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This talk: filling the gap

Landauer and Redmond, 1993: 
A (deterministic) lattice of information

Alvim, Chatzikokolakis, McIver, Morgan, Smith, 
Palamidessi, since 2012: 

A (probabilistic) lattice of information

MPC 2015: 
A (demonic) lattice of information
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(not a lattice, actually: only a (C)PO)



J.Landauer,T.Redmond. A lattice of information. Proc. 6th IEEE CSFW, pp 65–70, 1993.

A (deterministic) lattice of information 1

Here, programs are deterministic functions from 
secrets to observables; and such a function 
induces an equivalence relation on the secrets 
(of producing the same observable). 

Over a fixed space of secrets X, those ER’s 
(equivalently, partitions) have a well known lattice 
order (of partition refinement). 

Landauer and Redmond explored the 
implications of this lattice for security. … a long time ago



A (deterministic) lattice of information
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This f is “vowel or consonant”.

This f is “early or late”.

State space X is {A,B,E,W}.

Let the deterministic 
observation-function be f.
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A (deterministic) lattice of information
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Suppose we have two partitions S, I of state-

space X , and that S, I are generated by ob-

servation functions s:X!BS and i:X!BI re-

spectively. Then

soundness S v I if there is a “merging

function” m:BS!BI

such that i = m�s.

completeness S v I only if there is such an m.

Merging: soundness and completeness

BS

BI

X
m

s

i
=



Observation as a (channel) matrix

0 1 2 3

A √
B √
E √
W √

state

observation

One tick per row; possibly many ticks in a column.

partition cells



Refinement as matrix multiplication
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state= ×

Refinement is characterised by matrix post-multiplication with a “merging matrix”.

SI M



A (probabilistic) lattice of information

0 1 2 3

A 0.1 0.2 0.3 0.4

B 0 0 1 0

E 0.25 0.25 0.25 0.25

W 0 0.5 0 0.5

state

observation

Each row’s probabilities sum to one: a stochastic matrix.

2

∑ = 1



A (probabilistic) lattice of information

0.35 /4 0.95 /4 1.55 /4 1.15 /4

A 0.1/0.35 0.21 0.19 0.35

B 0 0 0.65 0

E 0.25/0.35 0.26 0.16 0.22

W 0 0.53 0 0.43

assume 
incoming 

state is 
uniformly 

distributed

outer probabilities

∑ = 1

inner, normalised conditional distributions



Refinement is characterised by matrix post-multiplication with a (now quantitative) 
“merging matrix” — this time all three matrices are stochastic.
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Refinement as matrix multiplication



A (demonic) lattice of information
Missing, in between, is an opportunity — having 
nondeterministic matrices with not a single 1 per 
row but rather at least one 1 per row, and 
consequentially sets of sets that are not necessarily 
partitions, that can possibly overlap. 

This is the demonic lattice of information: it 
generalises the deterministic case; it is generalised 
by the probabilistic case. Instead of cells (of a 
partition, disjoint), we speak of “shadows” – 
possibly overlapping subsets of the state space 
each representing knowledge that has escaped.

I will discuss highlights of this model.

3



A (demonic) lattice of information
Missing, in between, is an opportunity — having 
nondeterministic matrices with not a single 1 per 
row but rather at least one 1 per row, and 
consequentially sets of sets that are not necessarily 
partitions, that can possibly overlap. 

This is the demonic lattice of information: it 
generalises the deterministic case; it is generalised 
by the probabilistic case. Instead of cells (of a 
partition, disjoint), we speak of “shadows” – 
possibly overlapping subsets of the state space 
each representing knowledge that has escaped.

I will discuss highlights of this model.



A (demonic) lattice of information

shadows
The 

nondeterministic 
case

The probabilistic PO specialises to the demonic 
case by abstracting the conditional posteriors 
(inners) to their supports.

The deterministic case generalises to the 
demonic case by allowing the partitions’ cells to 
overlap.



This is surprising. 
Each shadow (subset of the state space) 
represents a possible state of knowledge of the 
adversary. (The multiplicity of shadows represents 
externally visible demonic choice.) 

Suppose there are three coins: coin A has two 
heads; coin C has two tails; and B has one of each. 
The observation is the face that shows; the secret 
is “Which coin is it?”

What’s refinement here? 
It’s not shadow-superset.



This is surprising. 
Each shadow (subset of the state space) 
represents a possible state of knowledge of the 
adversary. (The multiplicity of shadows represents 
externally visible demonic choice.) 

Suppose there are three coins: coin A has two 
heads; coin C has two tails; and B has one of each. 
The observation is the face that shows; the secret 
is “Which coin is it?”

Refinement is shadow union, 
not shadow-superset



Observation as a (channel) matrix

heads tails

A √

B √ √

C √

state

observation

shadows, overlapping

unquantified 
nondeterminism



Is that system more secure than this?

heads tails

A √

B √ √

C √

state

observation

shadows (disjoint)

nondeterminism 
removed



heads tails

A √

B √ √

C √

Is this system more secure?

state

observation

shadows grow, 
and overlap

restore 
nondeterminism



Refinement is characterised by matrix post-multiplication with a “merging matrix”, but 
this time all three matrices are demonic: all 0’s or 1’s; at least one 1 in each row.
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Refinement as matrix multiplication



A (demonic) lattice of information: 
the story so far

• The state-space is some non-empty X .

• The semantic space is then sets of subsets,

“shadows” of X . They do not have to cover

all of X ; they do not have to be disjoint.

• The “healthiness condition” for these sets of

shadows is union closure (not superset clo-

sure).

• Refinement is then merely reverse inclusion

wrt. these healthy sets of sets (as with other

powerdomains).



A tale of two families: Smyth and Jones

Mr and Mrs Smyth and Mr and Mrs Jones are 
next-door neighbours. Each family has a locked 
mailbox by the street. 

Adversary Albert knows that Mrs Smyth 
occasionally receives money in the post, and he 
would like to steal it. 



A tale of two families: Smyth and Jones

Because the mailboxes are locked, however, he 
has to steal the whole box and then break it open 
in his garage, at home. 

Albert watches the postman every day, waiting 
for his chance. The observable is the mailbox; 
the secret is the recipient. 

The shadows for each delivered letter are {S,s } 
and {J,j }. When the shadow contains s, he will 
steal the Smyth-box. Except…



Mr Smyth is a Mafia boss

Except… If Albert happens to steal any of Mr 
Smyth’s mail, 

he will be killed. 
Thus Albert dares not risk stealing the Smyth’s 
mailbox, ever. And, as a result, this system is 
secure against Albert. 
The significance of reward/punishment for the 
adversary is something we have learned only 
recently from Quantitative Information Flow, i.e. 
from the probabilistic case: security wrt a 
particular adversary depends on his 
circumstances.
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Mrs Smyth finds out about Mr Smyth
When Mrs Smyth discovers Mr Smyth’s Mafia 
connections, she divorces him and resumes her 
maiden name: she becomes Ms Jones. 
For a while, her mail continues to be delivered to her 
old address: the mailbox now reads 

Mr Smyth and Ms Jones. 
Unfortunately, the postman sometimes gets confused, 
and puts Ms Jones’ mail in the wrong box. 
The shadows are now {S,s } and {s,J,j }, representing 
an increase of ignorance. Yet the system has become 
insecure against Albert, because he is prepared to 
steal the Jones’s mailbox. Earlier, he was not.
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Let program Spec be x:2 {0, 1} u x:2 {2, 3}, where
(:2) is “internal demonic choice”, not observable

(like choosing a recipient) and (u) is “external de-
monic choice”, observable (like choosing a mail-

box).

Let program Kludge be x:2 {0, 1} u x:2 {1, 2, 3}, so
that every shadow of Kludge is a superset of some

shadow of Spec.

Then Kludge; print x÷2 might reveal that x=1;

but Spec; print x÷2 never can.

And in case you don’t believe in fairytales



And in case you don’t believe in fairytales

That’s no fairytale: it’s real. It’s an example of the failure of compositionality, equivalently 
a failure of monotonicity wrt refinement.

Let program Spec be x:2 {0, 1} u x:2 {2, 3}, where
(:2) is “internal demonic choice”, not observable

(like flipping a coin or rolling a die) and (u) is “ex-
ternal demonic choice”, observable (like choosing

between the coin and the die in the first place).

Let program Kludge be x:2 {0, 1} u x:2 {1, 2, 3}, so
that every shadow of Kludge is a superset of some

shadow of Spec.

Then Kludge; print x÷2 might reveal that x=1;

but Spec; print x÷2 never can.



What is refinement, then?

Refinement is done in two (optional) steps: 

i. (possibly) Add shadows each of which is 
the union of shadows that are already 
there; and  

ii. (possibly) Remove shadows. 

With this partial order (of refinement) we have a 
lattice. 

An easier way of looking at this (eventually) is to 
impose union-closure.



2

1

0

-1

-2

What is refinement, then?

2

1

0

-1

-2

Refinements are: 
• say nothing 
• say non-neg or nothing 
• say non-pos or nothing 
• say nn or np or nothing 

But this one is not a 
refinement.



The demonic lattice: a very quick tour

i. Union-closed sets of shadows can be taken 
the model; but what are the tests? 

ii. Given the tests, what’s soundness and 
completeness for testing in this case? 

iii. Can the tests be expressed in terms of 
program variables? 

iv. Can we achieve source-level reasoning for 
this kind of non-interference security?



The demonic lattice: a very quick tour
Union-closed sets of shadows is the model; but 
what are the tests?

i

A test is a pair of sets A,C — and a shadow S 
passes such a test just if

a shadow S satisfies (A,C)

just when S✓A ) S✓C.

Any A,C are allowed. For example if A and C don’t intersect, then it simply means 
that the pair (A,C) is satisfied only by the empty S.

 S is a subset of C whenever S is a subset of A.



“Synthesis” of the A,C -test

Spc 6v Kld

⌘ (9 shadow K:Kld ·K/2Spc)
⌘ “Spc union-closed”

(9K:Kld ·K not union of any subset of Spc)
⌘ ( 9K:Kld ·

(9k:K · (8 shadow S:Spc · k2S ) S 6✓K)) )

⌘ ( 9K:Kld ; k · k2K^
(8 shadow S:Spc · k2S ) S 6✓K)) )

⌘ “define �A,C(X):= X✓A ) X✓C)”

( 9K:Kld ; k · ¬�K,k(K) ^ (8S:Spc · �K,k(S)) )

⌘ (9K:Kld ; test � · ¬�(K) ^ (8S:Spc · �(S)))
complement of {k}

“if” here requires a moment’s thought.



Given the tests, what’s soundness and 
completeness for testing in this case?

ii

• If Spec is refined by Imp, then every test passed by all 
shadows of Spec must also be passed by all shadows of 
Imp. 

• If Kludge does not refine Spec, then there is a test that 
all shadows of Spec pass, but some shadow of Imp fails. 

• Any collection of tests characterises a union-closed set 
of shadows. 

• Any union-closed set of shadows is characterised by 
some collection of tests.

The demonic lattice: a very quick tour
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iii

When A and C are given as predicates over the 
program variables, say formulae Phi and Psi rather 
than set expressions, then “being a subset” is 
implication, universally quantified over those program 
variables.

The demonic lattice: a very quick tour

Can the tests be expressed in terms of program 
variables?



iii

And that is a a very familiar paradigm for those used to 
assertional reasoning over program texts. 
The shadow’s being a “subset” of some predicate Phi 
can be thought of as a modal formula K Phi, that is that 
“Phi is known to hold for all states in the shadow”. 
Its dual is P Phi, that “It is not known that A doesn’t 
hold for some state in the shadow.”

The demonic lattice: a very quick tour

Can the tests be expressed in terms of program 
variables?



We use > for true and ? for false.

Idioms and examples
We use state variables x, y, . . . and a state-space

X⇥Y ⇥ · · · as appropriate.

x’s exact value is unknown (8x:X ·K(x=x) ) K?)

nothing is known about x (8x:X ·K(x 6=x) ) K?)

neither x’s nor y’s exact value is known

(8x:X ; y:Y · (K(x=x) ) K?) ^ (K(y=y) ) K?))

learning x’s value does not reveal y’s value

(8x:X ; y:Y ·K(x=x ) y=y) ) K(x 6=x))

learning x’s value does not reveal anything about y

(8x:X ; y:Y ·K(x=x ) y 6=y) ) K(x 6=x))
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Idioms and examples
We use state variables x, y, . . . and a state-space

X⇥Y ⇥ · · · as appropriate.

x’s exact value is unknown (8x:X ·K(x=x) ) K?)
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learning x’s value does not reveal anything about y

(8x:X ; y:Y ·K(x=x ) y 6=y) ) K(x 6=x))

Do we really understand the English here?



if x is not 0, then in

fact it’s not 1 (either)

K(x 6=0) ) K(x 6=1)

—(ditto)— K{1, 2, 3} ) K{2, 3}

if we know the letter was not for Mr. Smyth,

then we know it was not for Mrs. Smyth

K(not for Mr. Smyth)

) K(not for Mrs. Smyth)

P (for Mrs. Smyth)

) P (for Mr. Smyth)

Idioms and examples

The Mr/Mrs Smyth assertion is satisfied by the Mrs. Smyth system but not by 
the Ms. Jones system: it shows therefore that the latter does not refine the former.

equivalently



Hey, there’s no idiom for that…

Only properties that are preserved by refinement can 
be expressed in this form, that is as conjunctions of 
K-implications (equiv. of P-implications). 
And every property that is refinement preserving can 
be expressed that way. 
As with all formal methods, our hope here is that this 
rigour is limiting our vocabulary to statements that 
actually make sense for refinement. And any property 
not preserved by refinement does not make sense, at 
least not for serious program development.

And every failed refinement can be caught by a single K-pair or P-pair.

expressively complete



P� = ¬K(¬�) becomes ¬K( ) ¬�) = P ( ^ �)

Can we achieve source-level reasoning for this 
kind of non-interference security?

Yes. Although it can be intricate, at least it’s 
mechanical.

• For wp.assignment.Phi replace every K(body) in Phi with 
K(wp.assignment.body) 

• For external demonic choice, take the conjunction. 
• For wp.(print exp).Phi replace every K(body) in Phi with 

K(exp=x ⇒ body) and put (∀x …) on the outside.

ivThe demonic lattice: a very quick tour



Refinements… and not

The Refinement Paradox

Prog1 u Prog2 v Prog1

because wp.(Prog1 u Prog2).�
= wp.Prog1.� ^ wp.Prog2.�
) wp.Prog1.�

so that e.g. we have x:= 1 u x:= 2 v x:=1 .

But we never have x:2S1 v x:2S2 unless S1=S2.

Why not?



External- vs. internal demonic choice

External demonic choice represents (as usual) 
implementation freedom, deliberate looseness in a 
specification, run-time unpredictability… 

and it can be “refined away” to a more constrained 
implementation, a tighter specification, or more 
predictable behaviour at run-time. 

Refinement can make EDC smaller, but never larger.



External- vs. internal demonic choice

Internal demonic choice represents deliberate 
obfuscation. It can’t be reduced, because that 
would reduce security as well (e.g. fewer possible 
passwords). 
But in general it can’t be increased either, because 
that might consequentially cause an increase in 
external nondeterminism. For example, sticking a 
“more secure” 10-character password into an 8-byte 
field actually decreases security: buffer overrun. 
Refinement in general cannot change IDC in either 
direction: not smaller, not larger.
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How changing IDC is prevented

Suppose wp.(x:2S).(K )K�) holds. That is by def-

inition

K(wp.(x:2S). ) ) K(wp.(x:2S).�) .

If S is made larger, the antecedent and the consequent

both become stronger; if S is made smaller, the an-

tecedent and the consequent both become weaker. Nei-

ther of those is implication in general.



How changing IDC is detected

Programs x:2S1 and x:2S2 have as results the single

shadows S1 and S2 resp. What single test distinguishes

them when S1 6=S2?

If S2 6✓S1 then S1 passes K> ) KS1 but S2 does not.

If S2⇢S1 then S1 passes KS2 ) K? but S2 does not.

Either way we have x:2S1 6v x:2S2.



Examples of source-level reasoning

wp.(x:=x+1).“don’t know x is even”

= wp.(x:=x+1).(K(x is even) ) K?)

= K(wp.(x:=x+1).(x is even)) ) K(wp.(x:=x+1).?)

= K(x is odd) ) K?
= “don’t know x is odd” .

Deterministic.

afterwards

beforehand



Examples of source-level reasoning

External nondeterminism is visible to the adversary.

wp.(x:=x+1 u skip).“don’t know x is even”

= wp.(x:=x+1).(K(x is even) ) K?)

^ wp.skip.(K(x is even) ) K?)

= K(wp.(x:=x+1).(x is even)) ) K(wp.(x:=x+1).?)

^ K(wp.skip.(x is even)) ) K(wp.skip.?)

= (K(x is odd) ) K?) ^ (K(x is even) ) K?)

= K(x is odd) _K(x is even) ) K?
= (9z:{0, 1} ·K(xmod 2 = z)) ) K?

= “don’t know x’s parity” .



Examples of source-level reasoning

Internal nondeterminism is hidden from the adversary.

wp.(x:= (x+1) u x).“don’t know x is even”

= wp.(x:= (x+1) u x).(K(x is even) ) K?)

= K(wp.(x:= (x+1) u x).(x is even))

) K(wp.(x:= (x+1) u x).?)

= K? ) K?
= > .

Between statements this is EDC; within an expression it is IDC.



Examples of source-level reasoning

wp.(print x).“don’t know x=0”

= wp.(print x).(K(x=0) ) K?)

= (8x ·K(x=x ) x=0) ) K(x=x ) ?))

= (8x ·K(x=x ) x=0) ) K(x 6=x))

= K(x 6=0) ^ (8x ·K(x=x ) x=0) ) K(x 6=x))

= K(x 6=0) ^ (8x ·K(x 6=x) ) K(x 6=x))

= K(x 6=0) .

“x might not be 0”

“x can’t be 0”

To ensure that an attacker will think x might not be 0 afterwards, 
you must ensure that x is definitely not 0 before.



Examples of source-level reasoning

It would indeed be a miracle if printing x’s value did not reveal x’s exact value.

wp.(print x).“don’t know x’s exact value”

= wp.(print x).(8x ·K(x=x) ) K?)

= (8x0 · (8x ·K(x=x

0 ) x=x) ) K(x=x

0 ) ?)))

= (8x, x0 ·K(x=x

0 ) x=x) ) K(x 6=x

0
))

) (8x ·K(x=x ) x=x) ) K(x 6=x))

= (8x ·K(x 6=x))

= K(8x · x 6=x)

= K? .

“x can’t be any value x before.”



Examples of source-level reasoning

wp.(print xuy).“do not know y’s exact value”

= wp.(print xuy).(8y ·K(y=y) ) K?)

= (8y, z ·K((x=z _ y=z) ) y=y) ) K(x 6=z ^ y 6=z)) ,

which is mysteriously complex. Does it have to be?

Either x or y is printed, but we do not know which one it was. 
When can we figure out y’s value even so?

The nondeterminism above is internal, within the print statement: it is not observable.



It should at least imply “we don’t know y’s value 
beforehand.” It does that. 
It should imply “there is no value that y can take but 
x cannot.” It does that, too. 
It even implies “there is no value that x can take but 
not y and which x-value determines y uniquely.
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beforehand.” It does that. 
It should imply “there is no value that y can take but  
x cannot.” It does that, too. 
It even implies “there is no value that x can take but 
not y and which x-value determines y uniquely.

wp.(print xuy).“do not know y’s exact value”

= wp.(print xuy).(8y ·K(y=y) ) K?)

= (8y, z ·K((x=z _ y=z) ) y=y) ) K(x 6=z ^ y 6=z)) ,

which is mysteriously complex. Does it have to be?



Examples of source-level reasoning

It should at least imply “we don’t know y’s value 
beforehand.” It does that. 
It should imply “there is no value that y can take but 
x cannot.” It does that, too. 
It even implies “there is no value that x can take but 
not y and which x-value determines y uniquely.

wp.(print xuy).“do not know y’s exact value”

= wp.(print xuy).(8y ·K(y=y) ) K?)

= (8y, z ·K((x=z _ y=z) ) y=y) ) K(x 6=z ^ y 6=z)) ,

which is mysteriously complex. Does it have to be?



Examples of source-level reasoning

It should at least imply “we don’t know y’s value 
beforehand.” It does that. 
It should imply “there is no value that y can take but 
x cannot.” It does that, too. 
It even implies “there is no value that x can take but 
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But all that is still not enough.
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Examples of source-level reasoning

It should at least imply “we don’t know y’s value 
beforehand.” It does that. 
It should imply “there is no value that y can take but 
x cannot.” It does that, too. 
It even implies “there is no value that x can take but 
not y and which x-value determines y uniquely.

What if we know nothing about x,y except that they are equal?

wp.(print xuy).“do not know y’s exact value”

= wp.(print xuy).(8y ·K(y=y) ) K?)

= (8y, z ·K((x=z _ y=z) ) y=y) ) K(x 6=z ^ y 6=z)) ,

which is mysteriously complex. Does it have to be?



Examples of source-level reasoning

This is not rocket science — it’s just fiddling with sets. But it is very tricky! 
Security in general is very tricky.

wp.(print xuy).“do not know y’s exact value”

= wp.(print xuy).(8y ·K(y=y) ) K?)

= (8y, z ·K((x=z _ y=z) ) y=y) ) K(x 6=z ^ y 6=z))

= (8z · (9y ·K((x=z _ y=z) ) y=y)) ) K(x 6=z ^ y 6=z))
= (8z · P (x=z _ y=z) ) ( 6 9y ·K((x=z _ y=z) ) y=y)))
= (8z · P (z2{x, y}) ) ( 6 9y ·K(z2{x, y} ) y=y))) ,

i.e. “For every value (z) that x or y might take,

there is no single value (y) determined for y.”

x y
00
01
11
12
22
20



Conclusions

• Union-closed sets of shadows is our model for demonic 
non-interference security. 

• It is a lattice: it generalises L&R’s lattice; it is generalised 
by hyper-distributions. 

• Any non-refinement can be demonstrated with a single 
primitive test “If we know A then we (also) know C.” 

• Conjunctions of primitive tests capture all and only 
union-closed sets of shadows. 

• There is a wp-calculus for conjunctions of primitive tests. 
• The wp-generated preconditions can be complex! Is that 

intrinsic to security, viz. inescapable?

healthiness condition for the model
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• The wp-generated preconditions can be complex! Is that 
intrinsic to security, viz. inescapable?
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• The wp-generated preconditions can be complex! Is that 
intrinsic to security, viz. inescapable?

Conclusions

Hmm…

• Union-closed sets of shadows is our model for demonic 
non-interference security. 

• It is a lattice: it generalises L&R’s lattice; it is generalised 
by hyper-distributions. 

• Any non-refinement can be demonstrated with a single 
primitive test “If we know A then we (also) know C.” 

• Conjunctions of primitive tests capture all and only 
union-closed sets of shadows. 

• There is a wp-calculus for conjunctions of primitive tests.



On principles…

Landauer and Redmond’s (1993) original work 
provided the motivation. Their context was simple 
enough that principles were not explicitly 
necessary. 
Hyper-distributions (2010–5) are sufficiently 
complex that principles are indispensable. 
Shadows (2006) were complex enough to benefit 
from explicit principles, but still simple enough 
that ad-hoc progress could be made without. 
Using principles from 2010–5 and motivation from 
1993, we have put Shadows at their place in the 
hierarchy.

deterministic

probabilistic

demonic

0 0 1 0 1 0 1 0 0.1 0.2 0.3 0.4


