
A nondeterministic lattice
of information

Carroll Morgan
University of New South Wales, and NICTA
Sydney, AU

Maths. of Program Construction 2015
Königswinter, DE

Landauer and Redmond, 1993:
A (deterministic) lattice of information

Alvim, Chatzikokolakis, McIver, Morgan, Smith,
Palamidessi, since 2012:

A (probabilistic) lattice of information

The essence of information flow

This talk: filling the gap

Landauer and Redmond, 1993:
A (deterministic) lattice of information

Alvim, Chatzikokolakis, McIver, Morgan, Smith,
Palamidessi, since 2012:

A (probabilistic) lattice of information

MPC 2015:
A (demonic) lattice of information

3

1

2

(not a lattice, actually: only a (C)PO)

J.Landauer,T.Redmond. A lattice of information. Proc. 6th IEEE CSFW, pp 65–70, 1993.

A (deterministic) lattice of information 1

Here, programs are deterministic functions from
secrets to observables; and such a function
induces an equivalence relation on the secrets
(of producing the same observable).

Over a fixed space of secrets X, those ER’s
(equivalently, partitions) have a well known lattice
order (of partition refinement).

Landauer and Redmond explored the
implications of this lattice for security. … a long time ago

A (deterministic) lattice of information

A B

E W

A B

E W

A B

E W

A B

E W

min

cookie-cutter

This f is a constant function.

1

1

2

3

This f is “vowel or consonant”.

This f is “early or late”.

State space X is {A,B,E,W}.

Let the deterministic
observation-function be f.

A (deterministic) lattice of information

A B

E W

A B

E W

A B

E W

A B

E W

min

cookie-cutter

This f is a constant function.

This f is (MOD 4).

1

1

2

3

This f is “vowel or consonant”.

This f is “early or late”.

State space X is {A,B,E,W}.

Let the deterministic
observation-function be f.

A (deterministic) lattice of information

A B

E W

A B

E W

A B

E W

A B

E W

v
v

less secure

refinement order of increasing security

A (deterministic) lattice of information

A B

E W

A B

E W

A B

E W

A B

E W

least
more securev

v

Suppose we have two partitions S, I of state-

space X , and that S, I are generated by ob-

servation functions s:X!BS and i:X!BI re-

spectively. Then

soundness S v I if there is a “merging

function” m:BS!BI

such that i = m�s.

completeness S v I only if there is such an m.

Merging: soundness and completeness

BS

BI

X
m

s

i
=

Observation as a (channel) matrix

0 1 2 3

A √
B √
E √
W √

state

observation

One tick per row; possibly many ticks in a column.

partition cells

Refinement as matrix multiplication

0 1 2 3
A
B
E
W

state

obsI

0 1 2
A
B
E
W

obsS

0 1 2
0
1
2
3

obsI

obs
S

state= ×

Refinement is characterised by matrix post-multiplication with a “merging matrix”.

SI M

A (probabilistic) lattice of information

0 1 2 3

A 0.1 0.2 0.3 0.4

B 0 0 1 0

E 0.25 0.25 0.25 0.25

W 0 0.5 0 0.5

state

observation

Each row’s probabilities sum to one: a stochastic matrix.

2

∑ = 1

A (probabilistic) lattice of information

0.35 /4 0.95 /4 1.55 /4 1.15 /4

A 0.1/0.35 0.21 0.19 0.35

B 0 0 0.65 0

E 0.25/0.35 0.26 0.16 0.22

W 0 0.53 0 0.43

assume
incoming

state is
uniformly

distributed

outer probabilities

∑ = 1

inner, normalised conditional distributions

Refinement is characterised by matrix post-multiplication with a (now quantitative)
“merging matrix” — this time all three matrices are stochastic.

0 1 2 3
A
B
E
W

state

obsI

0 1 2
A
B
E
W

obsS

0 1 2
0
1
2
3

obsI

obs
S

state= ×SI M

Refinement as matrix multiplication

A (demonic) lattice of information
Missing, in between, is an opportunity — having
nondeterministic matrices with not a single 1 per
row but rather at least one 1 per row, and
consequentially sets of sets that are not necessarily
partitions, that can possibly overlap.

This is the demonic lattice of information: it
generalises the deterministic case; it is generalised
by the probabilistic case. Instead of cells (of a
partition, disjoint), we speak of “shadows” –
possibly overlapping subsets of the state space
each representing knowledge that has escaped.

I will discuss highlights of this model.

3

A (demonic) lattice of information
Missing, in between, is an opportunity — having
nondeterministic matrices with not a single 1 per
row but rather at least one 1 per row, and
consequentially sets of sets that are not necessarily
partitions, that can possibly overlap.

This is the demonic lattice of information: it
generalises the deterministic case; it is generalised
by the probabilistic case. Instead of cells (of a
partition, disjoint), we speak of “shadows” –
possibly overlapping subsets of the state space
each representing knowledge that has escaped.

I will discuss highlights of this model.

A (demonic) lattice of information

shadows
The

nondeterministic
case

The probabilistic PO specialises to the demonic
case by abstracting the conditional posteriors
(inners) to their supports.

The deterministic case generalises to the
demonic case by allowing the partitions’ cells to
overlap.

This is surprising.
Each shadow (subset of the state space)
represents a possible state of knowledge of the
adversary. (The multiplicity of shadows represents
externally visible demonic choice.)

Suppose there are three coins: coin A has two
heads; coin C has two tails; and B has one of each.
The observation is the face that shows; the secret
is “Which coin is it?”

What’s refinement here?
It’s not shadow-superset.

This is surprising.
Each shadow (subset of the state space)
represents a possible state of knowledge of the
adversary. (The multiplicity of shadows represents
externally visible demonic choice.)

Suppose there are three coins: coin A has two
heads; coin C has two tails; and B has one of each.
The observation is the face that shows; the secret
is “Which coin is it?”

Refinement is shadow union,
not shadow-superset

Observation as a (channel) matrix

heads tails

A √

B √ √

C √

state

observation

shadows, overlapping

unquantified
nondeterminism

Is that system more secure than this?

heads tails

A √

B √ √

C √

state

observation

shadows (disjoint)

nondeterminism
removed

heads tails

A √

B √ √

C √

Is this system more secure?

state

observation

shadows grow,
and overlap

restore
nondeterminism

Refinement is characterised by matrix post-multiplication with a “merging matrix”, but
this time all three matrices are demonic: all 0’s or 1’s; at least one 1 in each row.

0 1 2 3
A
B
E
W

state

obsI

0 1 2
A
B
E
W

obsS

0 1 2
0
1
2
3

obsI

obs
S

state= ×SI M

Refinement as matrix multiplication

A (demonic) lattice of information:
the story so far

• The state-space is some non-empty X .

• The semantic space is then sets of subsets,

“shadows” of X . They do not have to cover

all of X ; they do not have to be disjoint.

• The “healthiness condition” for these sets of

shadows is union closure (not superset clo-

sure).

• Refinement is then merely reverse inclusion

wrt. these healthy sets of sets (as with other

powerdomains).

A tale of two families: Smyth and Jones

Mr and Mrs Smyth and Mr and Mrs Jones are
next-door neighbours. Each family has a locked
mailbox by the street.

Adversary Albert knows that Mrs Smyth
occasionally receives money in the post, and he
would like to steal it.

A tale of two families: Smyth and Jones

Because the mailboxes are locked, however, he
has to steal the whole box and then break it open
in his garage, at home.

Albert watches the postman every day, waiting
for his chance. The observable is the mailbox;
the secret is the recipient.

The shadows for each delivered letter are {S,s }
and {J,j }. When the shadow contains s, he will
steal the Smyth-box. Except…

Mr Smyth is a Mafia boss

Except… If Albert happens to steal any of Mr
Smyth’s mail,

he will be killed.
Thus Albert dares not risk stealing the Smyth’s
mailbox, ever. And, as a result, this system is
secure against Albert.
The significance of reward/punishment for the
adversary is something we have learned only
recently from Quantitative Information Flow, i.e.
from the probabilistic case: security wrt a
particular adversary depends on his
circumstances.

Mr Smyth is a Mafia boss

Except… If Albert happens to steal any of Mr
Smyth’s mail,

he will be killed.
Thus Albert dares not risk stealing the Smyth’s
mailbox, ever. And, as a result, this system is
secure against Albert.
The significance of reward/punishment for the
adversary is something we have learned only
recently from Quantitative Information Flow, i.e.
from the probabilistic case: security wrt a
particular adversary depends on his
circumstances.

MPC 2006

CSF 2014
PoST 2014

(SCP 2009)

Landauer
LiCS 2015

LiCS 2012

MSCS 2014

(on notation)

MPC 2015

SCP 2014
MPC 2012

Trajectory

“The Shadow”

led to

QIF

QIF

deterministic

demonic

demonic

ICALP 20102008

FAC
FME

SCP
ICTAC Rodin

MPC 2006

Engelhardt
Moses

Meinicke

CSF 2014
PoST 2014

FAC

(SCP 2009)

FME

Landauer
LiCS 2015

ICALP 2010 LiCS 2012

McIver

Rabehaja

Smith

Chatzikokolakis
Alvim

Espinoza

MSCS 2014

SCP

(on notation)

MPC 2015

SCP 2014
MPC 2012

2008

ICTAC
Trajectory

“The Shadow”

Sloane
Hoang

Wen

Rodin

influenced
collaborated
led to

QIF

QIF

Malacaria
deterministic

demonic

demonic

Malacaria

Palamidessi

Mrs Smyth finds out about Mr Smyth
When Mrs Smyth discovers Mr Smyth’s Mafia
connections, she divorces him and resumes her
maiden name: she becomes Ms Jones.
For a while, her mail continues to be delivered to her
old address: the mailbox now reads

Mr Smyth and Ms Jones.
Unfortunately, the postman sometimes gets confused,
and puts Ms Jones’ mail in the wrong box.
The shadows are now {S,s } and {s,J,j }, representing
an increase of ignorance. Yet the system has become
insecure against Albert, because he is prepared to
steal the Jones’s mailbox. Earlier, he was not.

Mrs Smyth finds out about Mr Smyth
When Mrs Smyth discovers Mr Smyth’s Mafia
connections, she divorces him and resumes her
maiden name: she becomes Ms Jones.
For a while, her mail continues to be delivered to her
old address: the mailbox now reads

Mr Smyth and Ms Jones.
Unfortunately, the postman sometimes gets confused,
and puts Ms Jones’ mail in the wrong box.
The shadows are now {S,s } and {s,J,j }, representing
an increase of ignorance. Yet the system has become
insecure against Albert, because he is prepared to
steal the Jones’s mailbox. Earlier, he was not.

Let program Spec be x:2 {0, 1} u x:2 {2, 3}, where
(:2) is “internal demonic choice”, not observable

(like choosing a recipient) and (u) is “external de-
monic choice”, observable (like choosing a mail-

box).

Let program Kludge be x:2 {0, 1} u x:2 {1, 2, 3}, so
that every shadow of Kludge is a superset of some

shadow of Spec.

Then Kludge; print x÷2 might reveal that x=1;

but Spec; print x÷2 never can.

And in case you don’t believe in fairytales

And in case you don’t believe in fairytales

That’s no fairytale: it’s real. It’s an example of the failure of compositionality, equivalently
a failure of monotonicity wrt refinement.

Let program Spec be x:2 {0, 1} u x:2 {2, 3}, where
(:2) is “internal demonic choice”, not observable

(like flipping a coin or rolling a die) and (u) is “ex-
ternal demonic choice”, observable (like choosing

between the coin and the die in the first place).

Let program Kludge be x:2 {0, 1} u x:2 {1, 2, 3}, so
that every shadow of Kludge is a superset of some

shadow of Spec.

Then Kludge; print x÷2 might reveal that x=1;

but Spec; print x÷2 never can.

What is refinement, then?

Refinement is done in two (optional) steps:

i. (possibly) Add shadows each of which is
the union of shadows that are already
there; and  

ii. (possibly) Remove shadows.

With this partial order (of refinement) we have a
lattice.

An easier way of looking at this (eventually) is to
impose union-closure.

2

1

0

-1

-2

What is refinement, then?

2

1

0

-1

-2

Refinements are:
• say nothing
• say non-neg or nothing
• say non-pos or nothing
• say nn or np or nothing

But this one is not a
refinement.

The demonic lattice: a very quick tour

i. Union-closed sets of shadows can be taken
the model; but what are the tests?

ii. Given the tests, what’s soundness and
completeness for testing in this case?

iii. Can the tests be expressed in terms of
program variables?

iv. Can we achieve source-level reasoning for
this kind of non-interference security?

The demonic lattice: a very quick tour
Union-closed sets of shadows is the model; but
what are the tests?

i

A test is a pair of sets A,C — and a shadow S
passes such a test just if

a shadow S satisfies (A,C)

just when S✓A) S✓C.

Any A,C are allowed. For example if A and C don’t intersect, then it simply means
that the pair (A,C) is satisfied only by the empty S.

 S is a subset of C whenever S is a subset of A.

“Synthesis” of the A,C -test

Spc 6v Kld

⌘ (9 shadow K:Kld ·K/2Spc)
⌘ “Spc union-closed”

(9K:Kld ·K not union of any subset of Spc)
⌘ (9K:Kld ·

(9k:K · (8 shadow S:Spc · k2S) S 6✓K)))

⌘ (9K:Kld ; k · k2K^
(8 shadow S:Spc · k2S) S 6✓K)))

⌘ “define �A,C(X):= X✓A) X✓C)”

(9K:Kld ; k · ¬�K,k(K) ^ (8S:Spc · �K,k(S)))

⌘ (9K:Kld ; test � · ¬�(K) ^ (8S:Spc · �(S)))
complement of {k}

“if” here requires a moment’s thought.

Given the tests, what’s soundness and
completeness for testing in this case?

ii

• If Spec is refined by Imp, then every test passed by all
shadows of Spec must also be passed by all shadows of
Imp.

• If Kludge does not refine Spec, then there is a test that
all shadows of Spec pass, but some shadow of Imp fails.

• Any collection of tests characterises a union-closed set
of shadows.

• Any union-closed set of shadows is characterised by
some collection of tests.

The demonic lattice: a very quick tour

“Synthesis” of the A,C -test

Spc 6v Kld

⌘ (9 shadow K:Kld ·K/2Spc)
⌘ “Spc union-closed”

(9K:Kld ·K not union of any subset of Spc)
⌘ (9K:Kld ·

(9k:K · (8 shadow S:Spc · k2S) S 6✓K)))

⌘ (9K:Kld ; k · k2K^
(8 shadow S:Spc · k2S) S 6✓K)))

⌘ “define �A,C(X):= X✓A) X✓C)”

(9K:Kld ; k · ¬�K,k(K) ^ (8S:Spc · �K,k(S)))

⌘ (9K:Kld ; test � · ¬�(K) ^ (8S:Spc · �(S)))
complement of {k}

“if” here requires a moment’s thought.

iii

When A and C are given as predicates over the
program variables, say formulae Phi and Psi rather
than set expressions, then “being a subset” is
implication, universally quantified over those program
variables.

The demonic lattice: a very quick tour

Can the tests be expressed in terms of program
variables?

iii

And that is a a very familiar paradigm for those used to
assertional reasoning over program texts.
The shadow’s being a “subset” of some predicate Phi
can be thought of as a modal formula K Phi, that is that
“Phi is known to hold for all states in the shadow”.
Its dual is P Phi, that “It is not known that A doesn’t
hold for some state in the shadow.”

The demonic lattice: a very quick tour

Can the tests be expressed in terms of program
variables?

We use > for true and ? for false.

Idioms and examples
We use state variables x, y, . . . and a state-space

X⇥Y ⇥ · · · as appropriate.

x’s exact value is unknown (8x:X ·K(x=x)) K?)

nothing is known about x (8x:X ·K(x 6=x)) K?)

neither x’s nor y’s exact value is known

(8x:X ; y:Y · (K(x=x)) K?) ^ (K(y=y)) K?))

learning x’s value does not reveal y’s value

(8x:X ; y:Y ·K(x=x) y=y)) K(x 6=x))

learning x’s value does not reveal anything about y

(8x:X ; y:Y ·K(x=x) y 6=y)) K(x 6=x))

Idioms and examples
We use state variables x, y, . . . and a state-space

X⇥Y ⇥ · · · as appropriate.

x’s exact value is unknown (8x:X ·K(x=x)) K?)

nothing is known about x (8x:X ·K(x 6=x)) K?)

neither x’s nor y’s exact value is known

(8x:X ; y:Y · (K(x=x)) K?) ^ (K(y=y)) K?))

learning x’s value does not reveal y’s value

(8x:X ; y:Y ·K(x=x) y=y)) K(x 6=x))

learning x’s value does not reveal anything about y

(8x:X ; y:Y ·K(x=x) y 6=y)) K(x 6=x))

Idioms and examples
We use state variables x, y, . . . and a state-space

X⇥Y ⇥ · · · as appropriate.

x’s exact value is unknown (8x:X ·K(x=x)) K?)

nothing is known about x (8x:X ·K(x 6=x)) K?)

neither x’s nor y’s exact value is known

(8x:X ; y:Y · (K(x=x)) K?) ^ (K(y=y)) K?))

learning x’s value does not reveal y’s value

(8x:X ; y:Y ·K(x=x) y=y)) K(x 6=x))

learning x’s value does not reveal anything about y

(8x:X ; y:Y ·K(x=x) y 6=y)) K(x 6=x))

Idioms and examples
We use state variables x, y, . . . and a state-space

X⇥Y ⇥ · · · as appropriate.

x’s exact value is unknown (8x:X ·K(x=x)) K?)

nothing is known about x (8x:X ·K(x 6=x)) K?)

neither x’s nor y’s exact value is known

(8x:X ; y:Y · (K(x=x)) K?) ^ (K(y=y)) K?))

learning x’s value does not reveal y’s value

(8x:X ; y:Y ·K(x=x) y=y)) K(x 6=x))

learning x’s value does not reveal anything about y

(8x:X ; y:Y ·K(x=x) y 6=y)) K(x 6=x))

Idioms and examples
We use state variables x, y, . . . and a state-space

X⇥Y ⇥ · · · as appropriate.

x’s exact value is unknown (8x:X ·K(x=x)) K?)

nothing is known about x (8x:X ·K(x 6=x)) K?)

neither x’s nor y’s exact value is known

(8x:X ; y:Y · (K(x=x)) K?) ^ (K(y=y)) K?))

learning x’s value does not reveal y’s value

(8x:X ; y:Y ·K(x=x) y=y)) K(x 6=x))

learning x’s value does not reveal anything about y

(8x:X ; y:Y ·K(x=x) y 6=y)) K(x 6=x))

Do we really understand the English here?

if x is not 0, then in

fact it’s not 1 (either)

K(x 6=0)) K(x 6=1)

—(ditto)— K{1, 2, 3}) K{2, 3}

if we know the letter was not for Mr. Smyth,

then we know it was not for Mrs. Smyth

K(not for Mr. Smyth)

) K(not for Mrs. Smyth)

P (for Mrs. Smyth)

) P (for Mr. Smyth)

Idioms and examples

The Mr/Mrs Smyth assertion is satisfied by the Mrs. Smyth system but not by
the Ms. Jones system: it shows therefore that the latter does not refine the former.

equivalently

Hey, there’s no idiom for that…

Only properties that are preserved by refinement can
be expressed in this form, that is as conjunctions of
K-implications (equiv. of P-implications).
And every property that is refinement preserving can
be expressed that way.
As with all formal methods, our hope here is that this
rigour is limiting our vocabulary to statements that
actually make sense for refinement. And any property
not preserved by refinement does not make sense, at
least not for serious program development.

And every failed refinement can be caught by a single K-pair or P-pair.

expressively complete

P� = ¬K(¬�) becomes ¬K() ¬�) = P (^ �)

Can we achieve source-level reasoning for this
kind of non-interference security?

Yes. Although it can be intricate, at least it’s
mechanical.

• For wp.assignment.Phi replace every K(body) in Phi with
K(wp.assignment.body)

• For external demonic choice, take the conjunction.
• For wp.(print exp).Phi replace every K(body) in Phi with

K(exp=x ⇒ body) and put (∀x …) on the outside.

ivThe demonic lattice: a very quick tour

Refinements… and not

The Refinement Paradox

Prog1 u Prog2 v Prog1

because wp.(Prog1 u Prog2).�
= wp.Prog1.� ^ wp.Prog2.�
) wp.Prog1.�

so that e.g. we have x:= 1 u x:= 2 v x:=1 .

But we never have x:2S1 v x:2S2 unless S1=S2.

Why not?

External- vs. internal demonic choice

External demonic choice represents (as usual)
implementation freedom, deliberate looseness in a
specification, run-time unpredictability…

and it can be “refined away” to a more constrained
implementation, a tighter specification, or more
predictable behaviour at run-time.

Refinement can make EDC smaller, but never larger.

External- vs. internal demonic choice

Internal demonic choice represents deliberate
obfuscation. It can’t be reduced, because that
would reduce security as well (e.g. fewer possible
passwords).
But in general it can’t be increased either, because
that might consequentially cause an increase in
external nondeterminism. For example, sticking a
“more secure” 10-character password into an 8-byte
field actually decreases security: buffer overrun.
Refinement in general cannot change IDC in either
direction: not smaller, not larger.

External- vs. internal demonic choice

Internal demonic choice represents deliberate
obfuscation. It can’t be reduced, because that
would reduce security as well (e.g. fewer possible
passwords).
But in general it can’t be increased either, because
that might consequentially cause an increase in
external nondeterminism. For example, sticking a
“more secure” 10-character password into an 8-byte
field actually decreases security: buffer overrun.
Refinement in general cannot change IDC in either
direction: not smaller, not larger.

How changing IDC is prevented

Suppose wp.(x:2S).(K)K�) holds. That is by def-

inition

K(wp.(x:2S).)) K(wp.(x:2S).�) .

If S is made larger, the antecedent and the consequent

both become stronger; if S is made smaller, the an-

tecedent and the consequent both become weaker. Nei-

ther of those is implication in general.

How changing IDC is detected

Programs x:2S1 and x:2S2 have as results the single

shadows S1 and S2 resp. What single test distinguishes

them when S1 6=S2?

If S2 6✓S1 then S1 passes K>) KS1 but S2 does not.

If S2⇢S1 then S1 passes KS2) K? but S2 does not.

Either way we have x:2S1 6v x:2S2.

Examples of source-level reasoning

wp.(x:=x+1).“don’t know x is even”

= wp.(x:=x+1).(K(x is even)) K?)

= K(wp.(x:=x+1).(x is even))) K(wp.(x:=x+1).?)

= K(x is odd)) K?
= “don’t know x is odd” .

Deterministic.

afterwards

beforehand

Examples of source-level reasoning

External nondeterminism is visible to the adversary.

wp.(x:=x+1 u skip).“don’t know x is even”

= wp.(x:=x+1).(K(x is even)) K?)

^ wp.skip.(K(x is even)) K?)

= K(wp.(x:=x+1).(x is even))) K(wp.(x:=x+1).?)

^ K(wp.skip.(x is even))) K(wp.skip.?)

= (K(x is odd)) K?) ^ (K(x is even)) K?)

= K(x is odd) _K(x is even)) K?
= (9z:{0, 1} ·K(xmod 2 = z))) K?

= “don’t know x’s parity” .

Examples of source-level reasoning

Internal nondeterminism is hidden from the adversary.

wp.(x:= (x+1) u x).“don’t know x is even”

= wp.(x:= (x+1) u x).(K(x is even)) K?)

= K(wp.(x:= (x+1) u x).(x is even))

) K(wp.(x:= (x+1) u x).?)

= K?) K?
= > .

Between statements this is EDC; within an expression it is IDC.

Examples of source-level reasoning

wp.(print x).“don’t know x=0”

= wp.(print x).(K(x=0)) K?)

= (8x ·K(x=x) x=0)) K(x=x) ?))

= (8x ·K(x=x) x=0)) K(x 6=x))

= K(x 6=0) ^ (8x ·K(x=x) x=0)) K(x 6=x))

= K(x 6=0) ^ (8x ·K(x 6=x)) K(x 6=x))

= K(x 6=0) .

“x might not be 0”

“x can’t be 0”

To ensure that an attacker will think x might not be 0 afterwards,
you must ensure that x is definitely not 0 before.

Examples of source-level reasoning

It would indeed be a miracle if printing x’s value did not reveal x’s exact value.

wp.(print x).“don’t know x’s exact value”

= wp.(print x).(8x ·K(x=x)) K?)

= (8x0 · (8x ·K(x=x

0) x=x)) K(x=x

0) ?)))

= (8x, x0 ·K(x=x

0) x=x)) K(x 6=x

0
))

) (8x ·K(x=x) x=x)) K(x 6=x))

= (8x ·K(x 6=x))

= K(8x · x 6=x)

= K? .

“x can’t be any value x before.”

Examples of source-level reasoning

wp.(print xuy).“do not know y’s exact value”

= wp.(print xuy).(8y ·K(y=y)) K?)

= (8y, z ·K((x=z _ y=z)) y=y)) K(x 6=z ^ y 6=z)) ,

which is mysteriously complex. Does it have to be?

Either x or y is printed, but we do not know which one it was.
When can we figure out y’s value even so?

The nondeterminism above is internal, within the print statement: it is not observable.

It should at least imply “we don’t know y’s value
beforehand.” It does that.
It should imply “there is no value that y can take but
x cannot.” It does that, too.
It even implies “there is no value that x can take but
not y and which x-value determines y uniquely.

Examples of source-level reasoning
wp.(print xuy).“do not know y’s exact value”

= wp.(print xuy).(8y ·K(y=y)) K?)

= (8y, z ·K((x=z _ y=z)) y=y)) K(x 6=z ^ y 6=z)) ,

which is mysteriously complex. Does it have to be?

Either x or y is printed, but we do not know which one it was.
When can we figure out y’s value even so?

Examples of source-level reasoning

It should at least imply “we don’t know y’s value
beforehand.” It does that.
It should imply “there is no value that y can take but
x cannot.” It does that, too.
It even implies “there is no value that x can take but
not y and which x-value determines y uniquely.

wp.(print xuy).“do not know y’s exact value”

= wp.(print xuy).(8y ·K(y=y)) K?)

= (8y, z ·K((x=z _ y=z)) y=y)) K(x 6=z ^ y 6=z)) ,

which is mysteriously complex. Does it have to be?

Examples of source-level reasoning

It should at least imply “we don’t know y’s value
beforehand.” It does that.
It should imply “there is no value that y can take but
x cannot.” It does that, too.
It even implies “there is no value that x can take but
not y and which x-value determines y uniquely.

wp.(print xuy).“do not know y’s exact value”

= wp.(print xuy).(8y ·K(y=y)) K?)

= (8y, z ·K((x=z _ y=z)) y=y)) K(x 6=z ^ y 6=z)) ,

which is mysteriously complex. Does it have to be?

Examples of source-level reasoning

It should at least imply “we don’t know y’s value
beforehand.” It does that.
It should imply “there is no value that y can take but
x cannot.” It does that, too.
It even implies “there is no value that x can take but
not y and which x-value determines y uniquely.

But all that is still not enough.

wp.(print xuy).“do not know y’s exact value”

= wp.(print xuy).(8y ·K(y=y)) K?)

= (8y, z ·K((x=z _ y=z)) y=y)) K(x 6=z ^ y 6=z)) ,

which is mysteriously complex. Does it have to be?

Examples of source-level reasoning

It should at least imply “we don’t know y’s value
beforehand.” It does that.
It should imply “there is no value that y can take but
x cannot.” It does that, too.
It even implies “there is no value that x can take but
not y and which x-value determines y uniquely.

What if we know nothing about x,y except that they are equal?

wp.(print xuy).“do not know y’s exact value”

= wp.(print xuy).(8y ·K(y=y)) K?)

= (8y, z ·K((x=z _ y=z)) y=y)) K(x 6=z ^ y 6=z)) ,

which is mysteriously complex. Does it have to be?

Examples of source-level reasoning

This is not rocket science — it’s just fiddling with sets. But it is very tricky!
Security in general is very tricky.

wp.(print xuy).“do not know y’s exact value”

= wp.(print xuy).(8y ·K(y=y)) K?)

= (8y, z ·K((x=z _ y=z)) y=y)) K(x 6=z ^ y 6=z))

= (8z · (9y ·K((x=z _ y=z)) y=y))) K(x 6=z ^ y 6=z))
= (8z · P (x=z _ y=z)) (6 9y ·K((x=z _ y=z)) y=y)))
= (8z · P (z2{x, y})) (6 9y ·K(z2{x, y}) y=y))) ,

i.e. “For every value (z) that x or y might take,

there is no single value (y) determined for y.”

x y
00
01
11
12
22
20

Conclusions

• Union-closed sets of shadows is our model for demonic
non-interference security.

• It is a lattice: it generalises L&R’s lattice; it is generalised
by hyper-distributions.

• Any non-refinement can be demonstrated with a single
primitive test “If we know A then we (also) know C.”

• Conjunctions of primitive tests capture all and only
union-closed sets of shadows.

• There is a wp-calculus for conjunctions of primitive tests.
• The wp-generated preconditions can be complex! Is that

intrinsic to security, viz. inescapable?

healthiness condition for the model

Conclusions

• Union-closed sets of shadows is our model for demonic
non-interference security.

• It is a lattice: it generalises L&R’s lattice; it is generalised
by hyper-distributions.

• Any non-refinement can be demonstrated with a single
primitive test “If we know A then we (also) know C.”

• Conjunctions of primitive tests capture all and only
union-closed sets of shadows.

• There is a wp-calculus for conjunctions of primitive tests.
• The wp-generated preconditions can be complex! Is that

intrinsic to security, viz. inescapable?

located in a hierarchy of models

Conclusions

• Union-closed sets of shadows is our model for demonic
non-interference security.

• It is a lattice: it generalises L&R’s lattice; it is generalised
by hyper-distributions.

• Any non-refinement can be demonstrated with a single
primitive test “If we know A then we (also) know C.”

• Conjunctions of primitive tests capture all and only
union-closed sets of shadows.

• There is a wp-calculus for conjunctions of primitive tests.

expressively complete

• The wp-generated preconditions can be complex! Is that
intrinsic to security, viz. inescapable?

Conclusions

can calculate with it

• Union-closed sets of shadows is our model for demonic
non-interference security.

• It is a lattice: it generalises L&R’s lattice; it is generalised
by hyper-distributions.

• Any non-refinement can be demonstrated with a single
primitive test “If we know A then we (also) know C.”

• Conjunctions of primitive tests capture all and only
union-closed sets of shadows.

• There is a wp-calculus for conjunctions of primitive tests.

• The wp-generated preconditions can be complex! Is that
intrinsic to security, viz. inescapable?

• The wp-generated preconditions can be complex! Is that
intrinsic to security, viz. inescapable?

Conclusions

Hmm…

• Union-closed sets of shadows is our model for demonic
non-interference security.

• It is a lattice: it generalises L&R’s lattice; it is generalised
by hyper-distributions.

• Any non-refinement can be demonstrated with a single
primitive test “If we know A then we (also) know C.”

• Conjunctions of primitive tests capture all and only
union-closed sets of shadows.

• There is a wp-calculus for conjunctions of primitive tests.

On principles…

Landauer and Redmond’s (1993) original work
provided the motivation. Their context was simple
enough that principles were not explicitly
necessary.
Hyper-distributions (2010–5) are sufficiently
complex that principles are indispensable.
Shadows (2006) were complex enough to benefit
from explicit principles, but still simple enough
that ad-hoc progress could be made without.
Using principles from 2010–5 and motivation from
1993, we have put Shadows at their place in the
hierarchy.

deterministic

probabilistic

demonic

0 0 1 0 1 0 1 0 0.1 0.2 0.3 0.4

