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Specification of reconfigurable systems

• States endowed with local specifications
• The global transition structure models system’s evolution

through possible configurations

Hybrid logic as a lingua franca for reconfigurable systems.
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Why hybrid logic?

• Incorporates part of the classical theory of
• equality: @i j
• and reference: @i ♦j

• Strictily more expressive than modal logic, e.g.
• irreflexive frames: i ⇒¬♦i
• singleton state frames: i

• Direct reference to configurations expressing local
configuration properties and global system’s evolution
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Going generic

Reconfiguration Dynamics

States = configurations
transitions = reconfigurations

configuration modeling

modeling local behavior and 
functionality

transition
structure

configurations 
are

-models

classical modal 
logic

-senteces

naming states +indexing 

-models
 

-sentences

Hybrid features 

• ... specific problems require specific (local) logics:
equational, first-order, fuzzy, etc.

• leading to a hybridisation process: choose a base logic
and develop hybrid features on top of it
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Objectives

• Revisiting the hybridisation process ...
(cf, Madeira, Diaconescu, Martins, Barbosa starting at
CALCO’11)

• ... to study suitable notions of bisimulation and refinement
for hybrid(ised) logics
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Hybridisation

I =
(
SignI ,SenI ,ModI , (|=I

Σ)Σ∈|SignI |
)

// HI

• formulas are hybrid sentences (e.g. @iρ, 〈λ〉ρ, ...) taking
I-sentences and nominals as atoms

• models are transition systems with states endowed with a
I-model

• hybrid satisfaction is built on top of |=I

HI forms an institution and FOL-encodings are lifted
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Hybridisation

Syntax
SignHI = SignI × SignREL

• Signatures: (Σ,Nom,Λ)

• Morphisms ϕ = (ϕSign, ϕNom, ϕMS)

• Sentences:
• Atoms: SenI(Σ),Nom ⊆ SenHI(∆)
• Composed, e.g., [λ](ρ1, . . . , ρn) or @iρ

• Translation of sentences along ϕ is structural, e.g.,

SenHI(ϕ)(i) = ϕNom(i)
SenHI(ϕ)([λ](ρ1, . . . , ρn)) = [ϕMS(λ)](SenHI(ρ1), . . . ,SenHI(ρn))
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Hybridisation

Semantics

(Σ,Nom,Λ)-models are pairs (M,W )

• W is a (Nom,Λ)-model in REL
• M is a function |W | → |ModI(Σ)|

Reducts are lifted from I
• W is the (ϕNom, ϕMS)-reduct of W ′:

• |W | = |W ′|
• for any n ∈ Nom,Wn = W ′

ϕNom(n)

• for any λ ∈ Λ, Wλ = W ′
ϕMS(λ)

• for any w ∈ |W |, Mw = ModI(ϕSign)(M ′w ).
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Hybridisation

Satisfaction
Resorts to I:
• (M,W ) |=w ρ iff Mw |=I ρ when ρ ∈ SenI(Σ),

captures the semantics of nominals
• (M,W ) |=w i iff Wi = w , when i ∈ Nom
• (M,W ) |=w @jρ iff (M,W ) |=Wj ρ

and modalities, as in
• (M,W ) |=w [λ](ξ1, . . . , ξn) iff, for any (w ,w1, . . . ,wn) ∈Wλ,

(M,W ) |=wi ξi for some 1 ≤ i ≤ n
and is defined as usual for the boolean connectives
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Example: HTRIV and H2TRIV

�0

�1

�0

�0

�0

�1

�1

• HTRIV : pure hybrid formulas
• H2TRIV : hierarchical sturctures, e.g.

@j1k0 ∧1 [λ1](ρ1, . . . , ρn)
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Example: HPL

Signatures • SignPL is the category Set ;
• Category SignHPL:

(P,Nom,Λ)
(ϕSig ,ϕNom,ϕMS) // (P ′,Nom′,Λ′)

Sentences
ρ, ρ′ 3 | ¬ρ | ρ� ρ′ | 〈λ〉ρ | @iρ | i

Models • (M,W ), where for each w ∈ |W |,
Mw : P → {>,⊥}

Satisfaction • for any ρ ∈ SenPL(P), (M,W ) |=w ρ if Mw |=PL
P ρ

• (M,W ) |=s @iρ if (M,W ) |=Wi ρ
• . . .
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Example: HEQ

Signatures 〈(S,F ),Nom,Λ〉

Sentences ϕ,ψ 3 i | t ≈ t ′ |@iϕ | ¬ϕ|ϕ� ψ| [λ]ϕ

Models (M,W ), for each w ∈ |W |, Mw is an (S,F )-algebra

Satisfaction • (M,W ) |=s t ≈ t ′ if Mw |=EQ t ≈ t ′.
• . . .
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Example: HEQ

Mode
 sum

Mode
 mult

shift

shift

〈Σ, {shift}, {mult , sum}〉

where Σ is the algebraic signature
sorts nat
ops c :−→ nat

suc : nat −→ nat
pred : nat −→ nat
? : nat × nat −→ nat
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Example: HEQ
Global properties

• pred(suc(n)) = n

• ?(n, k) = ?(k ,n), ?(n, ?(k , l)) = ?(?(n, k), l)

• ?(?(n,m), ?(k , l)) = ?(?(n, k), ?(l ,m))

Local properties

• @sum ? (n, c) = n

• @sumsuc(n) = ?(n, suc(c))

• @mult ? (n, c) = c

• @mult ? (n, suc(c)) = n

Dynamics

• ?(n, c) = n→ [shift ] ? (n, c) = c
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Hybridisation at work

... to transport specifications from a logical system to another
lifting I2FOL to HI2FOL

• extend the classical standard translation of (hybrid) modal
logic into the (one-sorted) first order logic

• flattening construction to an unique (global) FOL-model:
restricting to a w gives a slice M|w , a FOL-interpretation of
the local I-model Mw , through I2FOL

• Encodings are conservative comorphisms
• Incorporatiion in the HETS platform
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ϕ-bisimulation

Bϕ ⊆ |W | × |W ′|

(i) for any wBϕw ′, w ,w ′ exhibit the “same” observable
information

(ii) for any wBϕw ′, i ∈ Nom, Wi = w iff W ′
ϕNom(i) = w ′

(iii) for any i ∈ Nom, WiBϕW ′
ϕNom(i)

(iv) (zig) For any λ ∈ Λn, if (w ,w1, . . . ,wn) ∈Wλ and wBϕw ′,
then for each k ∈ {1, . . . ,n} there is a w ′k ∈ |W

′| such that
wk Bϕw ′k and (w ′,w ′1, . . . ,w

′
n) ∈W ′

ϕMS(λ)

(v) (zag) ...
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ϕ-Bisimulation

... the “same” observable information

for HPL

(i) for any p ∈ Prop, Mw (p) = > ⇔ M ′w ′(p) = >

for HEQ

(i) Mw and M ′w ′ generates the same variety

captured through the notion of elementary equivalence
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Elementary equivalence

M ≡ M ′ if for any ρ ∈ SenI(Σ)

M |=I ρ iff M ′ |=I ρ

truth is invariant under change of notation

M ≡ϕ M ′ if M ≡ ModI(ϕ)(M ′) for a given ϕ ∈ SignI(Σ,Σ′)

Thus, M ≡ϕ M ′ if, for any ρ ∈ SenI(Σ)

M |=I
Σ ρ iff M ′ |=I

Σ′ SenI(ϕ)(ρ)
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ϕ-Bisimulation

Bϕ ⊆ |W | × |W ′|

(i) for any wBϕw ′, Mw ≡ϕSign M ′w ′

(ii) for any wBϕw ′, i ∈ Nom, Wi = w iff W ′
ϕNom(i) = w ′

(iii) for any i ∈ Nom, WiBϕW ′
ϕNom(i)

(iv) (zig) For any λ ∈ Λn, if (w ,w1, . . . ,wn) ∈Wλ and wBϕw ′,
then for each k ∈ {1, . . . ,n} there is a w ′k ∈ |W

′| such that
wk Bϕw ′k and (w ′,w ′1, . . . ,w

′
n) ∈W ′

ϕMS(λ)

(v) (zag) ...
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ϕ-Bisimilarity

(M,W )
ϕ (M ′,W ′)

The expected results:
• 
 is an equivalence relation
• Bψ.Bϕ is a (ψ.ϕ)-bisimulation
• ModHI(ϕ)(M ′,W ′)
ϕ (M ′,W ′)
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Example: HTRIV and H2TRIV
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A Hennessy-Milner theorem

Let ϕ ∈ SignHI(∆,∆′) a signature morphism and (M,W ),
(M ′,W ′) be two image-finte ∆ and ∆′-models.

Then, for every w ∈W and w ′ ∈W ′, the following conditions
are equivalent:

(i) (M,W ) |=w ρ iff (M ′,W ′) |=w ′
SenHI(ϕ)(ρ), for any ρ

(ii) There is a ϕ-bisimulation Bϕ ⊆ |W | × |W ′| such that wBϕw ′
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Forward refinement

• Global behaviour allowed in the abstract model is also
allowed in the concrete one (which may exhibit further
behaviour)

• At each local configuration, properties are preserved along
local refinement.
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(M,W ) ⇁ϕ (M ′,W ′)

Rϕ ⊆ |W | × |W ′| such that, for any wRϕw ′,

(i) for any i ∈ Nom, if Wi = w then W ′
ϕNom(i) = w ′

(ii) Mw �ϕ M ′w ′

(iii) for any i ∈ Nom, Wi Rϕ W ′
ϕNom(i)

(iv) for any λ ∈ Λn, if (w ,w1, . . . ,wn) ∈Wλ then for each
k ∈ {1, . . . ,n} there is a w ′k ∈ |W

′| such that wk Rϕw ′k and
(w ′,w ′1, . . . ,w

′
n) ∈W ′

ϕMS(λ)
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Forward refinement

Preservation of hybrid satisfaction fails for
• boxed sentences ([λ](ξ1, . . . , ξn)):
• and negative sentences (¬ξ)

However
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Positive existential preservation

Lemma

Let (M,W ) ⇁ϕ (M ′,W ′).
Then, for any wRϕw ′ and ρ ∈ SenHI

♦ (∆),

(M,W ) |=w ρ implies that (M ′,W ′) |=w ′
SenHI(ϕ)(ρ)

where SenHI
♦ (ϕ) is the restriction of SenHI(ϕ) to SenHI

♦ (∆)
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Backward refinement

• Enforces all concrete global behaviours to be allowed in
the abstract model (use the (zag) condition)

• Preservation of satisfaction is restricted to positive
universal sentences in SenHI

� (∆)
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Refinement

Two notions of refinement defined in terms of which transitions
are globally preserved and in which direction.

• � properties as a sort of (elementary) safety requirements
=⇒ preserved by backward refinement

• ♦ properties as a sort of (elementary) liveness
requirements =⇒ preserved by forward refinement
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Back to specifications

A (non-structured) specification in a institution I
(∆,E), where ∆ ∈ SignI and E ⊆ SenI(∆)

Its (loose) semantics is given by

- its signature Sig[SP] = ∆, for some ∆ ∈ |SignI |,
- its class of models [|SP|] = {M ∈ |ModI(∆)| : M |=I

∆ E}
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Specification refinement

SP ′  ϕ SP (SP ′ refines SP via ϕ) if

- ϕ ∈ SignI(Sig(SP),Sig(SP ′))

- [|SP ′|]|ϕ ⊆ [|SP|]

where [|SP ′|]|ϕ = {ModI(ϕ)(M)|M ∈ [|SP|]}
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Lemma

Let SP = (∆,E) and SP ′ = (∆,E ′) be two specifications.

Then, the following statements are equivalent:

1. SP  ϕ SP ′

2. for any (M ′,W ′) ∈ [|SP ′|], there is a (M,W ) ∈ [|SP|] such
that (M,W )
ϕ (M ′,W ′) witnessed by a total and
surjective bisimulation
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Lemma

Let SP = (∆,E) and SP ′ = (∆,E ′) be two specifications. If
E ⊆ SenHI

� (∆), then the following statements are equivalent:

1. SP  ϕ SP ′

2. for any (M ′,W ′) ∈ [|SP ′|], there is a (M,W ) ∈ [|SP|] such
that (M,W ) ⇁ϕ (M ′,W ′) witnessed by a surjective
refinement relation
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Lemma

Let SP = (∆,E) and SP ′ = (∆,E ′) be two specifications. If
E ⊆ SenHI

� (∆), then the following statements are equivalent:

1. SP  ϕ SP ′

2. for any (M ′,W ′) ∈ [|SP ′|], there is a (M,W ) ∈ [|SP|] such
that (M,W ) ↽ϕ (M ′,W ′) witnessed by a total refinement
relation
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Conclusions

Work done

• Development parametric on the base institution
• Application to a method of software design for

reconfigurability
cf, [Martins et al, 2011], [Madeira et al, 2013]

Current work
• Hybridisation for quantitative reasoning:

• locally (easy)
• globally (replacing the REL-component in models by

coalgebras over suitable categories)

• Inference of complexity and generation of calculi
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