a

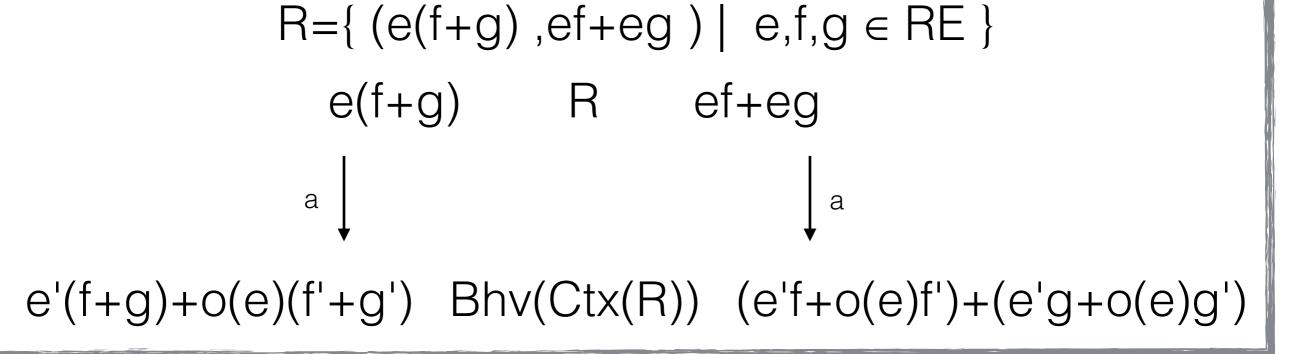
e Ctx(R) e' f Ctx(R) f' e Ctx(R) e' f Ctx(R) f'

ef Ctx(R) e'f' e Ctx(R) f

e* Ctx(R) f*



R is NOT a bisimulation, but a bisimulation up to Bhv•Ctx



 $e'(f+g)+o(e)(f'+g') Ctx(R) (e'f+e'g)+(o(e)f'+o(e)g')\sim (e'f+o(e)f')+(e'g+o(e)g')$

R is NOT a bisimulation, but a bisimulation up to Bhv•Ctx

 $R = \{ (e(f+g), ef+eg) \mid e, f, g \in RE \}$

e(f+g) R ef+eg

 $e'(f+g)+o(e)(f'+g') Ctx(R) (e'f+e'g)+(o(e)f'+o(e)g') \sim (e'f+o(e)f')+(e'g+o(e)g')$

R⊆B(Bhv(Ctx(R)))

R is NOT a bisimulation, but a bisimulation up to Bhv•Ctx

Given two regular expressions k and m, the equation $e \sim ke + m$

has solution $e=k^*m$, i.e., $k^*m \sim kk^*m + m$

Moreover:

1. $k \not \downarrow \Rightarrow k^*m$ is the *unique* solution, i.e., $f \sim kf + m \Rightarrow f \sim k^*m$

2. k*m is the *smallest* solution, i.e., $f \sim kf + m \Rightarrow k*m \leq f$

Given two regular expressions k and m, the equation

e~ke+m

has solution $e=k^*m$, i.e., $k^*m \sim kk^*m + m$

Can be proved by coinduction

Moreover:

1. $k \not \downarrow \Rightarrow k^*m$ is the *unique* solution, i.e., $f \sim kf + m \Rightarrow f \sim k^*m$

2. k*m is the *smallest* solution, i.e., $f \sim kf + m \Rightarrow k*m \leq f$

Given two regular expressions k and m, the equation

e~ke+m

has solution $e=k^*m$, i.e., $k^*m \sim kk^*m + m$

Can be proved by coinduction

Moreover:

- 1. $k \not \downarrow \Rightarrow k^*m$ is the *unique* solution, i.e., $f \sim kf + m \Rightarrow f \sim k^*m$
- 2. k*m is the *smallest* solution, i.e., $f \sim kf + m \Rightarrow k*m \leq f$

language inclusion (\leq) is vB' B':**Rel_x**-->**Rel_x** is defined as B'(R)={(x,y) | o(x) ≤ o(y) and for all a∈A t(x)(a) R t(y)(a)}

To show f~kf+m⇒ k*m≲f

We prove that S = { (k*m,f) | f~kf+m } is a simulation up-to

To show f~kf+m⇒ k*m≲f

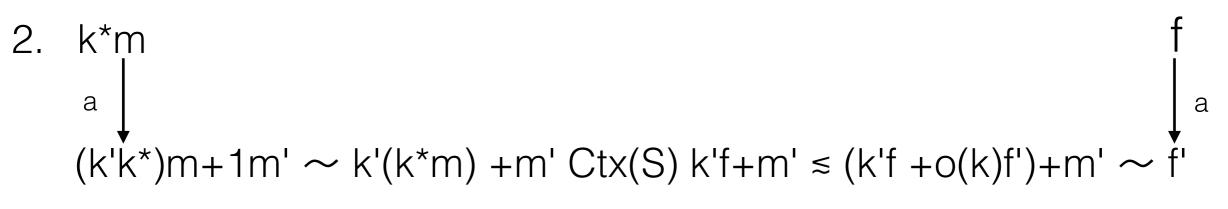
We prove that S = { (k*m,f) | f~kf+m } is a simulation up-to

1. $k^*m\downarrow \Rightarrow m\downarrow \Rightarrow kf+m\downarrow \Rightarrow f\downarrow$ 2. k^*m $\downarrow a$ $(k'k^*)m+1m' \sim k'(k^*m) + m' Ctx(S) k'f+m' \leq (k'f+o(k)f')+m' \sim f'$

To show f~kf+m⇒ k*m≲f

We prove that S = { (k*m,f) | f~kf+m } is a simulation up-to

1. $k^*m\downarrow \Rightarrow m\downarrow \Rightarrow kf+m\downarrow \Rightarrow f\downarrow$



S⊆B'(Slf(Ctx(S))) Slf: **ReI_{RE}-->ReI_{RE}** Slf(S)= { (e,f) | e ≲ e' S f' ≲ f }

Proving Soundness

We need to prove that these techniques are sound (they do NOT follow from Knaster-Tarski)

Proving Soundness

We need to prove that these techniques are sound (they do NOT follow from Knaster-Tarski)

Proving soundness is rather complicated and error prone

Proving Soundness

We need to prove that these techniques are sound (they do NOT follow from Knaster-Tarski)

Proving soundness is rather complicated and error prone

In Milner's book there are two mistakes:

Weak Bisimulation up to weak bisimilarity

Weak Bisimulation up to equivalence

Desiderata

We would like to be able to prove soundness for

- Different sort of up-to techniques (like Eqv, Bhv, Ctx, Slf)
- Different sort of coinductive predicates (like \sim or \leq)
- Different sort of systems (like DA or LTS)

Moreover, we would like to prove the soundness of these techniques in a modular way:

Ctx and Bhv are sound \Rightarrow Bhv • Ctx is sound

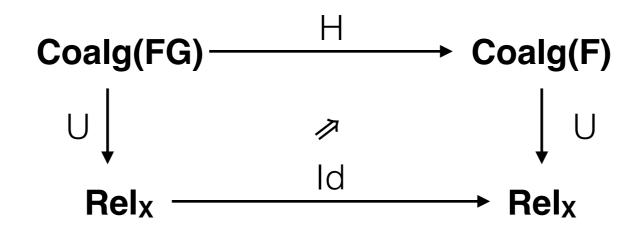
	Coalgebras as Systems	Coalgebras as Proofs
Functor F	F: Set→Set Type of the systems	F: Rel_x→Rel_x Type of the Proof
F-coalgebra	System X→FX	Invariants X⊆FX
Final F-coalgebra	Universe of Behaviours	Coinductive Predicate vF

	Coalgebras as Systems	Coalgebras as Proofs
Functor F	F: Set→Set Type of the systems	F: Rel_x→Rel_x Type of the Proof
F-coalgebra	System X→FX	Invariants X⊆FX
Final F-coalgebra	Universe of Behaviours	Coinductive Predicate vF

An up-to technique is a functor G: **Relx**→**Relx**

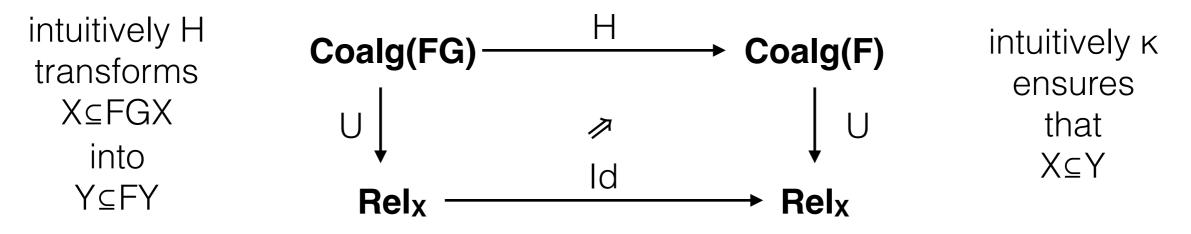
An up-to technique is a functor G: $Rel_x \rightarrow Rel_x$

G is *sound* if there exists a functor H:**Coalg(FG)→Coalg(F)** and a natural transformation κ:U⇒UH



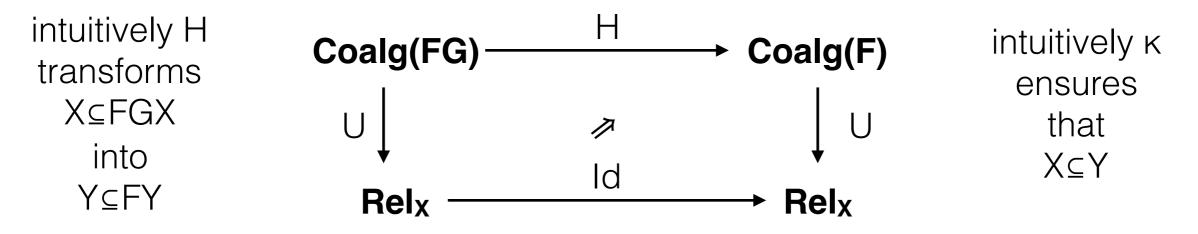
An up-to technique is a functor G: $Rel_x \rightarrow Rel_x$

G is *sound* if there exists a functor H:**Coalg(FG)→Coalg(F)** and a natural transformation κ:U⇒UH



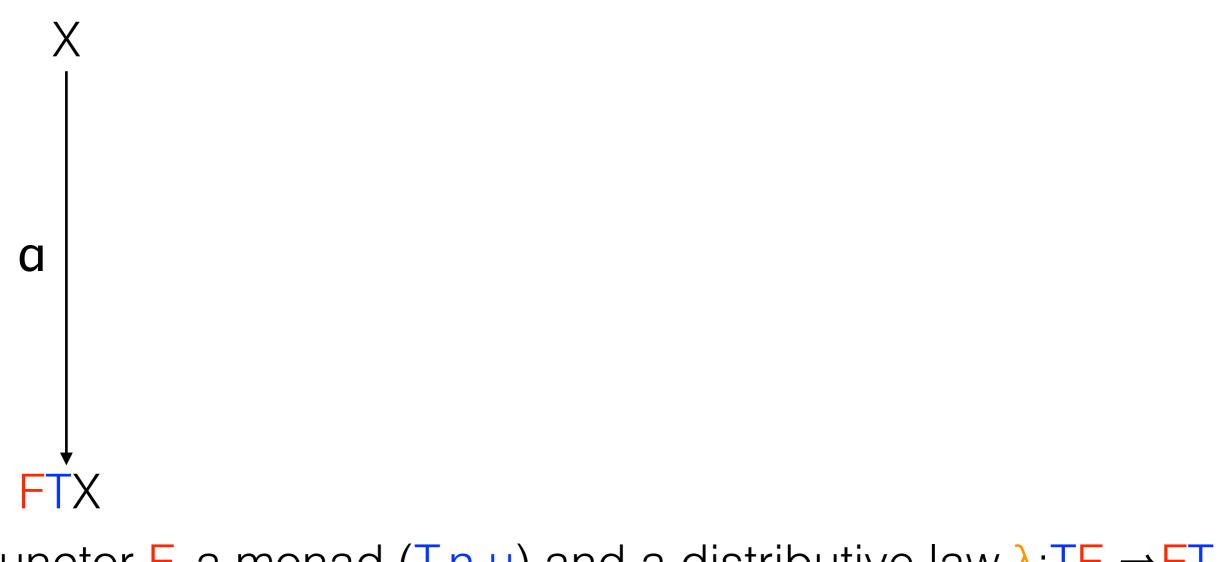
An up-to technique is a functor G: $Rel_x \rightarrow Rel_x$

G is *sound* if there exists a functor H:**Coalg(FG)→Coalg(F)** and a natural transformation κ:U⇒UH

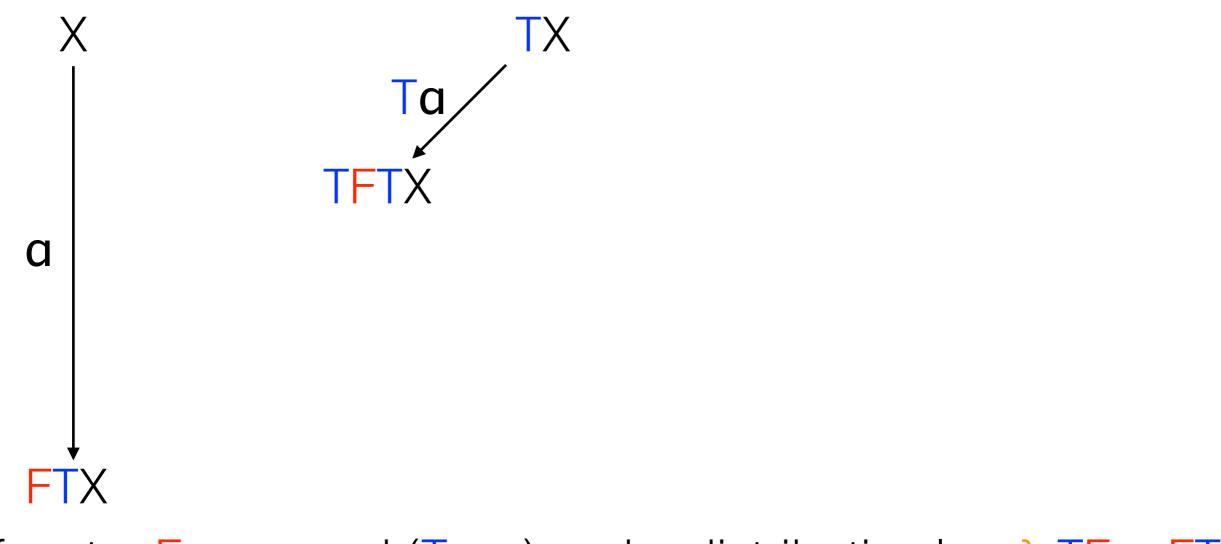


 $\exists Z, Z \subseteq X \subseteq FGX \implies \exists Z, Z \subseteq Y \subseteq FY \implies Z \subseteq vF$

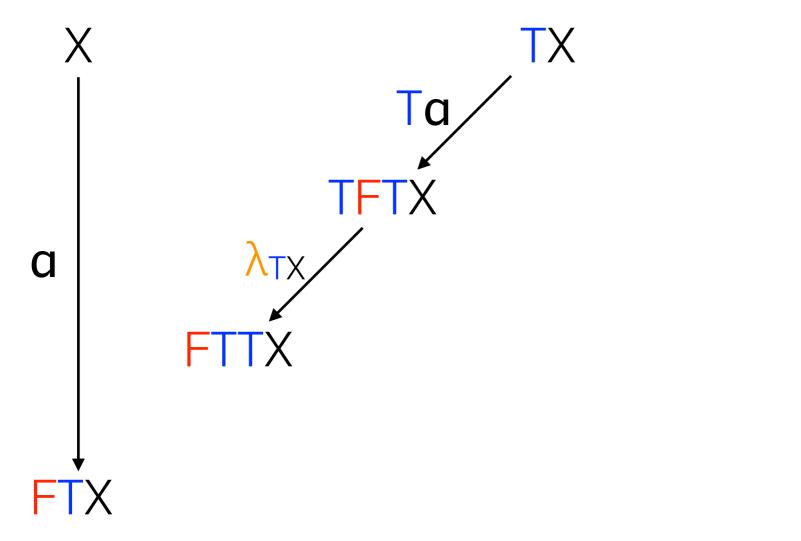
Silva, Bonchi, Bonsangue, Rutten - FSTTCS 2010



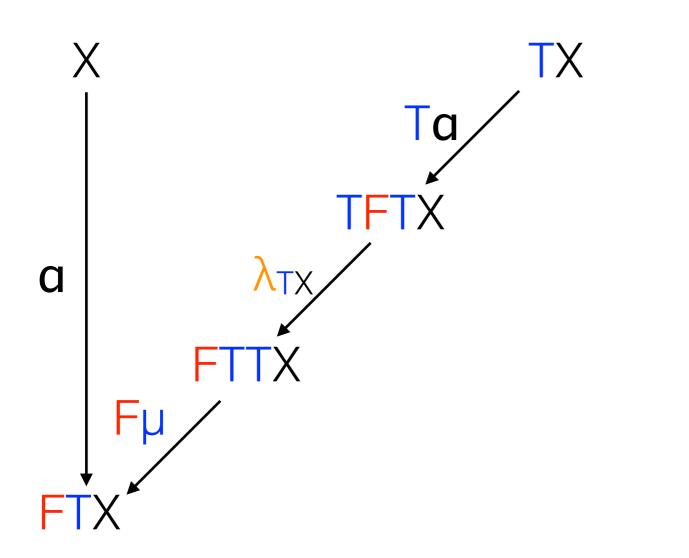
Silva, Bonchi, Bonsangue, Rutten - FSTTCS 2010



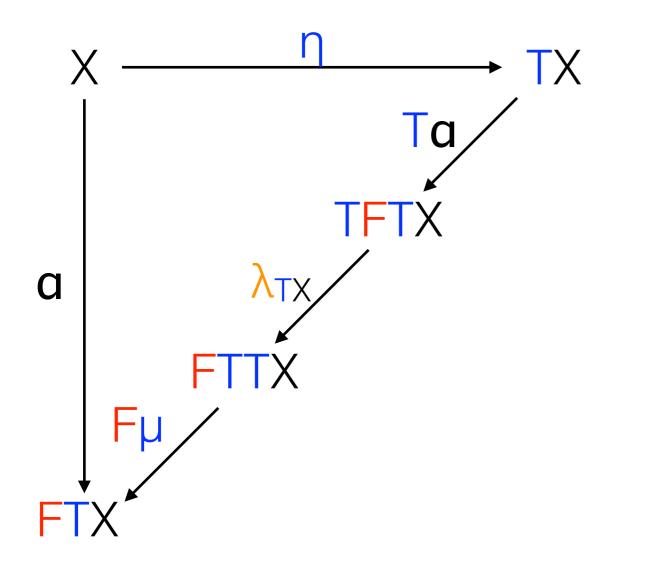
Silva, Bonchi, Bonsangue, Rutten - FSTTCS 2010



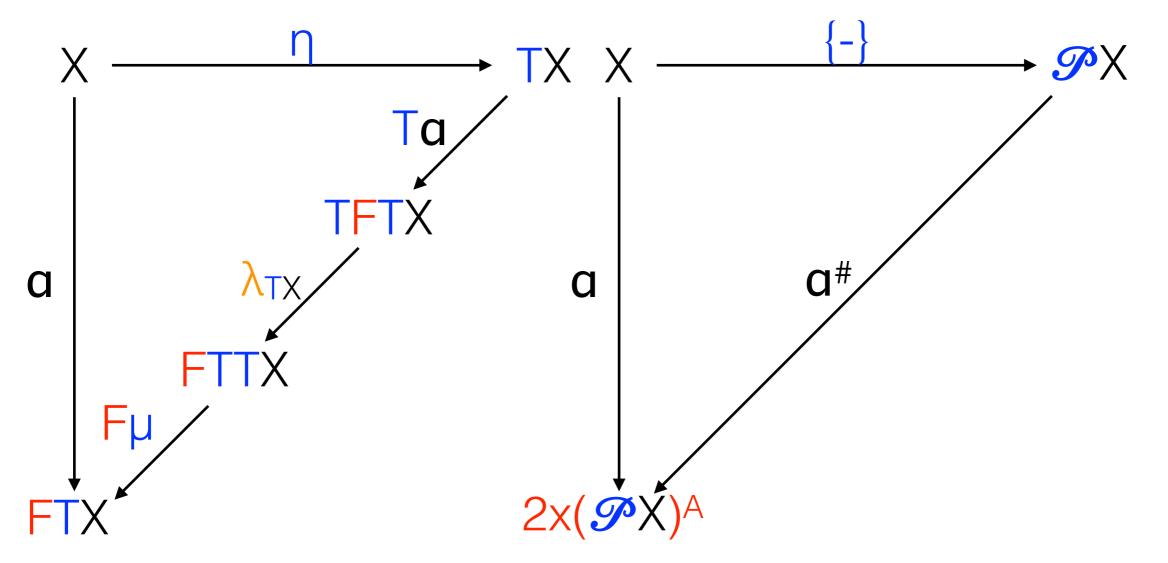
Silva, Bonchi, Bonsangue, Rutten - FSTTCS 2010



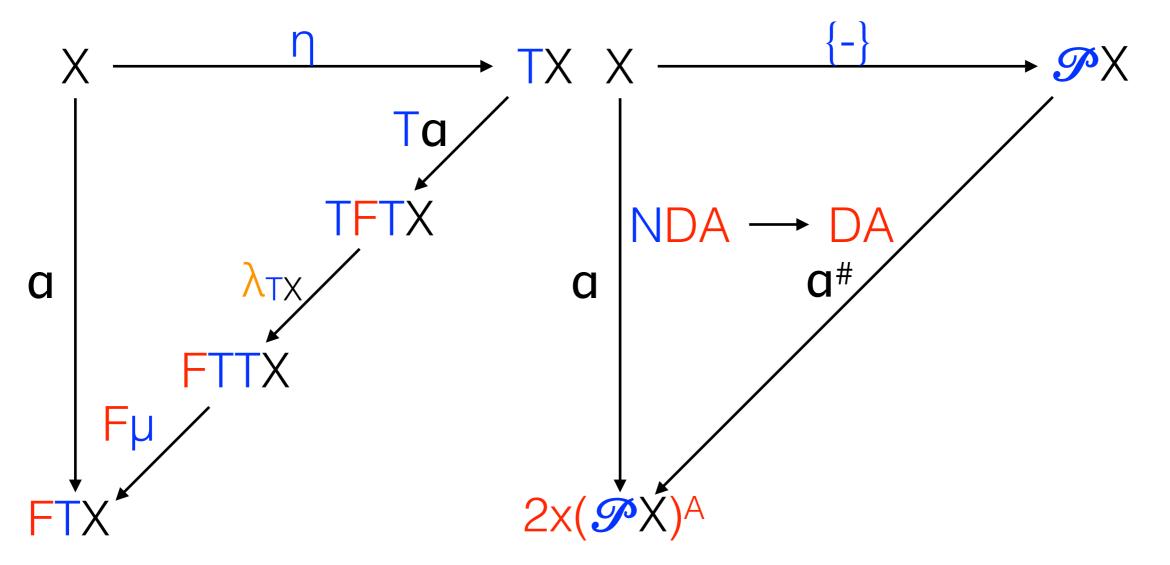
Silva, Bonchi, Bonsangue, Rutten - FSTTCS 2010



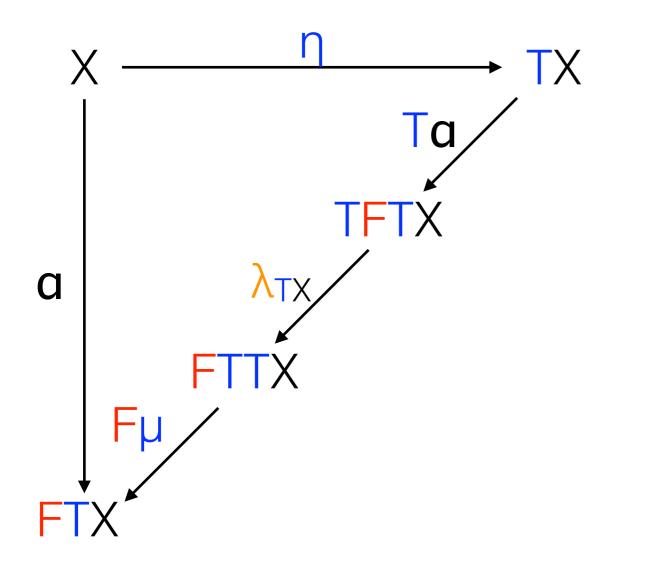
Silva, Bonchi, Bonsangue, Rutten - FSTTCS 2010



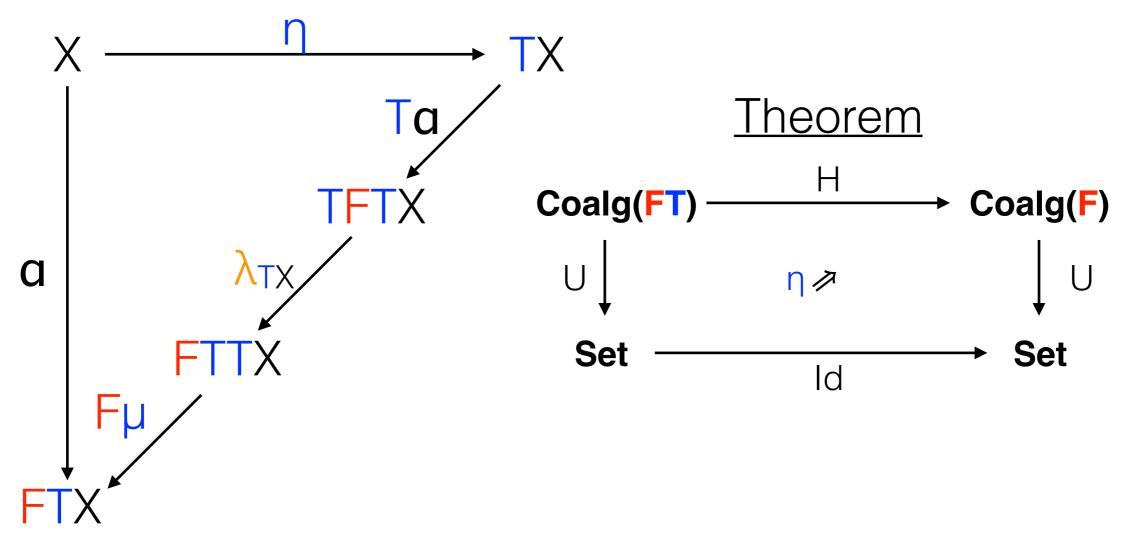
Silva, Bonchi, Bonsangue, Rutten - FSTTCS 2010



Silva, Bonchi, Bonsangue, Rutten - FSTTCS 2010



Silva, Bonchi, Bonsangue, Rutten - FSTTCS 2010



	Coalgebras as Systems	Coalgebras as Proofs
Functor F	F: Set→Set Type of the systems	F: Rel_x→Rel_x Proof technique
F-coalgebra	System X→FX	Invariants X⊆FX
Final F-coalgebra	Universe of Behaviours	Coinductive Predicate vF
FT-coalgebra	F-sytem with branching T	F-Invariants up-to T

Actually, we need much less than a monad T...

Actually, we need much less than a monad T...

<u>Theorem</u>: a category **C** with countable coproducts F,G:C→C and λ:GF ⇒FG. Then Coalg(FG) \xrightarrow{H} Coalg(F) U ↓ $\kappa \nearrow$ ↓ U c \xrightarrow{Id} C

Actually, we need much less than a monad T...

<u>Theorem</u>: a category **C** with countable coproducts F,G:C→C and λ:GF ⇒FG. Then Coalg(FG) \xrightarrow{H} Coalg(F) U ↓ $\ltimes \nearrow$ ↓ U c \xrightarrow{Id} C

Actually, we need much less than a monad T...

Actually, we need much less than a monad T...

<u>Theorem</u>: in a category **C** with countable coproducts, **F**-compatibility implies **F**-soundness

Actually, we need much less than a monad T...

<u>Theorem</u>: in a category **C** with countable coproducts, **F**-compatibility implies **F**-soundness

> <u>Compositionality Theorem</u> If G₁ and G₂ are compatibile with F, then G₁•G₂ is compatible with F

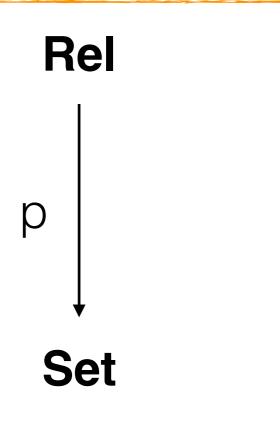
Hermida and Jacobs - Information and Computation 1998

Hermida and Jacobs - Information and Computation 1998

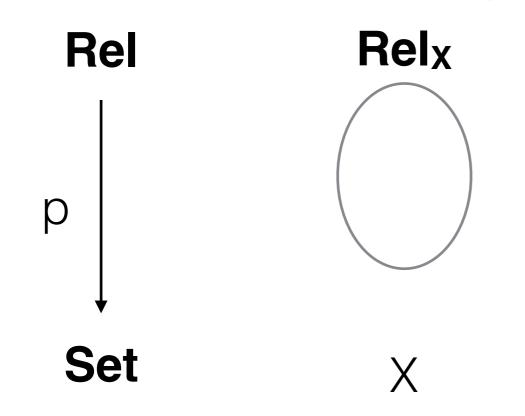
Hermida and Jacobs - Information and Computation 1998

Category **Rel** objects: $R \subseteq XxX$ arrows $R \subseteq XxX \rightarrow S \subseteq YxY$: f:X \rightarrow Y such that f(R) \subseteq f(S)

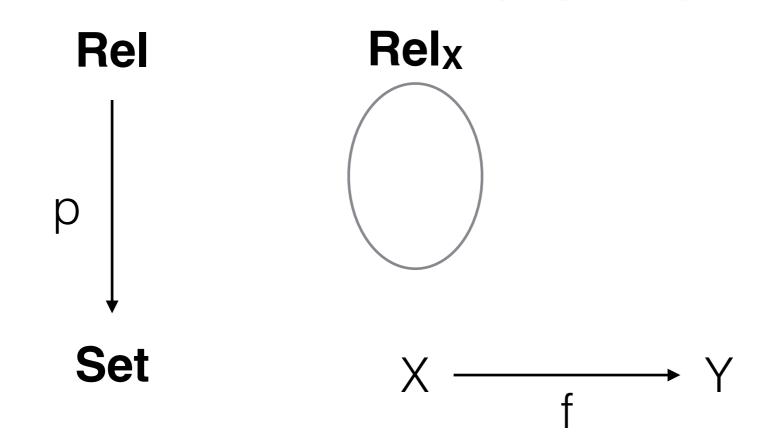
Χ



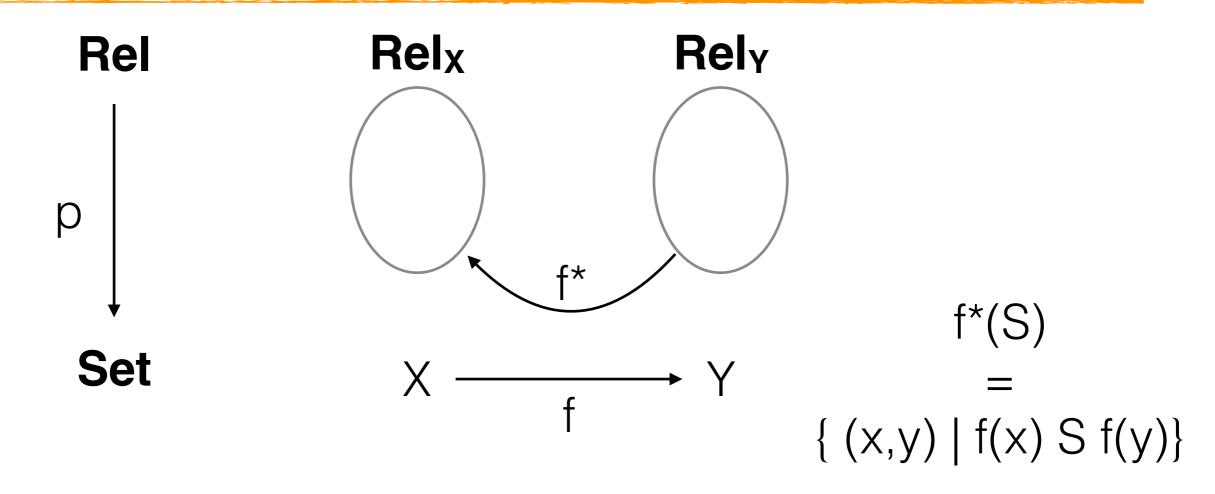
Hermida and Jacobs - Information and Computation 1998



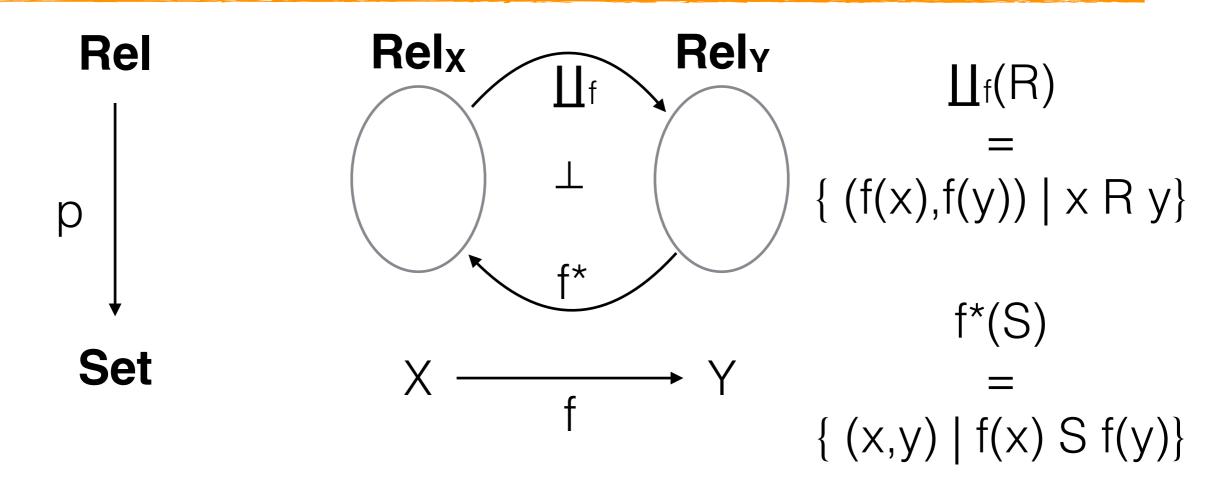
Hermida and Jacobs - Information and Computation 1998

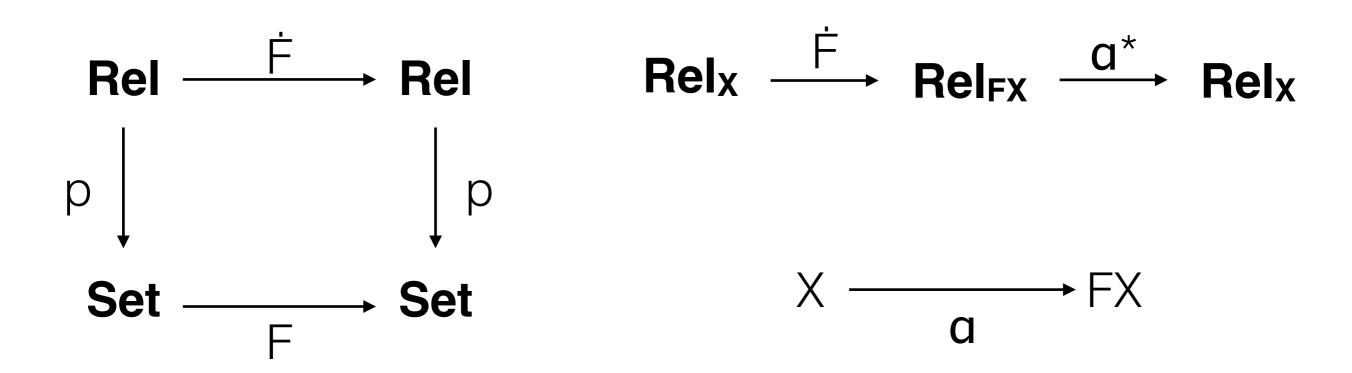


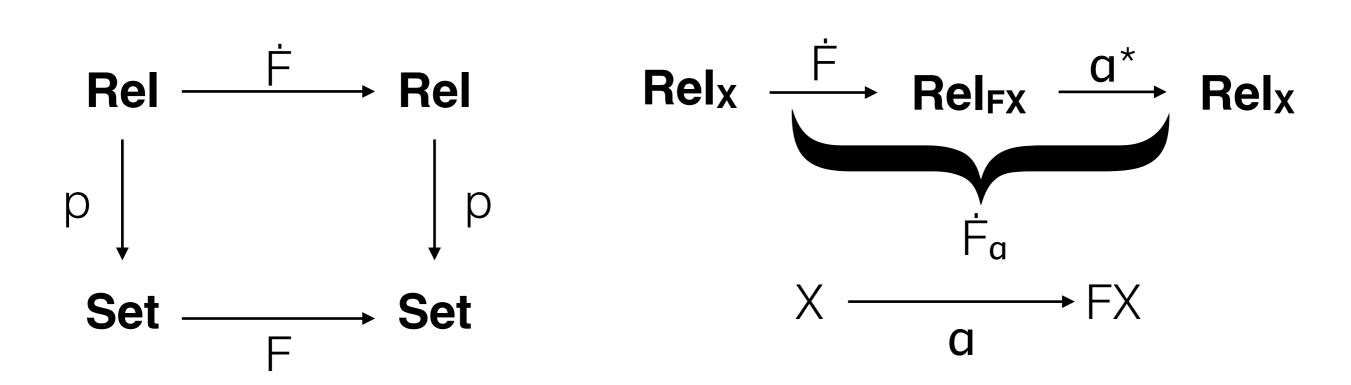
Hermida and Jacobs - Information and Computation 1998

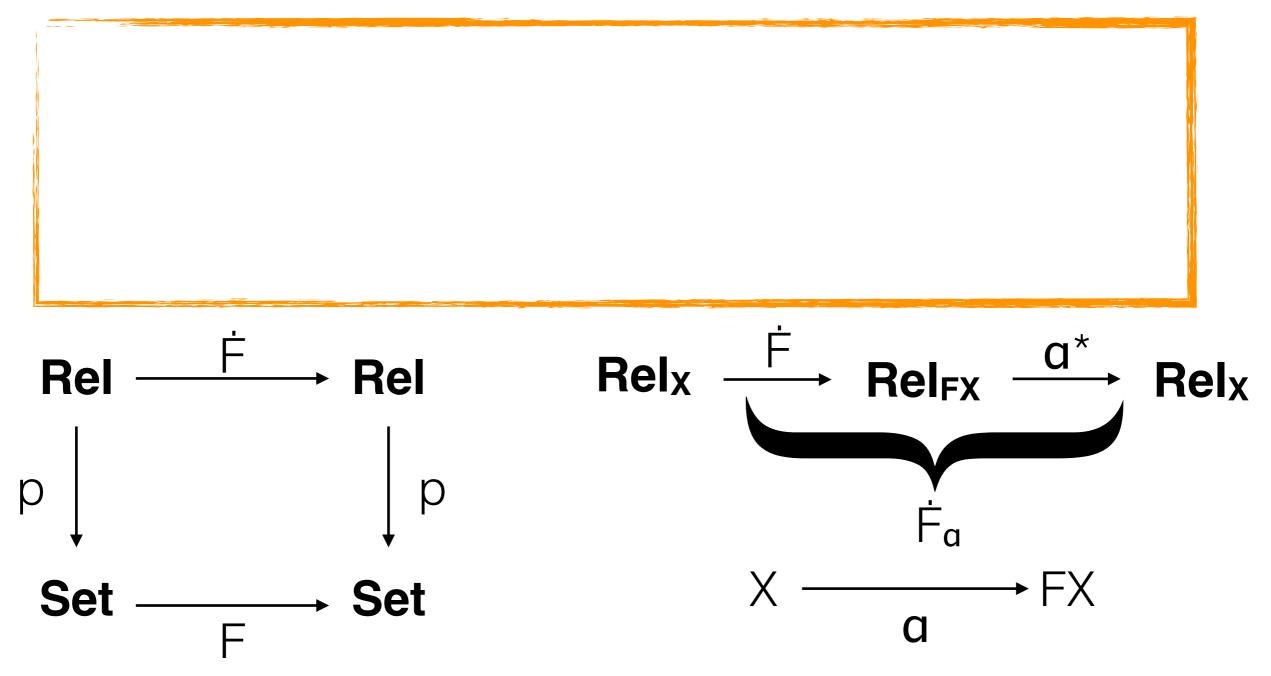


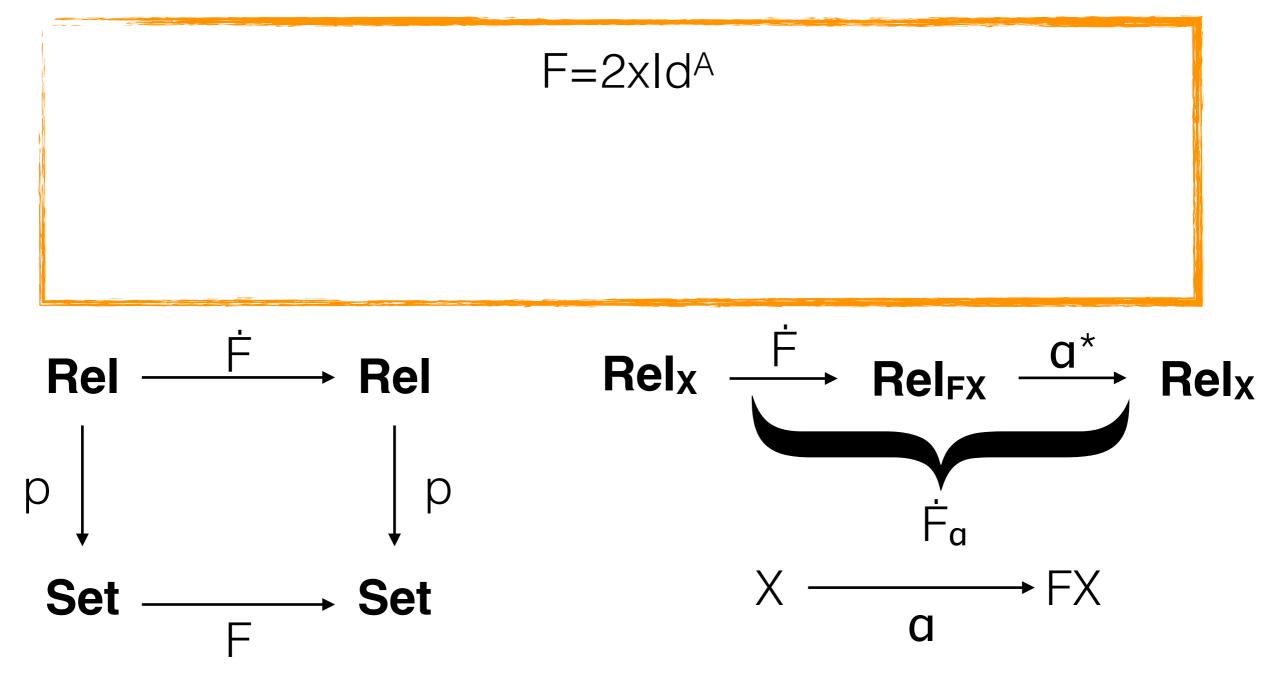
Hermida and Jacobs - Information and Computation 1998

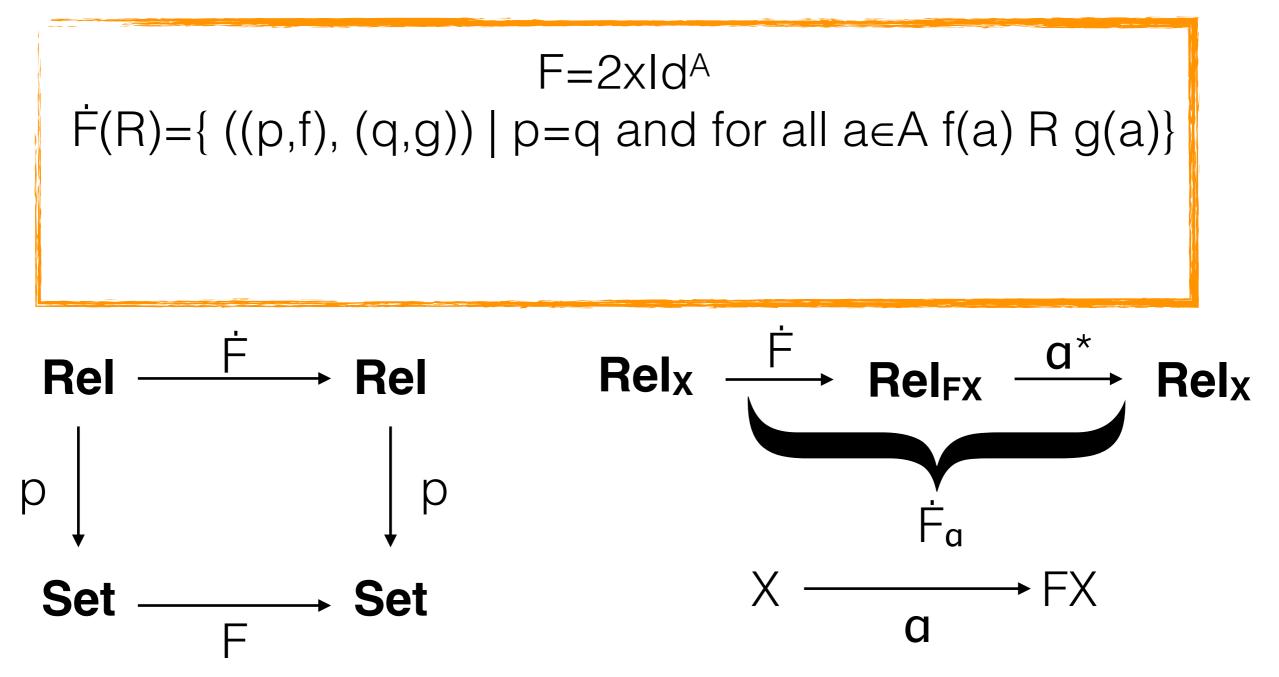


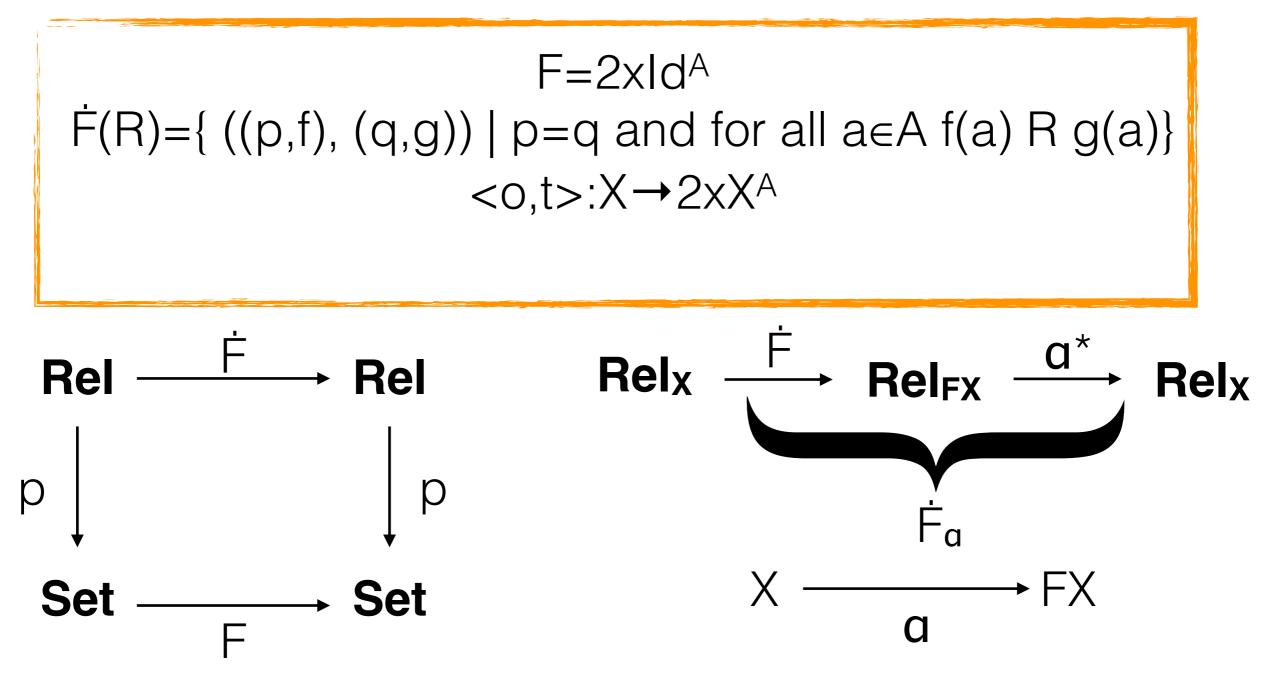






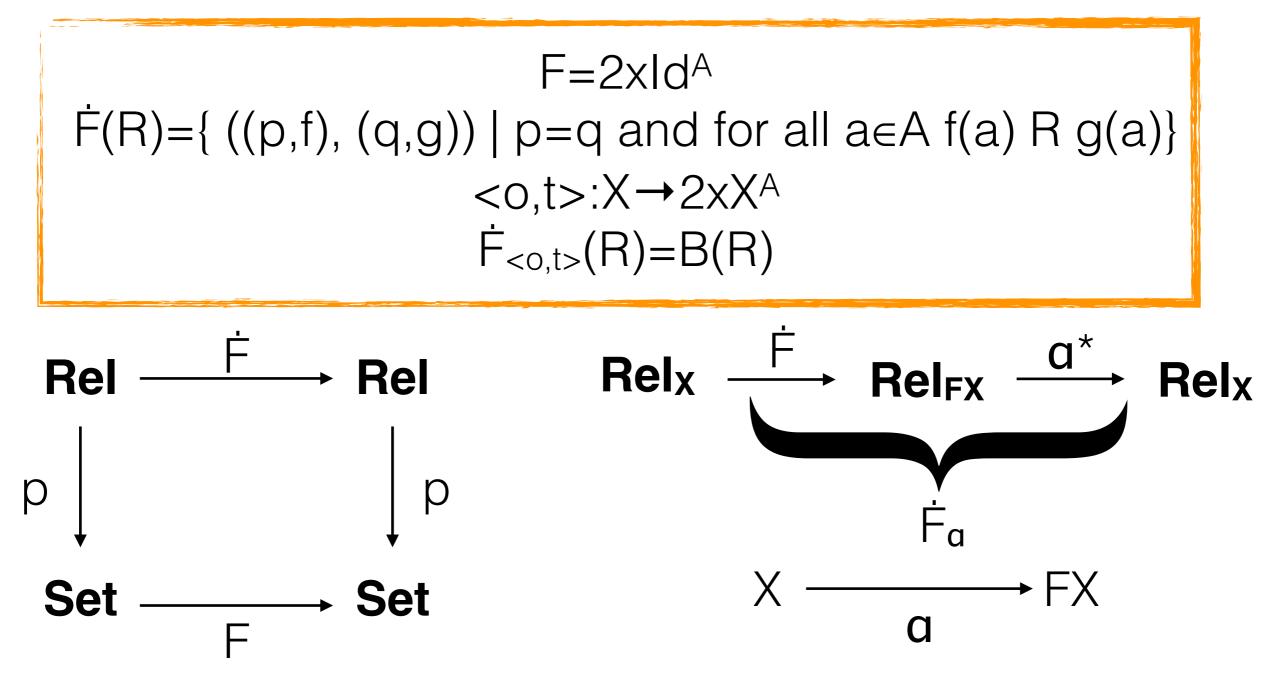






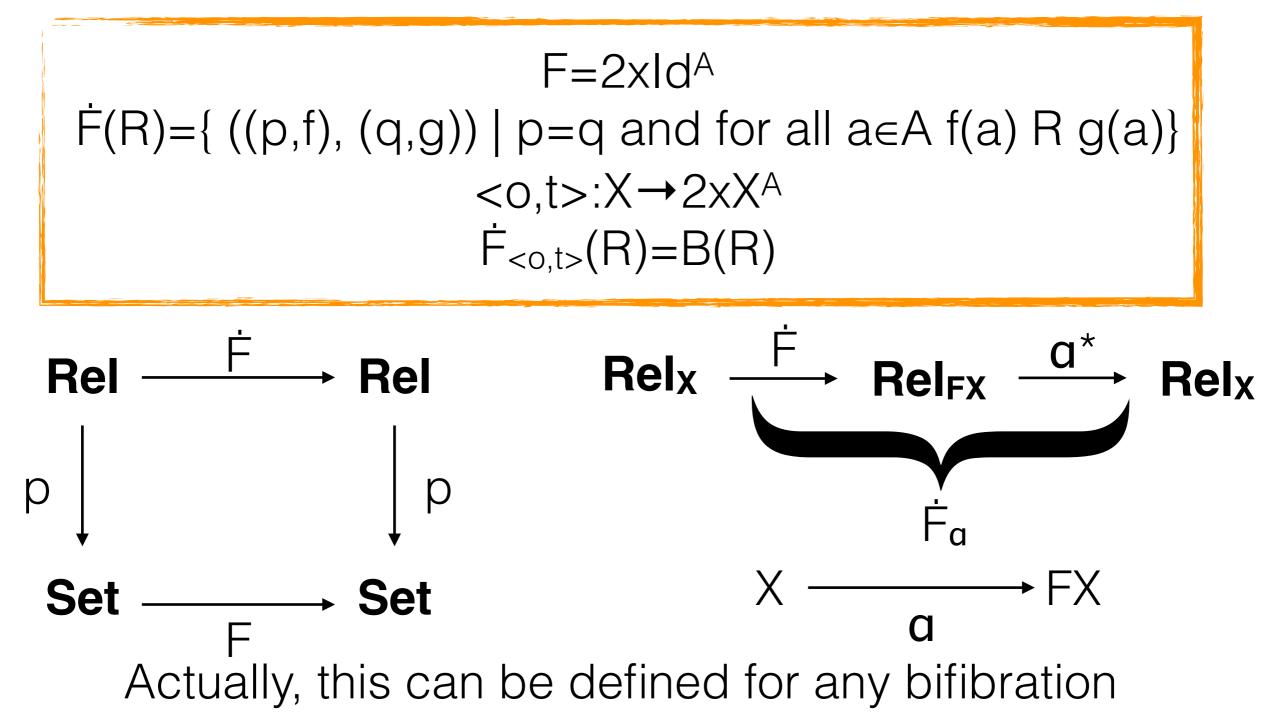
Coinductive Predicates

Hermida and Jacobs - Information and Computation 1998



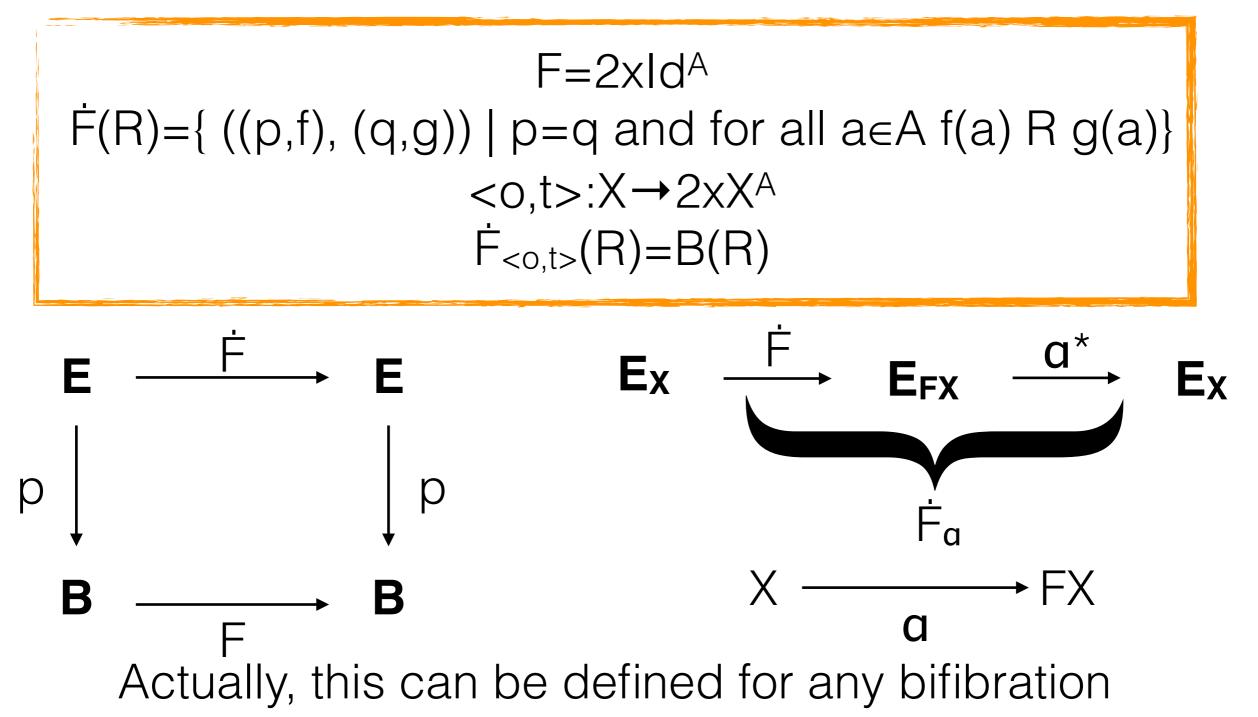
Coinductive Predicates

Hermida and Jacobs - Information and Computation 1998



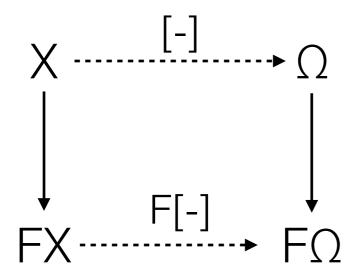
Coinductive Predicates

Hermida and Jacobs - Information and Computation 1998

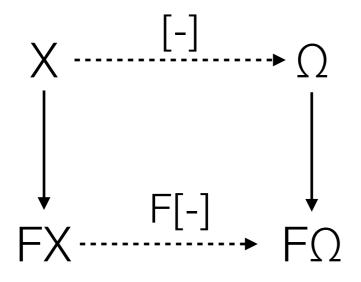


Bhv: $Rel_{x} -> Rel_{x}$ Bhv(R)= { (x,y) | x~x' R y'~y }

Bhv: **Relx**-->**Relx** Bhv(R)= { (x,y) | x~x' R y'~y }

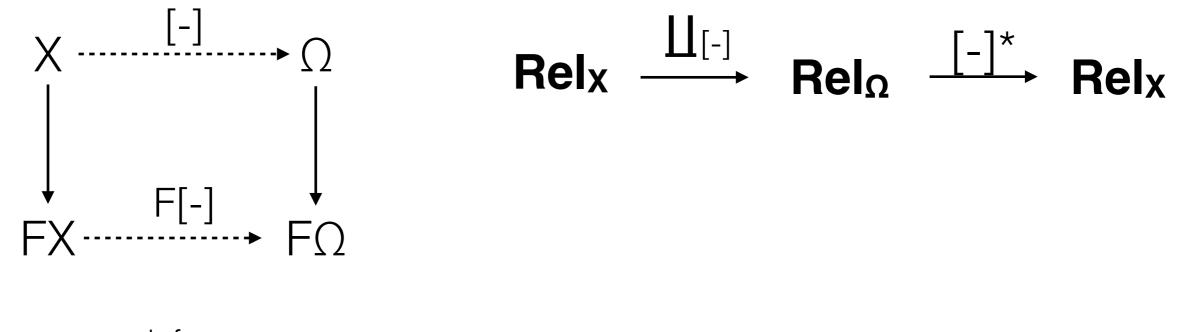


Bhv: **Relx**-->**Relx** Bhv(R)= { (x,y) | x~x' R y'~y }

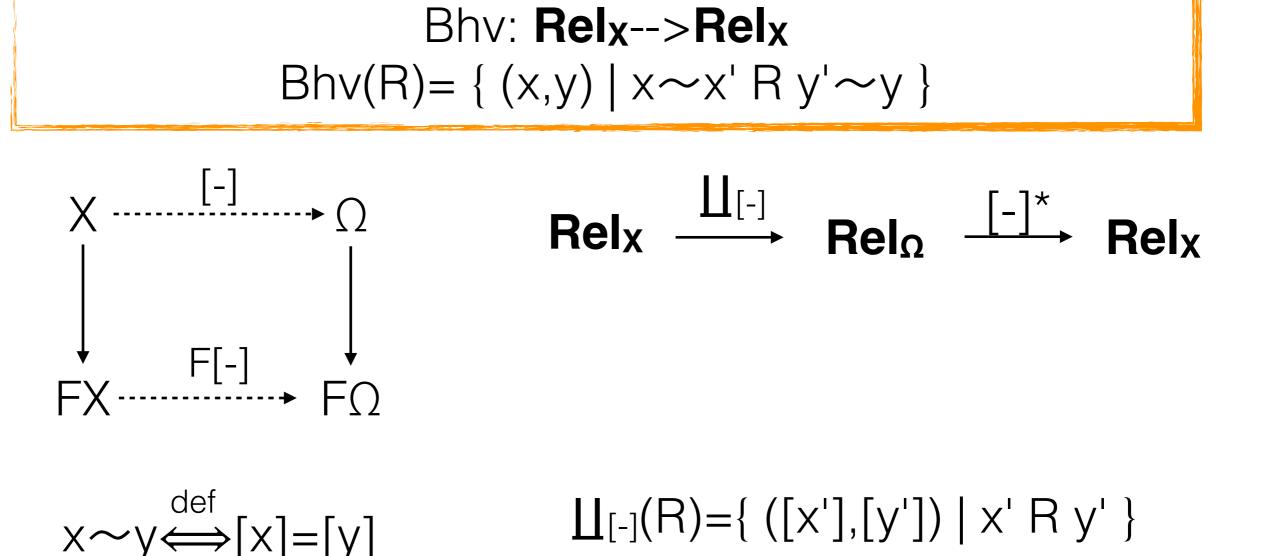


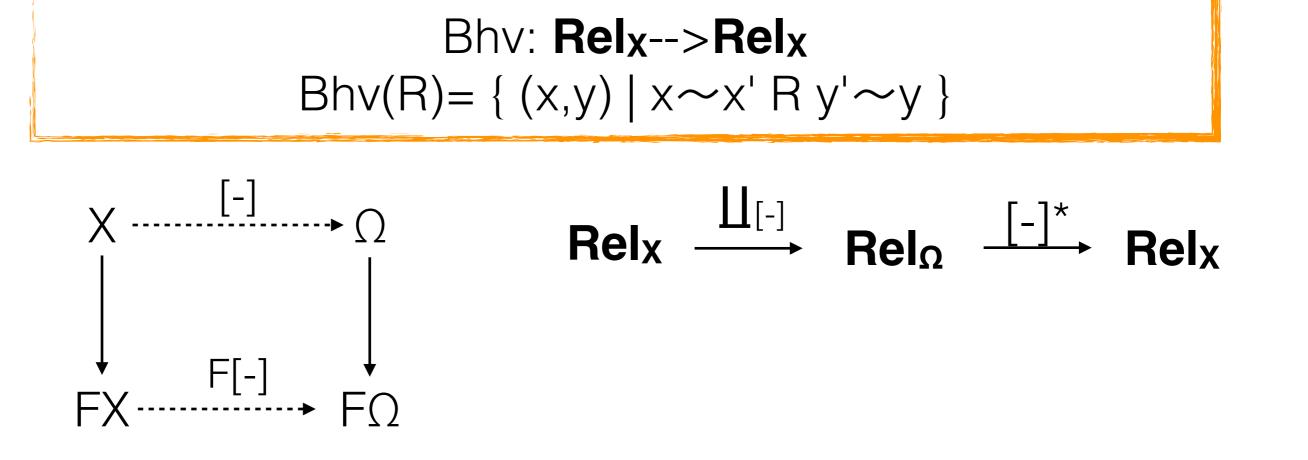
 $x \sim y \stackrel{\text{def}}{\iff} [x] = [y]$

Bhv: **Relx**-->**Relx** Bhv(R)= { (x,y) | x~x' R y'~y }



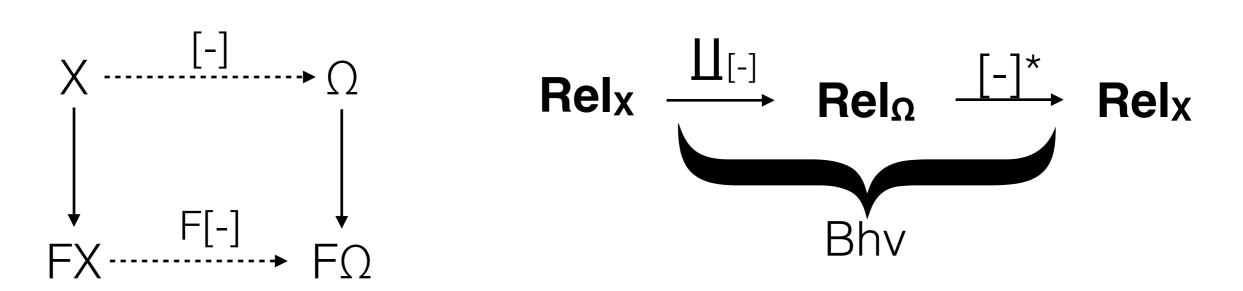
 $x \sim y \stackrel{\text{def}}{\iff} [x] = [y]$





 $x \sim y \stackrel{\text{def}}{\iff} [x] = [y] \qquad \qquad \coprod [-](R) = \{ ([x'], [y']) \mid x' R y' \}$

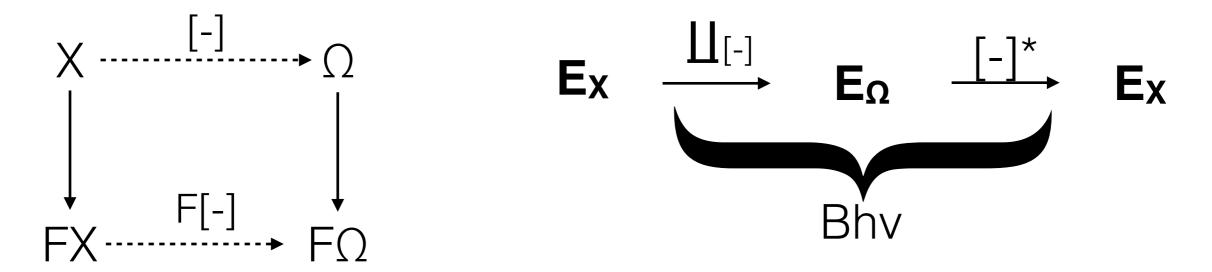
 $[-]^{*} \coprod_{[-]}(R) = \{ (x,y) \mid [x] = [x'] R [y'] = [y] \}$



 $x \sim y \Leftrightarrow [x] = [y]$

 $\coprod_{[-]}(R) = \{ ([x'], [y']) | x' R y' \}$

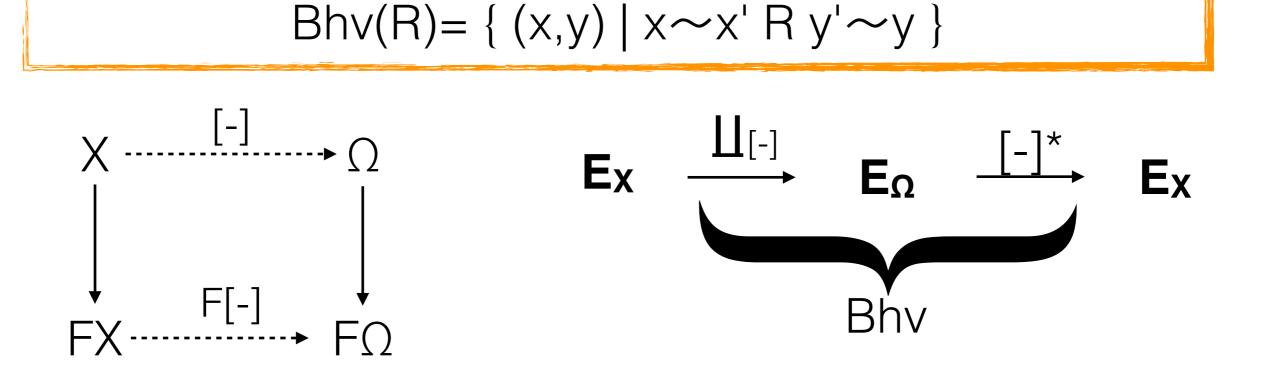
 $[-]^{*} \coprod_{[-]}(R) = \{ (x,y) \mid [x] = [x'] R [y'] = [y] \}$



 $x \sim y \stackrel{\text{def}}{\iff} [x] = [y] \qquad \qquad \coprod [x] = \{ ([x'], [y']) \mid x' R y' \}$

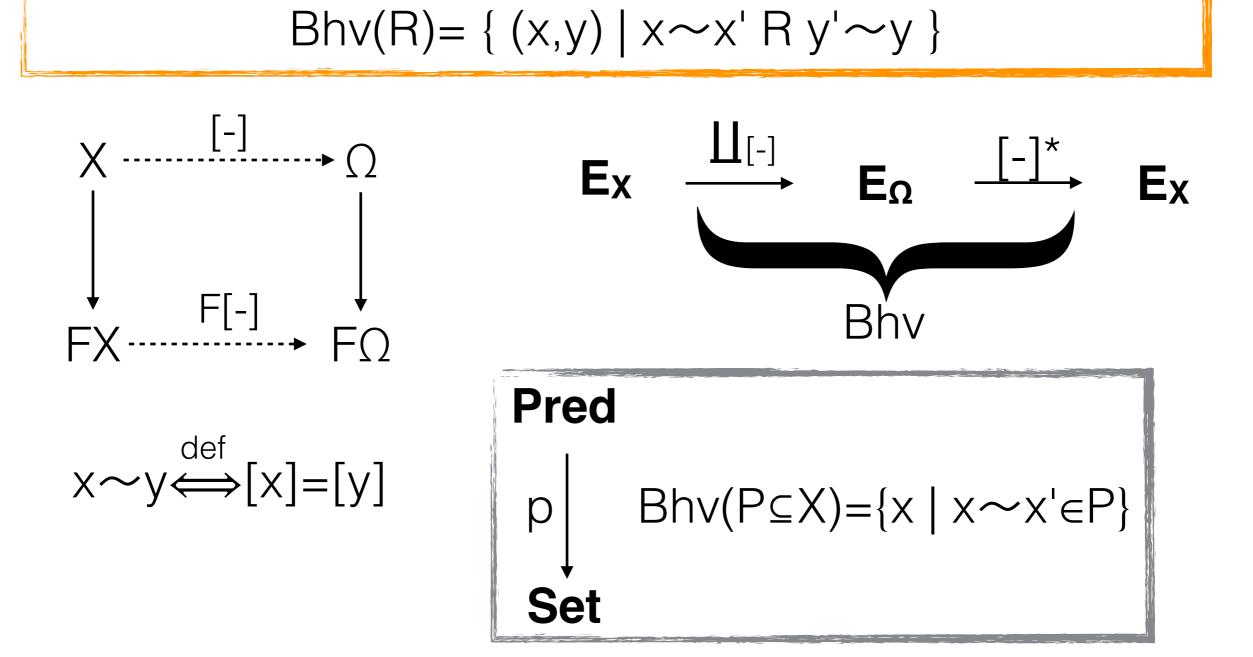
 $[-]^{*} \coprod_{[-]}(R) = \{ (x,y) \mid [x] = [x'] R [y'] = [y] \}$

Bhv: **Relx**-->**Relx**



 $x \sim y \stackrel{\text{def}}{\iff} [x] = [y]$

Bhv: **Relx**-->**Relx**



<u>Theorem</u>: Let (F,F) be a *fibration map* and **a**:X→FX be an F-coalgebra then Beh is compatible with F_a

<u>Theorem</u>: Let (F,F) be a *fibration map* and **a**:X→FX be an F-coalgebra then Beh is compatible with F_a

<u>Corollary</u>:

For the monotone predicate lifting (in Coalgebraic modal logic) up-to Beh is compatible

<u>Theorem</u>: Let (F,F) be a *fibration map* and **a**:X→FX be an F-coalgebra then Beh is compatible with F_a

<u>Theorem</u>: Let (F,F) be a *fibration map* and **a**:X→FX be an F-coalgebra then Beh is compatible with F_a

Whenever F preserves weak pullbacks the *canonical relational lifting* is a fibration map

<u>Theorem</u>: Let (F,F) be a *fibration map* and **a**:X→FX be an F-coalgebra then Beh is compatible with F_a

Whenever F preserves weak pullbacks the *canonical relational lifting* is a fibration map

Corollary:

up-to language equivalence (at the beginning of this talk) and up-to bisimilarity (Milner) are compatible

References

- Bonchi, Petrisan, Pous, Rot: Coinduction up-to in a fibrational setting. LICS 2014
- Bonchi, Petrisan, Pous, Rot: Lax bialgebra and up-to technique for weak bisimulation. CONCUR 2015
- Bonchi, Petrisan, Pous, Rot: A general account of bisimulation up-to. Submitted to ACTA
- Rot: Enhanced coinduction. Ph.D. Thesis, Leiden Univ.