Online Monitoring of Distributed Systems with a Five-Valued Linear Temporal Logic

Prof. Dr. Holger Schlingloff Fraunhofer FOKUS & Humboldt Universität

holger.schlingloff@fokus.fraunhofer.de

Joint work with Ming Chai, HU Berlin

Previous Talks

Specification and modelling of embedded systems

- formalization of natural-language specifications
- "revision" operation for formulas and models

• Model-based testing of software product lines

- feature modelling, domain engineering
- enhancement of models, reuse of test-cases
- three-valued test assignment

Today

- Monitoring (aka "passive testing")
 - observing instead of influencing

E(Fifte

(Warm)

T(TooCold

TooCold'

TooCold {Three,Fiftee

TooCold {Three}

E(Fifteen) T(Warr

TooCold {Three,Fifteer

Structure of this Talk

- 1. Monitoring
- 2. Dimensions of uncertainty
- 3. Multi-valued logic
- 4. Monitoring algorithm
- 5. Example: RBC/RBC Handover

1. Runtime monitoring

- Observe rather than influence the behaviour of a system
 - useful for watchdog mechanisms, supervision, portmortem-diagnosis, ...
 - in particular interesting for multi-core technology (one core is working, the other one is watching)
- Difference to verification: no model of the system required (observing the actual system)
- **Difference to testing:** no artificial stimulation (observing the system in its actual production environment)

 Disregard Heisenberg's uncertainty principle (observation does *not* change the system's behaviour) *exception:* interrupt / terminate the system

Offline and Online Monitoring

- Offline version: given a trace (e.g., a sequence of events) and a spec (e.g., a finite automaton): Does the trace conform to the specification?
 - well-known word problem of finite automata
 - infinite executions?
- Online version: given a system producing the trace, solve the same problem
 - "online algorithms" for predictable worst-case deviation from optimum
 - here: no "optimum", but statement about conformance

Conformance

How to specify properties to be observed?

- temporal logic
- process algebra
- automata & transition systems
- UML models, ...
- → Here: classical LTL, (metric LTL for real time constraints)

When does the behaviour of a system conform to its LTL specification?

- Safety ("nothing bad ever happens")
 - as soon as it's violated, the answer is "no"
 - up to then the answer is "don't know"
- Liveness ("eventually something good will happen")
 - if all obligations are satisfied, the answer is "yes"
 - up to then, the answer is "don't know"

2. Dimensions of Uncertainty

- Uncertain future
 - if not the whole trace is available (online)
- Uncertain timing
 - if the parallel interleaving cannot be observed exactly
- Uncertain state
 - if the internal state of the system is unknown, i.e., system has observationally equivalent states; can lead to mode confusion
- Uncertain history
 - if monitoring a system which is already running, i.e., not from the start
- Other uncertainties

Subsequently, we deal with the first two of these dimensions

Uncertain Future

- LTL models are infinite (or finite/infinite) sequences $\tau = (\tau_0 \tau_1 \tau_2 ...)$
- Truth value at point τ_i depends on some points τ_i with j i
- Want to issue an "intermediate" verdict at point τ_i
- Bauer/Leucker/Schallhart (2011): three-valued LTL
 - "?" denotes "unknown"
 - Kleene's three-valued truth tables

\vee	Y	?	Ν	_	
Y	Y	Y	Y	Y	N
?	Y	?	?	?	?
Ν	Y	?	Ν	N	Y

- Example
 - Observation = (open, read, write, write, close)
 - Property = (open \rightarrow **F** close)
 - Verdict = (?, ?, ?, ?, T)
- Extension: four-valued logic (tt, ff, pt, pf)
 - Verdict = (pf, pf, pf, pf, tt)

Uncertain Timing

If the system under monitoring is distributed and consists of several communicating subsystems, timing may not be accurately observable Example:

What is the truth value of "write1 is executed before write2"? (is this the same "unknown" as before?) Timestamping will only help if a global clock is available

3. Multiple Truth Values

In monitoring, a truth value can be regarded as an answer to a question (does the system satisfy the property? => Y, N)

Evolution of knowledge \rightarrow pairing of truth values

Monotonicity assumption: Increased knowledge leads to more choices yields five truth values

More Formally

Assume standard LTL with operators $\bot, \to, ..., \mathbf{X}, \mathbf{U}$. The validation function assigns to each ω -sequence τ and formula φ a unique truth value $[[\tau \models \varphi]] \in \{Y, N\} = \mathbf{B}_2$

Let
$$\mathcal{T}$$
 be a set of ω -sequences.
Define $[[\mathcal{T} \models \varphi]] = \bigcup_{\tau \in \mathcal{T}} [[\tau \models \varphi]]$
clearly, $[[\mathcal{T} \models \varphi]] \in \{\{Y\}, \{N\}, \{Y, N\}\} = \mathbf{B}_3$

Let \mathcal{T} be a set of *finite* sequences. Define $[[\mathcal{T} \models \varphi]] \subseteq (\mathbf{B}_3 \times \mathbf{B}_3)$ by $[[\mathcal{T} \models \varphi]] = (A \rightsquigarrow B)$ iff $[[\mathcal{T} \circ \{\varepsilon^{\omega}\} \models \varphi]] = A$ and $[[\mathcal{T} \circ \Sigma^{\omega} \models \varphi]] = B$

From this,
$$[[\mathcal{T} \models \varphi]] = (A \rightsquigarrow B)$$
 implies $A \subseteq B$
Therefore, we have 5 truth values:
true: $(\{Y\} \rightsquigarrow \{Y\})$
false: $(\{N\} \rightsquigarrow \{N\})$

possibly true:
$$(\{Y\} \rightsquigarrow \{Y, N\})$$

possibly false: $(\{Y\} \rightsquigarrow \{Y, N\})$
unknown: $(\{Y, N\} \rightsquigarrow \{Y, N\})$

For example,
$$[[\tau \models \varphi]] = (\{Y\} \rightsquigarrow \{Y, N\})$$
 iff

•
$$\tau \circ \varepsilon^{\omega} \models \varphi$$
 and

• there exists some $\tau' \in \Sigma^{\omega}$ such that $\tau \circ \tau' \not\models \varphi$

Events with an approximative time stamp: $ue = (e, t, \Delta t)$ intuition: event e has occured at time $t \pm \Delta t$

Each set of uncertain time events $\mathcal{B} = \{ue_1, ..., ue_n\}$ gives rise to a set of traces: Trace $\tau = (\tau_1 \tau_2 ... \tau_n)$ is consistent with \mathcal{B} iff there exists a permutation ρ such that

- τ consists of the events \mathcal{B} ordered according to ρ
- if $\rho_i < \rho_j$ then $t_i < t_j$ or the intervals ue_i , ue_j overlap

E.g. if
$$\mathcal{B} = \{(a, 0, 3), (b, 2, 3), (c, 4, 3)\}$$

then $\mathcal{T} = \{abc, bac, acb\}$

E.g. if
$$\mathcal{B} = \{(a, 0, 3), (b, 2, 3), (c, 4, 3)\}$$

then $\mathcal{T} = \{abc, bac, acb\}$

Examples:

$$\begin{aligned} \left[\left[\mathcal{T} \models (a \to \mathbf{F} \ b) \right] \right] &= true \\ \left[\left[\mathcal{T} \models (\mathbf{G} \ (a \lor b) \right] \right] &= false \\ \left[\left[\mathcal{T} \models \mathbf{G} \ \mathbf{F}(b \lor c) \right] \right] &= possibly \ true \\ \left[\left[\mathcal{T} \models \mathbf{G}(c \to \mathbf{F} \ (a)) \right] \right] &= possibly \ false \\ \left[\left[\mathcal{T} \models ((a \ \mathbf{U} \ b)) \right] &= unknown \end{aligned} \end{aligned}$$

Safety properties are false, unknown or possibly true Liveness properties are true, unknown or possibly false

4. Monitoring Algorithm

Naive algorithm takes $2^{|\mathcal{B}|} \cdot 2^{|\varphi|}$ time

Naive algorithm takes $2^{|\mathcal{B}|} \cdot 2^{|\varphi|}$ time Fortunately, executions usually consist of "a string of diamonds" Forward rewriting algorithm: Decompose formula into safety- and liveness-part Complexity $(2^{|\mathcal{B}_1|} + ... + 2^{|\mathcal{B}_n|}) \cdot 2^{|\varphi|}$ Further improvements may be possible Experimental implementation in Maude

Function Five-valued LTL checking (\mathcal{T}, φ) /* initialization of the checking process */ for j = 1 to $|FList(\varphi)|$ do { $\psi \leftarrow \text{FList[i]};$ RewF [j] \leftarrow Rewrite (\mathcal{T}_1, ψ) ; } for i = 2 to $|\mathcal{T}|$ do { If φ is a temporal operation free formula then print " $[\mathcal{T}_i \models \varphi] =$ " $[\mathcal{T}_1 \models \varphi]$; else print " $[\mathcal{T}_i \models \varphi] =$ " SubFC ($\varphi, \mathcal{T}_i, \text{RewF}[1]$); **Function** SubFC (φ , \mathcal{T}_i , RewF [j]) /* rewriting algorithm for subformulae */ for $\mathbf{j} = 1$ to $|FList(\varphi)|$ do { $\psi \leftarrow \text{FList [i]};$ case ψ is a propositional logic formula RewF $[j] \leftarrow (\mathcal{T}_i \models \psi);$ Eva $[j] \leftarrow [\mathcal{T}_i \models \psi];$ case $\psi = \neg \psi_1$ RewF [j] \leftarrow not $(\mathcal{T}_i \models \psi)$; Eva $[j] \leftarrow \neg [\mathcal{T}_i \models \psi];$ case $\psi = \psi_1 \mathcal{U} \psi_2$ RewF $[j] \leftarrow$ RewF [j] or (Rewrite $(\mathcal{T}_i, \mathbf{G}\psi_1)$; Eva $[j] \leftarrow [\text{RewF}[j]] \lor$ ([Rewrite $(\mathcal{T}_i, \mathbf{G} \psi_1)] \wedge pf$); case $\psi = \mathbf{X} \psi_1$ if $|\mathcal{T}_i| > 1$ then RewF $[j] \leftarrow (\mathcal{T}_i \models \mathbf{X} \psi_1);$ else Eva $[j] \leftarrow pf;$ RewF $[j] \leftarrow \psi_1$; **return** Eva [$|FList(\varphi)|$];

5. An Example: The RBC/RBC Handover Process

The RBC/RBC Handover Process

Monitoring Case Study: RBC/RBC Handover

Consider the following properties:

• An RBC_{HOV} sends a request to the RBC_{ACC} , then the RBC_{ACC} sends RRI to the RBC_{HOV} , and sets the route occupied.

 $\varphi_1 = (\operatorname{Req}(i) \land C) \land \mathbf{F} (\operatorname{RRI}(i) \land \neg C)$

• If RBC_{ACC} sends an RRI to an RBC_{HOV} , it can not send it to another RBC_{HOV} until the route is clear

 $\varphi_2 = \mathbf{G} (RRI(i) \to (\neg RRI(i') \ \mathcal{U} \ C)), \text{ with } i \neq i'$

Monitoring Example

Summary

1. Monitoring

online-monitoring as an interesting completion to verification and testing

2. Dimensions of uncertainty

diffuse observations can / may / should give fuzzy results

3. Multi-valued logic

union and product give five truth values

4. Monitoring algorithm

complexity "almost" linear in the number of observations

5. Example: RBC/RBC handover

application is feasible, but more research is needed

THANK YOU FOR YOUR ATTENTION!

