Model Integration, Refinement, and
Transformation

Zhiming Liu
Birmingham City University

zhiming.liu@bcu.ac.uk

g BIRMINGHAM
‘ CITY
) ‘) University

Deal with Software Complexity

* Inherent Complexity of Software
1) Application domains are complex [Requirement Analysis]
2) Software offers much flexibility [Design]
3) The development process is still changing [Management]
4) The behavior of a software system is hard to understand [V&V]

* Increasing complexity of modern software
1) Models of different views of system data and services (model transformations)
2) Integration of models and services, say to support collaborative workflows
3) More and more software becomes safety critical, has increasing demand on

privacy, security, maintainability, interoperability

* Formal methods are essential for

1) handling complexity through abstraction, separation of concerns and divide and
conquer, as well as for

2) provably correct system design

An example scenario: Internet of
Things?

* Street lights
1) City council’s view: lighting of streets
2) Electricity company’s view: readings on meters and/or bills
3) Police’s view: in relation with crimes.
* Design a street light control system to serve the interests of
all the three kinds of users?

1) How to derive an engineering/system model from the different views of

users and vice versa?

2) How to reason or validate the system model against requirements stated in
the users’ view models?

3) How to design a system to support dynamic addition of support to users
with different views?

* Model integration and transformation

tion Use Process

ICa

in for Med

Tool Cha

Clinical
Decision

CPOE 2

CPOE1

Prescripfioh i

Even an Intelligent Medicine Dispenser - Jane Liu

Indicator light

LED display.

PTD button

SINICN

Medication dispenser

Self-Contained Dispenser

— s MSS <

Medication Record J < User Preferences

Network
Interface Compliance Dispenser Medication
. . Monitor Controller Scheduler
Device Drivers
S Microcontroller S
Reminder ' Container Container ; Display
@ é | Units
PTD § MSS
Button RFID Tag RFID Tag | Socket
Verification Binary
Device RFID Reader Sensor array

Implement Instructions

= Pain Kkiller: 1 tablet every 4 to 6 hours while symptom persists.
If pain does not respond to 1 tablet, 2 tablets may be used but
do not exceed 6 tablets in 24 hours. The smallest effective
dose should be used.”

o Dosesize: [d.;, d..J]=1[1,2]

o Separation: [S,,,, Sy..] = [4, 6]

o Maximum total intake: (B, R) = (6, 24)
o Minimum total intake: (L, P) = (0, 24)

= Antibiotic: Take 2 to 4 tablets every eight hours. Keep taking
this medicine for at Ieast ten days.

o Dosesize: [d,.,, d..]=1[2, 4]
Separation: [S,,;,, Spasd = [8, 8]
Maximum total intake: (B, R) = (12, 24)
Minimum total intake' (L, P) = (6, 24)
Duration: [T, T .J = [240, 240]

O O O O

rCOS

Problems
« Dynamic integration of new components and legacy components — plug & play

» Interface for integration for interoperable interaction among heterogeneous
components, e.g. CPS- cyber and physical components, and sensors

« Specification purpose of integration — models of workflows
Objectives

e Unifying semantics & theories of programming (UTP)

« models of interfaces, their refinement and composability

* models, analysis, verification and simulation

« System architecture modeling, refinement and transformation

« Language and Tool support for integration

Putting theories, methods and tools consistently together in design processes

Build system models to gain confidence in

rCOS - Integrating Models

requirements and designs

Use abstraction for information hiding
— well-focused
— problem-oriented

Use decomposition and separation of
concerns

— divide and conquer
—incremental development
use rigor/formalization

— repeatable process
— analyzable artifacts

Basis for Tool Support

Interface Contract alevel of abstraction

E. .

Ir

C
C “
[]

Implementation

>
Hierarchy of components

. Qs Class model
KN

N

S /Data functionality spec

Interaction model

Reactive behavior model

Architectural Components

* Components are

1) Services providers, including computing devices realize functions
2) Process that coordinating and control components through interactions and
3) Connectors

* A memory component
Component M {
Zd;
provided interface MIF {
W(Zv){d:=v}
R(Gv) {vi=d };
1}
* A processes — state-action transition systems, CSP or CCSP processes
Component C {
Boolw =1;
Provided interface CIF { w(){(w:= not w)};R(){not w&(skip}
}

Component C1: w(){w&(w:=not w)}, r()(not w&(w:=not w)

M@C, M@C1 are components

More General Component

component fM {

Zd;

provided interface MIF {

W(Zv){d:=v};

RGv) {vi=d };

protocol { ?W({?W,?R}) // protocol of C, realized by guards}
}
actions { //fault modeling corruption

fault {true|-d’ < >d}
}

}
fMi=fM[fMi.W/W,fMi.R/R], i=1,2,3, renaming as a built-in connector

Separation of Concerns

component V {//a connector
provided interface VIF {
W(Z v) { IM1T.W(v);IM2.W(v);fM3.W(v) };
R(;v) { v := vote (ftM1.R(v), fIM2.R(v), fTM3.R(Vv)) };
{ ?"W({?W,?R}) }
}
required interface { // union of fM1, fM2, fM3;
{ /] interleaving of all fMi’ s protocols }

}

}
« ML V<<(fM1||FM2||fM3) provided at most one memory is
corrupted

» Verification, need auxiliary variable

System Composition

/Guiyang /fault.rcosdi

Fauls

Component Model

<<component>>

< wServiceComponemt» -
aa

<= =<component>>

“wServiceComponemt -
fan3

2]

fasx

<<component>>

< <ServiceComponent» >

2]

<<component>>

- <ServiceComponemt» -
a2

‘‘‘‘‘

< <component>>

- <ServiceComponents> >

v

2]

= Propertie s

[£. Problems | €] Error Log\| = rCOS Spec\|

Model ‘Name
Operations ‘ ::’

Crarmn~tisevnmne

EE] <« <contractinterface>> <Interface> VIf

Parameter
3
A

Semantic Foundation - UTP

A semantic definition is about a way to observe the execution of a
program

For a sequential program P, we observe the relation between the
initial states and final states

> leta(P) ={x" | xin a(P)}
» A sequential program defines relation between its initial and final

states, described as a design p(x) F R(x,x) defined by
e partial correctness p = R

* total correctness L(pl-R)= (ock Ap = ok’ A R)
= Framed design: B: p(x) F R(x,x’)

Theorem: Programs are Indeed Designs

Skip = {}:true|- true
x:=e = {x}:true|-x"=e
D1;D2 = Ix0. D1[x0/x’ JAD2[x0/x] //**(p |-R)

ifbthenD1lelse D2=bAD1V -b AD2 // **(p |-R)

D1D2=D1VD2 // **(p |-R)
b*D = if b then (D; b*D) else skip //** (theory of fixed point)

chaos = false + true

Refinement of Sequential Programs

Refinement:D1 C D2 if V x,x ,ok,ok’ . (D2 = D1)
* Theorem (Designs, L, chaos) iscomplete lattice, and b*D is a design

* Theorem: pl W R1 L p2 - R2 iff
[P1 = P2] and [R2 A P1 = R1]

e Laws of programming:
1.if b then D1 else D2 = if - b then D2 else D1
2 .Chaos; D = chaos

3.D; skip = skip; D D
4. (D1 <| b|> D2); D) = (D1;D)<|b|> (D2;D)

« Data refinement: (a1, D1)E (a2, D2) iff there exists design p(a2, a1’) such that
p; D1 L D2; p

 {pre} p+ R {post} = (p A pre) = (R A post’)
- wp(p F R, g =2p A =(R; =q)

Both calculus of wp and Hoare logic can be used for reasoning and

verification in rCOS

Person acct A ccount
annt nt
trans
G uest Transacton
stays resv
Room Reservatbn
no:Int

G uest

Tesv

Reservatbn

Person

Room

Int

Transacton

An oo program P consists a list of class declarations and a main method

ClassDeclseMain, where Main = (var, c)

o ClassDecls can be represented by a UML Class Diagram, but by a
directed and label graph in rCOS

o A state of P can be represented a UML Object Diagram, but by a
rooted, directed and labeled graph

o The execution of a deterministic command ¢ changes one state graph
to another -- relate an initial state to a final

o When non-determinism allows, the semantics of c can be defined as

pl-R
where p is a predicate on state graphs and R is relation between graphs

State Graph

« The root is the instance of &
main class

* An object and its related
objects is a sub-graph
rooted with object

 Primitive attributes are
leaves

* Object (graph) and state

graph are typed by class O
graph (0810,Int)

« State graphs with local
variables (stack)?

(r5,Reservation)

(rgAccount)

trans

(1000,Int) (rs,Transaction)

o o
O O
g a:=e a
t Oval(e) t O val(e)
(1)
o) 0 ©
O
a a °0 °
s a.b:=e S a C.new(a) QI_ Do
— é/ — |
b b ¢ A
| |
O O | |
t val(e) t val(e) | init(aq) init(a,) |

What does ClassDeclsec L ClassDeclslecl mean?
1. When ClassDecls = ClassDecls1, refinement defined as the same before
2. CG L CGl if the following diagram commutes

1 C
CG > D5 > (053 °

e o fa

i pelc)
Cls > (5

>0G,

Expert Pattern

N N
o: M o:M
n{cl[c (0o-x)]} n{clo.m]}
M M
X X

m{c: (x)} mi{c: (x)}

Class Decomposition (Low Coupling)

M

ml{Cl(X)}

m_ {c, [m]}

=

M -

(O)

m1{01 .ml}

mz2 {O02.m2}

M:
y
M: o1
m1{01 .m 1}

m{c [o1.m 1}

X
mi {C 1 (X)}

Concurrent Programs

 Concurrent program with shared variable
* Closed and execution of the actions is controlled by the program itself

Program P {
variable T x = 1init X
action
[al: gl&D1 ™ .. M an: gné&Dn]
}
e TLA, Back’ s action systems, SAL
* Labeled state transition systems with failure-divergence semantics

Memory-Processor Interaction systems

Program {
var d: int, v: int; op: {rdy, r, w};
init: op=w A vE€int;
Mw: op=w& (d:=v) A (op:=rdy)
Mr: op=r &(v:=d) A (op:=rdy)
Pw: op=rdy & (v:=radom(int)) A (op:=w)
Pr: op=rdy & (op:=w)

Act=Pw [] Pr [] Mw [] Mr

Reactive Designs

* Introduce Boolean observables wait and wait’
e AdesignD is reactive if W(D)=D, where
W(D) = if wait then wait else D

e Guarded design: g&D = if g then D else wait’
* Properties

1)W (W (D))=W(D)

2) If Dis reactive, so is g&D

3)g&(p F R) = g&(W(p F R))

4) Domain of reactive design is closed under sequential

programming

* Refinement L is defined as implication

. Component K=(V, Init, plF, iA, rIF,Fd)

* Fd(m())=g&p|-R - an |/o automaton + local data functionality

* Fd(a)=g&p|-R

e K=(V,Init, pIF, F, Prot) , where Fd(m())=p|-R — local data
functionality + sequence diagram (sequence charts)

* Failure-Divergence Semantics: (Fail(K), Div(K))
. Closed component K= (V,Init,plF,iA,Fd)

* |ocal functionality + Interface Automata

* Local functionally + sequence diagrams

* Failure-Divergence Semantics

. Open components and processes for composing and coordinating
components

. Universal model of components, integrated from different system views
[LNCS 0850]

. Failure-Divergence Refinement with Upwards and Downwards
Simulation [FSEN 2007]

. Interface model: Non-blockable input automata, non-refusal input
traces [ICTAC 2013]

Component-Based Design with rCOS

1. Interface models allow:

— independent components design,
development and deployment

— use of components without the
need to know their design and
implementation

— reuse of designs, proofs, and code
2. Composition operators allow:

— coordination through connectors
and coordinators

— composability checking by reasoning
about functionality refinement and
interaction compatibility

—

d it "CoCoME_ComponentModel.rcosdi

: /poCoME/cocome_useca§e_refmement}CoCo-ME_ComponentModel.rcosd|

![) Select Component Model CoCoME ComoanentModel)
L4 Marqm |
| Objects .
AL <<component>>
% Service Component
£1Process Component <<ServiceComponent>>
it ProcessSale
= Interface
§ Port <<component>> @
|~ Connections ¢
o S <<ServiceComponent>>
4 Interface Realization | cashpes. - = -
i Usage

-

CashDeskiF
4 Composition s
7 Delegation

CashPaymentiF vdP?x.menuF

CardPavmentlF

|- Comment ’ CashPavments =

= Comment

+ Comment Link

|
<<component>> %:] <<component>> g]
<<ServiceComponent>> <<ServiceComponent>>
CashPavment CardPavment
[Problems | i Javadoc || Declaralion]‘ & Console| ¥ Error Log [_;_‘\ Properties © N
RGN E B
} <<contractinterface> > <interface> CashDeskiF
Property Value

Madel v Contract Interface

Operations Contract 2 <<contract> > <Package> _fSaLoKfwEdyy8P40Y1-5Dg_Contract
Stereotypes

Stereotype Attributes

Model-Driven Development with rCOS

* Each phase is based on - Rl
the construction of

§2Jums Brevsing

83w |20

= —]

o Bthjects L femlite em
— = - o
verifiable models e —— | = R

e
= . A

ey % COMmL reoshs

(Camat .
B 1 = o B H a2 remy 5

* Models are analyzed and] =

ereT—

>

o

verified _.,_.;.,_': M_M: ﬂ
* Refined models are 1 |
constructed by model

transformations - e =

oveatorybesk
rderdesk Loe

treduet |

Jv——

pRT——

Bile Bdit Befacter Bwigste Suwrch Breject Bun Mindor Koy

: 11912 A

f Hier (14 Pock 32 | CoCoE reosdi o8, N reosdi £3 % COCul reosdi

CoColE [exumples/CoColE] A
eoatescomemecue, reusdl . public ensbleExpeess() (

° C d . t d f Bile it Bofuctr Jorigate Serch Broject b Linior Bolp
o 0 Q HEEr @™ 9:D . 1 50T browsing
ode Is generatea rrom 168504 1 BEG- 1941010 o EiEE| [CE SO B AR
i | ' w0 9498 &) 18 Hierarchy| 4 Package Bx 11 0 CoCoE reosdi | % CoColE reosdi | % CollE. reosdi) CoCollE reosp £ o}
g @ o G corome
5 COA (cmpleCeCA R:""‘ ine Cashdesk StateMachine Rezion @ Cubtk e €1 0531 {pre : true , post : this.exmode’ = true)
5 Gy conme el Y CushdeskIF Sequence. csp

o o
* Proof obligations are S
g Cubdesll Seq | @State) G reomp 52 G5+ public disableExpress() (
o5 COL reosd Sh OO wl €08 0957 [pre : true , post : this.exuode’ = false)
tstenp 07 08311 T
9) cocome_usecase refinmnent
@ Cushdesk Loc 409 0631
85 CoLoME rcosdi 58 05 (pre
) COCE. reesp S8 0941
O CoCollE ml 594 08-5-5
= 3 coceme_usecase refinmment |
@) Cashidesk Doc 03 0831
Cushdesklseq esp 409
CushosF state csp 409
eEroress o35 CoCOME rcesdi 605 085+
) COCOE. veusp 528 0941
O CoColls wl 581 06-4-30
@ tventorydesk Joc 409 0

3 *
AL reasy § | eemtates

generated by model Y o

transformations o
* rCOS modeler integrates o

55 CoCol reosdi

public startsale() (
¢ true , post : this.sale' = Sale.new(false, empty, this.clock.date()))

public enterIten(Baccode code, int qry ;) {
VAR Linelten item ;
[pre : store.catalog.find(c) 1= null , post : line' = LineItem.new(c, q) ;
line,subtotal' = this.store.cs
this.sale. lines. add (ine))

) CHCuE reosp § public fingshsale() (

. .
UML model notation into - fomienh Quschicicn | TS5 1 A 5 A S 5
@ tventorybesk QW"MM Lec 403 06 OR this.sale.total' = this.sale,lines.nus("subtotal”) |
@ trdedse e bl)
@ Orderbroduct 1

o Ee0L Okt hingogr.

rCOS

@

oy RSO0
R
o cocmen Cop
oy Coconeucl reos
cocommu rens
O coconencl wl.
55 Order_prode_
s v
)

enterlten

o QSRR hingsgr.
ok coconeue Conponeathodel
o cocomvucd. rensdi 409 08
£ cocomenc? reosp 409 08~
Oy coconeuc ual 581 084~
o Order_product Clussllodel

9B

W

¢ B

Tritdle

public cardpay(Caxd ¢ ;) (
[pre : bank.authorize(c, sale.total) ,

+ this.sale.pay’ = CardPayment.new(c);

this.atore.salea. add(zale) ;
\forall LineIten 1 in this.sale.lines, Item p in this.store.catalog :
(p.barcode = 1.barcode) => p,omount' = p.amount - 1.quantity]

w140 seshDenidankla o« dnnkle al {

Tnsert 11 8

Model Transformations in rCOS Modeler

model a use case as a component

refine use case operations by
design patterns to generate an oo
interaction model

3. generate design class model

4. transform the oo interaction
model to a component interaction
model

5. generate the component diagram

6. transform oo interfaces to specific
middlewares, e.g. RMI, CORBA etc.

7. integrate use cases

Code generation performed after
3 and/or 6

Cashier :
|
-
1

alt

: cashDeskLine
I

disableExpress()

enableExpress()

]

startSale()

sel
o)
e

enterltem(Barcode CardInf)]

enterltem(Barcode CardInf) :|

Design
Pattern

—

finishSale()
alt "
cardPay(CardInf)
cardPay(Amount Amount)
T T
CashDeskIF InvertoryDeskF OrderDeskIF
ClockIF:
BarkiF

LightF

Generate

Gy ook || S |- et | :CotPonent | Bk :Caba| | oSt | Pt
o [o [e [o] e [
dte) }
e r
= —
[fincade) |
Henfuog) M\&“?‘T
setubttal)
vl)
L T
i

I
|
setConplete])
ot}
i

= Fh) g

Abstract @

[storesate : | [clock: | [Bank:
T T

sfind(code)

11:setTotal()

|
2:date() |
=

3:Sale New() F
q

d

StoreghlelF
r r
L L
T ooy ponent>>
i StoreServer i i
StorererF
StoreBaklF ’_P
<<<<< ponent> 3]
StoreInventory

—

13:getTotal()

9

16:cardpay(card

wthorize(¢ard, 1mnunHD

Ju

Component-Orientation vs Object-Orientation
[LNCS 7253]

Classes and objects are not explicitly composable

Most component-based technologies are implemented in OO
languages

Useful design patterns are mostly proposed for OO structures

Static functionality decomposition is essentially characterized
by Expert Pattern

OO design model can be transformed into a component-based
design model with interactive tool support.

OO is an important part of rCOS

Model Transformations vs Refinement Laws

e Traditional refinement calculi provide syntactic rules for transforming
specification
— Preserve semantic correctness
— Support program derivation
— Refinement laws are too fine grained and cannot be complete
— Refinement of OO programs is not well developed
 MTs preserve semantic correctness

— Design patterns and | model refactoring can be implemented as MTs
with semantic conditions of the application

— These conditions are generated as proof obligations by a transformation

— Automation is crucial for MT to support code generation, and
transformation between PSMs

— Model transformations can be used to relate models of different users’
views.

Service oriented systems: modeling and verification of web-
services, choreography, orchestration and long running
transactions [ICTAC 2010, FACS 2010]

Real-time [LNCS 5454, 2009]
Security: access control connectors [ISoLA 2008]
Aspect orientation: Aspectd as connectors

Further tool support development (http://rcos.iist.unu.edu)

Real-time, QoS, component-based fault-tolerant design
Application development from a given repository of components
o based on the knowledge of the repository
o using a model of ontology of the components

CPS: integration of cyber (software) components and physical components
Applications in Healthcare and environmental health, in particular

