Refinement in hybrid(ised) institutions

Luis S. Barbosa

(joint work with M. A. Martins, A. Madeira, R. Hennicker)

Universidade do Minho

IFIP WG 1.3

Theddingworth, 7-10 January 2014

Specification of reconfigurable systems

- States endowed with local specifications
- The global transition structure models system's evolution through possible configurations

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Hybrid logic as a lingua franca for reconfigurable systems.

Why hybrid logic?

- · Incorporates part of the classical theory of
 - equality: @_i j
 - and reference: @_i ◊ j
- Strictily more expressive than modal logic, e.g.
 - irreflexive frames: $i \Rightarrow \neg \Diamond i$
 - singleton state frames: i
- Direct reference to configurations expressing local configuration properties and global system's evolution

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Motivation

Going generic

- ... specific problems require specific (local) logics: equational, first-order, fuzzy, etc.
- leading to a hybridisation process: choose a base logic and develop hybrid features on top of it

- Revisiting the hybridisation process ... (cf, Madeira, Diaconescu, Martins, Barbosa starting at CALCO'11)
- ... to study suitable notions of bisimulation and refinement for hybrid(ised) logics

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

$\textit{\textit{I}} = \left(\text{Sign}^{\textit{I}}, \text{Sen}^{\textit{I}}, \text{Mod}^{\textit{I}}, (\models^{\textit{I}}_{\Sigma})_{\Sigma \in |\text{Sign}^{\textit{I}}|} \right) ~ \overset{}{\longrightarrow} ~ \mathcal{H}\textit{\textit{I}}$

- formulas are hybrid sentences (e.g. $@_i\rho$, $\langle\lambda\rangle\rho$, ...) taking *I*-sentences and nominals as atoms
- models are transition systems with states endowed with a *I*-model
- hybrid satisfaction is built on top of \models^{l}

 $\mathcal{H}I$ forms an institution and *FOL*-encodings are lifted

(日) (日) (日) (日) (日) (日) (日)

Activation Hybridization Bisimulation Refinement Specification refinement Conclusions
Hybridisation

Syntax

$$\operatorname{Sign}^{\mathcal{H}I} = \operatorname{Sign}^{I} \times \operatorname{Sign}^{REL}$$

- Signatures: (Σ, Nom, Λ)
- Morphisms $\varphi = (\varphi_{\text{Sign}}, \varphi_{\text{Nom}}, \varphi_{\text{MS}})$
- Sentences:
 - Atoms: $\operatorname{Sen}^{l}(\Sigma)$, $\operatorname{Nom} \subseteq \operatorname{Sen}^{\mathcal{H}l}(\Delta)$
 - Composed, e.g., $[\lambda](\rho_1, \ldots, \rho_n)$ or $\mathbb{Q}_i \rho$
- Translation of sentences along φ is structural, e.g.,

 $\operatorname{Sen}^{\mathcal{H}I}(\varphi)(i) = \varphi_{\operatorname{Nom}}(i)$ $\operatorname{Sen}^{\mathcal{H}I}(\varphi)([\lambda](\rho_1, \dots, \rho_n)) = [\varphi_{\operatorname{MS}}(\lambda)](\operatorname{Sen}^{\mathcal{H}I}(\rho_1), \dots, \operatorname{Sen}^{\mathcal{H}I}(\rho_n))$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Semantics

(Σ, Nom, Λ) -models are pairs (M, W)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- W is a (Nom, Λ)-model in REL
- *M* is a function $|W| \rightarrow |Mod'(\Sigma)|$

Reducts are lifted from *I*

- *W* is the $(\varphi_{\text{Nom}}, \varphi_{\text{MS}})$ -reduct of *W*':
 - |*W*| = |*W*'|
 - for any $n \in \text{Nom}, W_n = W'_{\varphi_{\text{Nom}}(n)}$
 - for any $\lambda \in \Lambda$, $W_{\lambda} = W'_{\varphi_{MS}(\lambda)}$
- for any $w \in |W|$, $M_w = Mod^{I}(\varphi_{Sign})(M'_w)$.

Satisfaction

Resorts to I:

•
$$(M, W) \models^{w} \rho$$
 iff $M_{w} \models^{l} \rho$ when $\rho \in \text{Sen}^{l}(\Sigma)$,

captures the semantics of nominals

- $(M, W) \models^{w} i$ iff $W_i = w$, when $i \in Nom$
- $(M, W) \models^{w} @_{j\rho}$ iff $(M, W) \models^{W_{j}} \rho$

and modalities, as in

• $(M, W) \models^{w} [\lambda](\xi_1, \ldots, \xi_n)$ iff, for any $(w, w_1, \ldots, w_n) \in W_{\lambda}$, $(M, W) \models^{w_i} \xi_i$ for some $1 \le i \le n$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

and is defined as usual for the boolean connectives

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Example: $\mathcal{H}TRIV$ and \mathcal{H}^2TRIV

- HTRIV: pure hybrid formulas
- \mathcal{H}^2 *TRIV*: hierarchical sturctures, e.g.

$$\mathbb{Q}_{j^1}k^0 \wedge^1 [\lambda^1](\rho_1,\ldots,\rho_n)$$

. . .

$$(\boldsymbol{P}, \operatorname{Nom}, \Lambda) \xrightarrow{(\varphi_{Sig}, \varphi_{\operatorname{Nom}}, \varphi_{MS})} (\boldsymbol{P}', \operatorname{Nom}', \Lambda')$$

Sentences

$$\rho, \rho' \ni \mid \neg \rho \mid \rho \odot \rho' \mid \langle \lambda \rangle \rho \mid @_i \rho \mid i$$

Models •
$$(M, W)$$
, where for each $w \in |W|$,
 $M_w : P \to \{\top, \bot\}$

Satisfaction

• for any $\rho \in \operatorname{Sen}^{\mathcal{PL}}(\mathcal{P})$, $(\mathcal{M}, \mathcal{W}) \models^{w} \rho$ if $\mathcal{M}_{w} \models^{\mathcal{PL}}_{\mathcal{P}} \rho$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

•
$$(\boldsymbol{M}, \boldsymbol{W}) \models^{s} @_{i}\rho \text{ if } (\boldsymbol{M}, \boldsymbol{W}) \models^{W_{i}} \rho$$

Signatures $\langle (S, F), \text{Nom}, \Lambda \rangle$ Sentences $\varphi, \psi \ni i \mid t \approx t' \mid @_i \varphi \mid \neg \varphi \mid \varphi \odot \psi \mid [\lambda] \varphi$ Models (M, W), for each $w \in |W|$, M_w is an (S, F)-algebra Satisfaction • $(M, W) \models^s t \approx t'$ if $M_w \models^{EQ} t \approx t'$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 $\langle \Sigma, \{ \textit{shift} \}, \{ \textit{mult}, \textit{sum} \} \rangle$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

where $\boldsymbol{\Sigma}$ is the algebraic signature

sorts nat

ops $c : \longrightarrow nat$ $suc : nat \longrightarrow nat$ $pred : nat \longrightarrow nat$ $\star : nat \times nat \longrightarrow nat$ Motivation

Refinemen

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Example: *HEQ*

Global properties

- pred(suc(n)) = n
- $\star(n,k) = \star(k,n), \star(n,\star(k,l)) = \star(\star(n,k),l)$
- $\star(\star(n,m),\star(k,l)) = \star(\star(n,k),\star(l,m))$

Local properties

- $@_{sum} \star (n, c) = n$
- $@_{sum}suc(n) = \star(n, suc(c))$
- $@_{mult} \star (n, c) = c$
- $@_{mult} \star (n, suc(c)) = n$

Dynamics

•
$$\star(n,c) = n \rightarrow [shift] \star (n,c) = c$$

Hybridisation at work

... to transport specifications from a logical system to another lifting *I2FOL* to *HI2FOL*

- extend the classical standard translation of (hybrid) modal logic into the (one-sorted) first order logic
- flattening construction to an unique (global) FOL-model: restricting to a w gives a slice $M|_{w}$, a FOL-interpretation of the local *I*-model M_{W} , through *I*2*FOL*

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Encodings are conservative comorphisms
- Incorporation in the HETS platform

$$\mathbf{B}_{\varphi} \subseteq |\mathbf{W}| imes |\mathbf{W}'|$$

- (i) for any wB_φw', w, w' exhibit the "same" observable information
- (ii) for any $wB_{\varphi}w'$, $i \in \text{Nom}$, $W_i = w$ iff $W'_{\varphi_{\text{Nom}}(i)} = w'$

(iii) for any
$$i \in \text{Nom}$$
, $W_i B_{\varphi} W'_{\varphi_{\text{Nom}}(i)}$

(iv) (zig) For any λ ∈ Λ_n, if (w, w₁,..., w_n) ∈ W_λ and wB_φw', then for each k ∈ {1,..., n} there is a w'_k ∈ |W'| such that w_kB_φw'_k and (w', w'₁,..., w'_n) ∈ W'_{φ_{MS}(λ)}
(v) (zag) ...

... the "same" observable information

(日) (日) (日) (日) (日) (日) (日)

for $\mathcal{H}PL$ (i) for any $p \in Prop$, $M_w(p) = \top \Leftrightarrow M'_{w'}(p) = \top$

for *HEQ*

(i) M_w and $M'_{w'}$ generates the same variety

captured through the notion of elementary equivalence

$$M \equiv M'$$
 if for any $\rho \in \operatorname{Sen}^{l}(\Sigma)$
 $M \models^{l} \rho$ iff $M' \models^{l} \rho$

truth is invariant under change of notation

$$M \equiv_{\varphi} M'$$
 if $M \equiv \operatorname{Mod}^{l}(\varphi)(M')$ for a given $\varphi \in \operatorname{Sign}^{l}(\Sigma, \Sigma')$

Thus,
$$M \equiv_{\varphi} M'$$
 if, for any $\rho \in \operatorname{Sen}^{l}(\Sigma)$

$$M \models_{\Sigma}^{l} \rho$$
 iff $M' \models_{\Sigma'}^{l} \operatorname{Sen}^{l}(\varphi)(\rho)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

φ -Bisimulation

$\mathbf{B}_{\varphi} \subseteq |\mathbf{W}| imes |\mathbf{W}'|$

- (i) for any $wB_{\varphi}w'$, $M_w \equiv_{\varphi_{\text{Sign}}} M'_{w'}$
- (ii) for any $wB_{\varphi}w'$, $i \in Nom$, $W_i = w$ iff $W'_{\varphi_{Nom}(i)} = w'$
- (iii) for any $i \in \text{Nom}$, $W_i B_{\varphi} W'_{\varphi_{\text{Nom}}(i)}$
- (iv) (zig) For any λ ∈ Λ_n, if (w, w₁,..., w_n) ∈ W_λ and wB_φw', then for each k ∈ {1,..., n} there is a w'_k ∈ |W'| such that w_kB_φw'_k and (w', w'₁,..., w'_n) ∈ W'_{φ_{MS}(λ)}
 (v) (zag) ...

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The expected results:

- \Rightarrow is an equivalence relation
- $B_{\psi}.B_{\varphi}$ is a $(\psi.\varphi)$ -bisimulation
- $\operatorname{Mod}^{\mathcal{H}I}(\varphi)(M',W') \rightleftharpoons_{\varphi} (M',W')$

Example: $\mathcal{H}TRIV$ and \mathcal{H}^2TRIV

A Hennessy-Milner theorem

Let $\varphi \in \text{Sign}^{\mathcal{H}l}(\Delta, \Delta')$ a signature morphism and (M, W), (M', W') be two image-finte Δ and Δ' -models.

Then, for every $w \in W$ and $w' \in W'$, the following conditions are equivalent:

(i)
$$(M, W) \models^{w} \rho$$
 iff $(M', W') \models^{w'} \text{Sen}^{\mathcal{H}I}(\varphi)(\rho)$, for any ρ

(ii) There is a φ -bisimulation $B_{\varphi} \subseteq |W| \times |W'|$ such that $wB_{\varphi}w'$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Global behaviour allowed in the abstract model is also allowed in the concrete one (which may exhibit further behaviour)
- At each local configuration, properties are preserved along local refinement.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Motivation Hybridization Bisimulation Refinement Specification refinement Conclusions $(M,W)
ightarrow _{arphi} (M',W')$

$$\mathbf{R}_{\varphi} \subseteq |\mathcal{W}| \times |\mathcal{W}'|$$
 such that, for any $w\mathbf{R}_{\varphi}w'$,

- (i) for any $i \in \text{Nom}$, if $W_i = w$ then $W'_{\varphi_{\text{Nom}}(i)} = w'$
- (ii) *M_w* ≫_φ *M'_{w'}*(iii) for any *i* ∈ Nom, *W_i* R_φ *W'_{φNom}(i)*(iv) for any λ ∈ Λ_n, if (*w*, *w*₁, ..., *w_n*) ∈ *W_λ* then for each *k* ∈ {1,..., *n*} there is a *w'_k* ∈ |*W'*| such that *w_k* R_φ *w'_k* and (*w'*, *w'₁*,..., *w'_n*) ∈ *W'_{φNom}(λ*)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Preservation of hybrid satisfaction fails for

- boxed sentences $([\lambda](\xi_1, \ldots, \xi_n))$:
- and negative sentences $(\neg \xi)$

However

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Positive existential preservation

Lemma

Let $(M, W) \rightarrow_{\varphi} (M', W')$. Then, for any $w \mathbb{R}_{\varphi} w'$ and $\rho \in \operatorname{Sen}_{\Diamond}^{\mathcal{H}I}(\Delta)$,

 $(M, W) \models^{w} \rho$ implies that $(M', W') \models^{w'} \operatorname{Sen}^{\mathcal{H}}(\varphi)(\rho)$

A D F A 同 F A E F A E F A Q A

where $\operatorname{Sen}_{\Diamond}^{\mathcal{H}I}(\varphi)$ is the restriction of $\operatorname{Sen}_{\Diamond}^{\mathcal{H}I}(\varphi)$ to $\operatorname{Sen}_{\Diamond}^{\mathcal{H}I}(\Delta)$

• Enforces all concrete global behaviours to be allowed in the abstract model (use the (zag) condition)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 Preservation of satisfaction is restricted to positive universal sentences in Sen^{HI}_□(Δ)

Two notions of refinement defined in terms of which transitions are globally preserved and in which direction.

 properties as a sort of (elementary) safety requirements

 preserved by backward refinement

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

 ◊ properties as a sort of (elementary) liveness requirements ⇒ preserved by forward refinement

A (non-structured) specification in a institution *I* (Δ, E) , where $\Delta \in \text{Sign}^{I}$ and $E \subseteq \text{Sen}^{I}(\Delta)$

Its (loose) semantics is given by

- its signature $Sig[SP] = \Delta$, for some $\Delta \in |Sign'|$,
- its class of models $[|SP|] = \{M \in |Mod'(\Delta)| : M \models_{\Delta}^{I} E\}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Specification refinement

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusions

Specification refinement

$SP' \rightsquigarrow_{\varphi} SP (SP' \text{ refines } SP \text{ via } \varphi)$ if

- $\varphi \in \operatorname{Sign}^{l}(Sig(SP), Sig(SP'))$
- $[|SP'|]|_{\varphi} \subseteq [|SP|]$

where $[|SP'|]|_{\varphi} = {\text{Mod}'(\varphi)(M)|M \in [|SP|]}$

Let $SP = (\Delta, E)$ and $SP' = (\Delta, E')$ be two specifications.

Then, the following statements are equivalent:

- 1. $SP \rightsquigarrow_{\varphi} SP'$
- 2. for any $(M', W') \in [|SP'|]$, there is a $(M, W) \in [|SP|]$ such that $(M, W) \rightleftharpoons_{\varphi} (M', W')$ witnessed by a total and surjective bisimulation

(日) (日) (日) (日) (日) (日) (日)

Let $SP = (\Delta, E)$ and $SP' = (\Delta, E')$ be two specifications. If $E \subseteq \text{Sen}^{\mathcal{H}l}_{\diamond}(\Delta)$, then the following statements are equivalent:

- 1. $SP \rightsquigarrow_{\varphi} SP'$
- 2. for any $(M', W') \in [|SP'|]$, there is a $(M, W) \in [|SP|]$ such that $(M, W) \rightarrow_{\varphi} (M', W')$ witnessed by a surjective refinement relation

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Let $SP = (\Delta, E)$ and $SP' = (\Delta, E')$ be two specifications. If $E \subseteq \text{Sen}_{\Box}^{\mathcal{H}l}(\Delta)$, then the following statements are equivalent:

- 1. $SP \rightsquigarrow_{\varphi} SP'$
- 2. for any $(M', W') \in [|SP'|]$, there is a $(M, W) \in [|SP|]$ such that $(M, W) \leftarrow_{\varphi} (M', W')$ witnessed by a total refinement relation

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Work done

- Development parametric on the base institution
- Application to a method of software design for reconfigurability cf, [Martins et al, 2011], [Madeira et al, 2013]

Current work

- Hybridisation for quantitative reasoning:
 - locally (easy)
 - globally (replacing the REL-component in models by coalgebras over suitable categories)
- Inference of complexity and generation of calculi