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The Big Picture

need to model and verify heterogeneous systems
requirements concerning correctness, but also resource usage,
stochastic behaviour
e e.g. irrespective of the environment, the cost of a component achieving
a given behaviour is bounded by a given value
existing formal verification techniques/tools assume fixed semantic
model

o lack of compositionality at the level of system models !



Summary of Formal Verification Logics

e multitude of temporal logics used in verification:
e LTL, CTL, CTL*, p-calculus on non-deterministic transition systems
e PCTL, probabilistic LTL on probabilistic transition systems
e ATL on game structures (for reasoning about player strategies)

e graded CTL (for counting winning strategies in game structures)

e What are the similarities/differences between these logics?
e e.g. branching versus linear time
e Are there general recipes for defining temporal logics and asociated
verification technologies?
e Can we apply this recipe to new semantic models?

e e.g. to combinations of the above?



This Talk

@ What is the linear time behaviour of a state in a system with
branching?
o several different types of branching: non-deterministic, probabilistic,
weighted

e several different types of linear behaviour, e.g. input/output
transitions, termination

e stepping stone to verifying linear time properties

® What are linear time logics?
o LTL
e probabilistic LTL
o weighted LTL

e general recipe !



Our Approach in a Nutshell

e coalgebras as semantic models

e subsumes non-deterministic, probabilistic and weighted models
e generic, uniform and compositional approach:
e monads capture branching behaviour

e polynomial endofunctors capture linear behaviour

e branching monad determines choice of truth values

e linear time behaviour measures the extent to which a particular trace is
exhibited

o linear time formulas measure the extent to which a linear time property
holds



Example: Labelled Transition Systems

e branching given by non-determinism in choice of transition
o given by finite or infinite sequences of labels

e linear time behaviour of a state given by set of maximal traces



Example: Probabilistic Transition Systems

e branching given by probability distribution over possible transitions
° as before !

e linear time behaviour of a state: each maximal trace is a assigned a
probability value



Example: Weighted Transition Systems

e branching given by weighted choices over possible transitions
o still as before !

e linear time behaviour of a state: if weights measure costs, the
minimal cost of exhibiting a maximal trace is of interest !



Coalgebras
For F : Set — Set, an F-coalgebra is a function v : S — F(S), where

e S is the state space

e v defines the one-step behaviour (the transitions)

Examples:

e labelled transition systems (labels as outputs):
v:5—>P

s — () models deadlock
s — % € 1 models successful termination

s — (a,s’) models an a-transition

e labelled transition systems (labels as inputs):

v:S5—=P(S)



Coalgebras (Cont'd)

More examples:

e probabilistic transition systems (labels as outputs):
v:5—->7D
where D(X) are the subprobability distributions over X
e weighted transition systems (labels as outputs):
y:S—=>W
where W(X) = (N*°)X
e systems with input and output:

¥y:S—=P



Linear versus Branching Time,
Coalgebraically

e branching given by a monad T

e powerset P
e subprobability distributions D
e weights from a semiring S: W(X) = SX

e transition structure given by a polynomial functor

o - deterministic transitions (labels as outputs) with explicit
termination

. - deterministic transitions (labels as inputs)

° - deterministic systems with input and output

e goal is to give a uniform, compositional account of linear time
semantics in systems with branching

e systems modelled as coalgebras of type T
... but also T and T T



Related Work

@ finite traces [Hasuo, Jacobs, Sokolova 2007]

e applies to coalgebras of type T o
® non-deterministic systems: P

e probabilistic systems: D

® maximal (including infinite) traces [Cirstea 2011]
e applies to coalgebras of type T o

© (finite) traces via determinisation [Jacobs, Silva, Sokolova 2012]
e applies to coalgebras of type G o T
® non-deterministic automata: P

o Segala systems: D



Limitations of Existing Approaches

o lack of compositionality in the system type

e e.g. systems with branching and both input and output not covered:

T

e infinite traces only accounted for when models are T © /--coalgebras



Bisimulation via Partition Refinement

S0 to
d 7 X la
d
s1 S2 t
| | 7N
b c
S3 Sy to t3

® assume s; ~q t; for all i,
@® for each s; ~ t;, let
. / . I
si~yr tj iff si—— s’ implies tj —— ¢ and s’ >~ t/,
and conversely

© largest bisimulation obtained as greatest fixpoint of monotone
operator on lattice of relations

Can this be adapted to check if a state can exhibit a particular trace?



From Branching to Linear Time

Key insight: linear time behaviours of states in T o /-coalgebras are states
in (final) /-coalgebras!

P -coalgebra -coalgebra
S0 to t(/)
. : .|
d / \ p l
S1 S t1 ti
| | RN
b c
S3 S4 to t3

@ assume s; S¢ t; for all i,
@® for each s; 3 t;, let
Si Sky1 tj iff tj%t’ implies s;%s’ and s’ 3, t/

@ relation > ("has trace”) again obtained as greatest fixpoint !



What Needs To Be Generalised? (1)

S0
1d 32 5. la le
d
S1 S t1 t{
1,1{ ch y \CJ
to t3

S3 S4

@ need to measure the probability of a trace occurring from a state

= relations given by maps S x T — [0, 1]
® need to measure the ability to exhibit a trace across all branches
= (partial) addition operation on [0, 1]

© need to propagate measure along successive transitions

= multiplication operation on [0, 1]



From Monads to (Ordered) Semirings

Theorem (extends Coumans&Jacobs 2013)
Each commutative, partially additive monad T : C — C induces a partial

commutative semiring (T(1),+,0, x, 1) with an induced preorder .

Examples:
e T=7: ({0,1},Vv,0,A,1,<), T=1,1=0
e T=D: ([0,1],+,0,%,1,<), T=1, L =0
e T=W: (N*° min,c0,+,0,>), T=0, L=00

‘We take relations to be given by functions R: X x Y — T(l)‘




What Needs To Be Generalised? (1)

P -coalgebra (C,~) -coalgebra (Z, ()
) to t(/)
a a
d / \ J la l"
S1 S t1 ti
| | N
b c
S3 S4 ) t3

Recall: relation "has trace” obtained as greatest fixpoint of

Rel(F E )
Relc,z M Relrc Fz — Re|T(Fc)’FZ M) Relc ~

where F = and T = P.

We need generalisations of Rel(F) and Et !



Generalised Relation Lifting

e category Rel defined using preorder C induced by partial semiring S:

Xx Y-8 x v

RJ . l""

S————S§
e relation lifting Rel(F) of polynomial functor F : Set — Set:

Rel — ) Rel

ql Jq
Set x Set +F Set x Set

defined by structural induction on F.



More on (Strong) Monads
Corollary (Kock 1969)
For T : C — C a strong monad, any map
SxT——T(1)
extends uniquely to a 1-linear map

T(S)x T——T(1)
This yields an extension lifting Ev:  Rel —— 5 Rel

dl s

Set x Set —— Set x Set
TxId



More on (Strong) Monads
Corollary (Kock 1969)
For T : C — C a strong monad, any map
SxT——T(1)
extends uniquely to a 1-linear map

T(S)x T——T(1)
This yields an extension lifting Ev:  Rel —— 5 Rel

dl s

Set x Set —— Set x Set
TxId

1,d 1S 2, to t)
N o b
S1 S b t1 ti b

v pY
S3 Sq to t3



Two Kinds of Relation Lifting (Example)

Probabilistic transition system: v:S — D

Traces: § : Z —

@ lift relation R; : S x Z — [0,1] to relation

R! X
@® extend relation R :
R :D X

Quseyxd:5x2Z—D
Riv1:SxZ —[0,1]

— [0, 1]

— [0, 1]

— [0, 1] to relation

to get a relation



Linear Time Behaviour as a Fixpoint
Assume: the preorder C is a w’’ -chain complete partial order with 1 as T.

Definition

The linear time behaviour of a state in a coalgebra with branching (say of
type T o 1) is the greatest fixpoint of the operator O on Rels 7 given
by

Rel Rel 8)*
Rels.z I Rel 5.7 — s Relrrs. 2 S Relc1rs.cr 2 % Rels, 2
where:
o v:S5 — (TIS is the system coalgebra
e §:Z — (I Zis the (final) coalgebra of traces

e approach is compositional in the coalgebra type
e definition of domain of linear time behaviours

e definition of operator O



Example: Transition Systems

So to t(/)
a a a la
d / \ J l
S1 S t1 ti
b c
S3 Sa to

(] (S,‘, tj) — 1

[ (53, t2) — 1, (Slf tl) — 1, (Szf tl) — 0, ...

° (50, l'o) — 1, (50, l'(/)) — 1



Example: Probabilistic Transition Systems

) to t6
1 2
1,d 3:2 5.2 la la
d
S1 S t1 ti
b
1,bl ll,c / \CJ
S3 S4 tr

s3, t2) — 1, (51, tl) — 1, (52, tl) — 0, (So, Z‘o) = %

—_
&
S
~—
1
)]

(50, fo) — 0, (50, Z'O) — %

t3



Example: Weighted Transition Systems

So to t(/)
1,d 2.a 1,a l l
a a
/ \ d
S1 S t1 t]
3,bl l4,c 7 X
3 S4 t t3

, (s2,t1) = 00, (50, tg) ¥ 2
, (s2,t1) ¥ 00, (50, t0) =+ 5

(.n
5“
~

=
—~

& 2
~
i
~
1w W

° (So, to) — 10

* (s0,1t0) — 00, (s0,ty) — 5,



Example: Systems with Input and Output
Consider coalgebra v: S5 — T

Traces are trees (1) :

/ \
*ay \a‘nbl / \a‘n

Linear time behaviour of a state is given by:
® T — P: the set of such trees that can be matched
® T = D: the probability of matching each such tree - probabilities of
different tree branches are multiplied!

©® T = )WV: the minimum cost of matching each such tree - costs of
different tree branches are added!



Towards Coalgebraic Linear Time Logics

e similar (double) extension lifting can be used to measure the extent to
which two states in two coalgebras with branching can exhibit the
same behaviour

e T = P: existence of a common trace
e T = D: probability of a common trace

e T =)V: joint minimal cost of a common trace

e similar approach to temporal logics?

e instead of individual traces, consider linear temporal logic formulas
(sets of acceptable traces)



Generalised Predicate Liftings

partial commutative semiring S = (T1,+.,0, e, 1) with induced order
[ as before

category Pred defined similarly to Rel: X1y
Pl c o
S§—S5
want to lift predicates over X to predicates over /X ...

predicate lifting of arity n: Pred” —- Pred

al Ip

Set T) Set

e.g.
e unary modality (a) defined using L, : Pred — Pred

X 1+Ax X * (a,x) (a',x)

1 ke [T

S S 0 P(x) 0



Generalised Predicate Liftings: More
Examples
, arbitrary T:
e binary modality [a] defined using L, : Pred — Pred

X X 1+Ax X * (a,x)
Pll le l'—[a](Ph'Dﬂ I I
s S S 0 Pi(x)

e nullary modality * defined using L. : 1 — Pred

1+Ax X * (a,x)

[

T1 1 0

e example formulas: (a)T, [a](T,*)



Generalised Predicate Liftings

e set of predicate liftings Ag for polynomial functor F =[] I

i€l
Pi(x1)e...e Pi(x;) if f=(x1,...,x;) € ti(ld")
0 otherwise

(Li)x(P1,.... P)(f) = {



Extension Predicate Liftings

e predicates over X canonically induce predicates over subsets,
subprobability distributions, or weighted subsets:

o T = P: predicate is true on Y € P(X) iff if it is true on some x € Y
e T=D: P:X —1]0,1] extends to P’ : D(X) — [0, 1]
piX =01 = Y p(x)xP(x)
xeX
o T=W: P:X — N> extends to P" : W(X) — [0,1]

w:X—=>N*® — )r;nei)lg(w(x) + P(x))

e extension lifting P:

Pred s Pred gvenby X  TX

Pl |° ”l [

Set —— Set T1 T21 211



Linear Time Modal Logics: Syntax and
Semantics

e modal logic £,

e syntax:

e semantics w.r.t. coalgebra (C,7): [¢], :C—T1
[Tl,(e)=T

[IA(e1s - )], =" 0 Pr(Pallenlys - - -5 [enl))
Pred¢ —— Pred/ ¢ T Predt/c 74> Predc

Trce—>1 ¢



Example: Labelled Transition Systems

T="7P,
S0 to
/ \‘ J{a
d d
S1 So t
b c
S3 S4 to t3



Example: Probabilistic Transition Systems

S0 to
2
£,a
3 Jl,a
1,d
So t
1 1
J AN
l,c
S4 [59) t3

° (s1,(b)T) =~ 1 (t1, (B)T) — 3
o (s0,(a)(B)T) 3 (to, (a)(B)T) — 3
e (s1,(a)T)—0 (s0,(a)T)—1

(

t1, [b]({(d) T, T)) =1



Example: Weighted Transition Systems

T=W,
S0 to
1,d 2,a 1,a 1
1,d
S1 S t1
2.b 4.b
3,b 4,c

S3 Sy to t3

s1, (b)T) +— 3 (t1,(b)T) —~ 2

s0,(a)(b)T) +—5 (to, (a)(b)T) — 3

(

e (sp,(a)T)—1
(
(

t1, [b]({(d) T, T)) =3



Relational Semantics for Linear Time
Modal Logics

computing [p] : C — T1 for all ¢ € L, same as computing
"satisfaction relation”

R:CxLp— Tl

computing the latter can be done iteratively:

@ initially (¢, ) > T for all c and ¢

@ at each step, refine value for (c, [\]¢) by unfolding the coalgebra
structure on ¢, and using previous values for (¢, ¢), with ¢’
"reachable” from c in one step

as each ¢ has finite depth, procedure stabilises after finite number of
steps for each ¢ !



Relational Semantics for Linear Time
Modal Logics

o La=>sen 1d> (M) captures the syntax of £

e L is carrier of initial {T} + Ls-algebra ...

...and also of a { T} + Ly-coalgebra a™ : Lo — {T} + La(L) !
e lifting D : Rel — Rel of F X La:

Rel —2 4 Rel

| J

Set x Set — Set x Set
F % L/\

defined using (P)\))\E/\-



Relational Semantics for Linear Time
Modal Logics

Theorem
The semantics of Ly is the unique fixpoint of the operator on Relc .,
given by

Er X (vxa™h)*
Relc,c, — Relrc iy — Relrrc e, — Relric qmy4acn — > Relc z,

Intuition:
e D - one linear step
e Et - amalgamate across different branches

e X - incorporate T

(7 x a=1)* - unfold the coalgebra structures of states and formulas



Linear Time Fixpoint Logics

e modal logic pLx

e syntax:
pu=x| T [A(e1, - parn) | x| vxp

e semantics [;}]Y w.r.t. coalgebra (C,~) and valuation V' : V — Pred¢:

Y = V()

- [ux.] and [vx.p] defined using least/greatest fixpoints of operator
on Predc:

P [l



Example: Labelled Transition Systems

S0
a a
d
S1 2
S3 S4

o 5o b= vx.(ayx
o so b= e fal(T,%)

e 5o = vx.uy.[a](x,y)



Example: Probabilistic Transition Systems

S0 to
%73 Jl a
1,d
S t
1 1
| VAN
l,c
Sy [59) t3

e (sp,vx.{(a)x)—0
o (s0, px.[a](T, %)) = 1 (to, px.[b)(T, X)) = 3

* (so,vx.py.[a](x,y)) = O



Example: Weighted Transition Systems

T=W,
S0 to
1,d 2,a 1,a Jl 5
1.d ’
s1 S t
I P2
3,b 4,c
S3 S4 to t3
e (sp,vx.(a)x) — oo (because (s1, (a)vx.(a)x) — o0)
e (s0, px-[a](T, X)) = 1 (to, px-[B](T, x)) = 3

* (s0, vx.py-la](x,y)) = o0



Relational Semantics for Linear Time
Fixpoint Logics

same iterative approach works for fixpoint formulas (assuming only
one type of fixpoints)

initially (c, ) — L ( ) for Ifp formulas (resp.

at each step, unfold the formula structure, and if needed also the
coalgebra structure

e to compute new approximation for (s, [A\]e), unfold v on s and use
previous values for (s', )

e to compute new approximation for (s, ux.p), use value for
(s, elux.o/x])

sufficient to work with formulas in the closure of the formula of
interest, as opposed to the entire fixpoint language !



Relational Semantics for Fixpoint Logics

Theorem

Let ¢ € Lp be clean, guarded, containing no free variables and only least
(greatest) fixpoint operators. Then [¢]., can be obtained from the least
(greatest) fixpoint of the operator on Relc r given by

= X ({(vsidc) xa)”
Relc, 7 — Relrrcxciar+rr — Relrrcxc {Ty4ar+r — Relc 7

where:
o 7 =Cl(y)
o a:F — {T}+ LaF + F is the formula coalgebra

Intuition:

e F - one linear step and one branching step

e X - incorporate T

e ((v,id¢c) x a)* - unfold the coalgebra structure of states and formulas



So How Can We Use This ?

can check whether px. holds with probability at least p using
iterative approach

e stop (with Yes) as soon as value p reached

can also check whether vx. holds with probability at least p

e stop (with No) as soon as value below p reached

similarly for weighted systems (cost at most C)

e for ux.p, stop (with Yes) as soon as C reached (from above!)

o for vx.p, stop (with No) as soon as C reached (from below!)



Conclusions and Future Work
Summary

e general account of linear time behaviour in systems with branching
e general notion of linear time fixpoint logic for systems with branching
e both are parametric in the choice of branching and linear behaviours

e relational semantics supports approximation-based approach to
model-checking

Ongoing/future work

o study expressiveness of linear time logics

e generalise linear time logics to coalgebras of type T
e coalgebraic model-checking of linear time properties

e localised model checking

o large state spaces still a challenge !

e new algorithms for known semantic models ?

e compositional approach: combine different types of branching !



