
From Branching to Linear Time, Coalgebraically

Corina Ĉırstea

University of Southampton

January 8, 2014

The Big Picture

• need to model and verify heterogeneous systems

• requirements concerning correctness, but also resource usage,
stochastic behaviour

• e.g. irrespective of the environment, the cost of a component achieving
a given behaviour is bounded by a given value

• existing formal verification techniques/tools assume fixed semantic
model

• lack of compositionality at the level of system models !

Summary of Formal Verification Logics

• multitude of temporal logics used in verification:

• LTL, CTL, CTL*, µ-calculus on non-deterministic transition systems

• PCTL, probabilistic LTL on probabilistic transition systems

• ATL on game structures (for reasoning about player strategies)

• graded CTL (for counting winning strategies in game structures)

. . .

• What are the similarities/differences between these logics?

• e.g. branching versus linear time

• Are there general recipes for defining temporal logics and asociated
verification technologies?

• Can we apply this recipe to new semantic models?

• e.g. to combinations of the above?

This Talk

1 What is the linear time behaviour of a state in a system with
branching?

• several different types of branching: non-deterministic, probabilistic,
weighted

• several different types of linear behaviour, e.g. input/output
transitions, termination

• stepping stone to verifying linear time properties

2 What are linear time logics?

• LTL

• probabilistic LTL

• weighted LTL

• general recipe !

Our Approach in a Nutshell

• coalgebras as semantic models

• subsumes non-deterministic, probabilistic and weighted models

• generic, uniform and compositional approach:
• monads capture branching behaviour

• polynomial endofunctors capture linear behaviour

• branching monad determines choice of truth values

• linear time behaviour measures the extent to which a particular trace is
exhibited

• linear time formulas measure the extent to which a linear time property
holds

Example: Labelled Transition Systems

·
a

��

a

��

·
a

��
·

b
��

·
c

��

·
b

��

c

��
·

d

44

· ·

d

;;

·

• branching given by non-determinism in choice of transition

• traces given by finite or infinite sequences of labels

• linear time behaviour of a state given by set of maximal traces

Example: Probabilistic Transition Systems

·
1
3
,a

��

2
3
,a

��

·
1,a

��
·

1,b
��

·
1,c

��

·
1
2
,b

��

1
2
,c

��
·

1,d

00

· ·

1,d

;;

·

• branching given by probability distribution over possible transitions

• traces as before !

• linear time behaviour of a state: each maximal trace is a assigned a
probability value

Example: Weighted Transition Systems

·
2,a

��

1,a

��

·
2,a

��
·

3,b
��

·
4,c

��

·
2,b

��

4,c

��
·

1,d

00

· ·

2,d

;;

·

• branching given by weighted choices over possible transitions

• traces still as before !

• linear time behaviour of a state: if weights measure costs, the
minimal cost of exhibiting a maximal trace is of interest !

Coalgebras
For F : Set→ Set, an F -coalgebra is a function γ : S → F (S), where

• S is the state space

• γ defines the one-step behaviour (the transitions)

Examples:

• labelled transition systems (labels as outputs):

γ : S → P(1 + A× S)

s 7→ ∅ models deadlock

s 7→ ∗ ∈ 1 models successful termination

s 7→ (a, s ′) models an a-transition

• labelled transition systems (labels as inputs):

γ : S → P(S)A

Coalgebras (Cont’d)

More examples:

• probabilistic transition systems (labels as outputs):

γ : S → D(1 + A× S)

where D(X) are the subprobability distributions over X

• weighted transition systems (labels as outputs):

γ : S →W(1 + A× S)

where W(X) = (N∞)X

• systems with input and output:

γ : S → P(1 + B × S)A

Linear versus Branching Time,
Coalgebraically

• branching given by a monad T

• powerset P
• subprobability distributions D
• weights from a semiring S : W(X) = SX

• transition structure given by a polynomial functor F

• 1 + A× Id - deterministic transitions (labels as outputs) with explicit
termination

• IdA - deterministic transitions (labels as inputs)

• (1 + B × Id)A - deterministic systems with input and output

• goal is to give a uniform, compositional account of linear time
semantics in systems with branching

• systems modelled as coalgebras of type T ◦ F . . .

. . . but also G ◦ T and F ◦ T ◦ G ◦ T ◦ . . .

Related Work

1 finite traces [Hasuo, Jacobs, Sokolova 2007]

• applies to coalgebras of type T ◦ F
• non-deterministic systems: P(1 + A× Id)

• probabilistic systems: D(A× Id)

. . .

2 maximal (including infinite) traces [Ĉırstea 2011]

• applies to coalgebras of type T ◦ F

3 (finite) traces via determinisation [Jacobs, Silva, Sokolova 2012]

• applies to coalgebras of type G ◦ T
• non-deterministic automata: {0, 1} × PA

• Segala systems: P(A×D)

. . .

Limitations of Existing Approaches

• lack of compositionality in the system type

• e.g. systems with branching and both input and output not covered:

T(1 + B × Id)A

• infinite traces only accounted for when models are T ◦ F -coalgebras

Bisimulation via Partition Refinement

s0
a

~~

a

t0

a
��

s1

b
��

s2

c
��

t1
b

��

c

��

s3

d

33

s4 t2

d

::

t3

1 assume si '0 tj for all i , j

2 for each si 'k tj , let

si 'k+1 tj iff si
l // s ′ implies tj

l // t ′ and s ′ 'k t ′,

and conversely

3 largest bisimulation obtained as greatest fixpoint of monotone
operator on lattice of relations

Can this be adapted to check if a state can exhibit a particular trace?

From Branching to Linear Time

Key insight: linear time behaviours of states in T ◦ F -coalgebras are states
in (final) F -coalgebras!

P(1 + A× Id)-coalgebra 1 + A× Id-coalgebra

s0

a

��

a

��

t0

a
��

t ′0
a
��

. . .

s1

b
��

s2

c
��

t1
b

��

t ′1
c

��

s3

d

44

s4 t2

d

<<

t3

1 assume si 30 tj for all i , j

2 for each si 3k tj , let

si 3k+1 tj iff tj
l // t ′ implies si

l // s ′ and s ′ 3k t ′

3 relation 3 (”has trace”) again obtained as greatest fixpoint !

What Needs To Be Generalised? (I)

s0
1
3
,a

��

2
3
,a

��

t0

a

��

t ′0

a
��

. . .

s1

1,b
��

s2

1,c
��

t1

b

��

t ′1
c

��

s3

1,d

11

s4 t2

d

<<

t3

1 need to measure the probability of a trace occurring from a state

=⇒ relations given by maps S × T → [0, 1]

2 need to measure the ability to exhibit a trace across all branches

=⇒ (partial) addition operation on [0, 1]

3 need to propagate measure along successive transitions

=⇒ multiplication operation on [0, 1]

From Monads to (Ordered) Semirings

Theorem (extends Coumans&Jacobs 2013)

Each commutative, partially additive monad T : C→ C induces a partial
commutative semiring (T(1),+, 0,×, 1) with an induced preorder v.

Examples:

• T = P: ({0, 1},∨, 0,∧, 1,≤), > = 1, ⊥ = 0

• T = D: ([0, 1],+, 0, ∗, 1,≤), > = 1, ⊥ = 0

• T =W: (N∞,min,∞,+, 0,≥), > = 0, ⊥ =∞

We take relations to be given by functions R : X × Y → T(1)

What Needs To Be Generalised? (II)

P(1 + A× Id)-coalgebra (C , γ) 1 + A× Id-coalgebra (Z , ζ)

s0

a

��

a

��

t0

a
��

t ′0
a
��

. . .

s1

b
��

s2

c
��

t1
b

��

t ′1
c

��

s3

d

44

s4 t2

d

<<

t3

Recall: relation ”has trace” obtained as greatest fixpoint of

RelC ,Z
Rel(F)

// RelFC ,FZ
ET // RelT(FC),FZ

(γ×ζ)∗
// RelC ,Z

where F = 1 + A× Id and T = P.

We need generalisations of Rel(F) and ET !

Generalised Relation Lifting

• category Rel defined using preorder v induced by partial semiring S :

X × Y

v

f×g
//

R
��

X ′ × Y ′

R′

��

S S

• relation lifting Rel(F) of polynomial functor F : Set→ Set:

Rel

q

��

Rel(F)
// Rel

q

��

Set× Set
F×F

// Set× Set

defined by structural induction on F .

More on (Strong) Monads

Corollary (Kock 1969)

For T : C→ C a strong monad, any map

S × T // T(1)

extends uniquely to a 1-linear map

T(S)× T // T(1)

This yields an extension lifting ET: Rel

q

��

ET // Rel

q

��

Set× Set
T×Id

// Set× Set

s01
3
,a

��

2
3
,a

��

t0
a��

t ′0
a��

s1
1,b ��

s2
1,b��

t1
b
��

t ′1 b
��

s3

1,d
..

s4 t2

d

88

t3

More on (Strong) Monads

Corollary (Kock 1969)

For T : C→ C a strong monad, any map

S × T // T(1)

extends uniquely to a 1-linear map

T(S)× T // T(1)

This yields an extension lifting ET: Rel

q

��

ET // Rel

q

��

Set× Set
T×Id

// Set× Set

s01
3
,a

��

2
3
,a

��

t0
a��

t ′0
a��

s1
1,b ��

s2
1,b��

t1
b
��

t ′1 b
��

s3

1,d
..

s4 t2

d

88

t3

Two Kinds of Relation Lifting (Example)

Probabilistic transition system: γ : S → D(1 + A× S)

Traces: δ : Z → 1 + A× Z

1 lift relation Ri : S × Z → [0, 1] to relation

R ′i : (1 + A× S)× (1 + A× Z)→ [0, 1]

2 extend relation R ′i : (1 + A× S)× (1 + A× Z)→ [0, 1] to relation

R ′′i : D(1 + A× S)× (1 + A× Z)→ [0, 1]

3 use γ × δ : S × Z → D(1 + A× S)× (1 + A× S) to get a relation

Ri+1 : S × Z → [0, 1]

Linear Time Behaviour as a Fixpoint
Assume: the preorder v is a ω

op
-chain complete partial order with 1 as >.

Definition

The linear time behaviour of a state in a coalgebra with branching (say of
type G ◦ T ◦ F) is the greatest fixpoint of the operator O on RelS ,Z given
by

RelS,Z
Rel(F)

// RelFS,FZ
ET // RelTFS,FZ

Rel(G)
// RelGTFS,GFZ

(γ×δ)∗
// RelS,Z

where:

• γ : S → G TF S is the system coalgebra

• δ : Z → G F Z is the (final) coalgebra of traces

• approach is compositional in the coalgebra type

• definition of domain of linear time behaviours

• definition of operator O

Example: Transition Systems

s0

a

��

a

��

t0

a
��

t ′0
a
��

s1

b
��

s2

c
��

t1
b

��

t ′1
c

��

s3

d

44

s4 t2

d

<<

t3

• (si , tj) 7→ 1

• (s3, t2) 7→ 1, (s1, t1) 7→ 1, (s2, t1) 7→ 0, . . .

. . .

• (s0, t0) 7→ 1, (s0, t
′
0) 7→ 1

Example: Probabilistic Transition Systems

s0
1
3
,a

��

2
3
,a

��

t0

a
��

t ′0
a
��

s1

1,b
��

s2

1,c
��

t1
b

��

t ′1
c

��

s3

1,d

00

s4 t2

d

<<

t3

• (si , tj) 7→ 1

• (s3, t2) 7→ 1, (s1, t1) 7→ 1, (s2, t1) 7→ 0, . . .

• (s3, t2) 7→ 1, (s1, t1) 7→ 1, (s2, t1) 7→ 0, (s0, t0) 7→ 1
3

• (s3, t2) 7→ 1
3 , (s0, t0) 7→ 1

3

. . .

• (s0, t0) 7→ 1
9

. . .

• (s0, t0) 7→ 0, (s0, t
′
0) 7→ 2

3

Example: Weighted Transition Systems

s0

2,a

��

1,a

��

t0

a
��

t ′0
a
��

. . .

s1

3,b
��

s2

4,c
��

t1
b

��

t ′1
c

��

s3

1,d

00

s4 t2

d

<<

t3

• (si , tj) 7→ 0

• (s3, t2) 7→ 1, (s1, t1) 7→ 3, (s2, t1) 7→ ∞, (s0, t0) 7→ 2

• (s3, t2) 7→ 1, (s1, t1) 7→ 3, (s2, t1) 7→ ∞, (s0, t0) 7→ 5

• (s3, t2) 7→ 5, (s0, t0) 7→ 5

. . .

• (s0, t0) 7→ 10

. . .

• (s0, t0) 7→ ∞, (s0, t
′
0) 7→ 5, . . .

Example: Systems with Input and Output

Consider coalgebra γ : S → T(1 + B × S)A.

Traces are trees (!) : ·
a1

vv
...

an

''
b1

a1

��
...

an
!!

bn
a1

��
...

an
!!

∗ b1,n
a1

{{

an
""

∗ bn,n
a1

{{

an
!!

...
...

...
...

Linear time behaviour of a state is given by:

1 T = P: the set of such trees that can be matched

2 T = D: the probability of matching each such tree - probabilities of
different tree branches are multiplied!

3 T =W: the minimum cost of matching each such tree - costs of
different tree branches are added!

Towards Coalgebraic Linear Time Logics

• similar (double) extension lifting can be used to measure the extent to
which two states in two coalgebras with branching can exhibit the
same behaviour

• T = P: existence of a common trace

• T = D: probability of a common trace

• T =W: joint minimal cost of a common trace

• similar approach to temporal logics?

• instead of individual traces, consider linear temporal logic formulas
(sets of acceptable traces)

Generalised Predicate Liftings
• partial commutative semiring S = (T1,+, 0, •, 1) with induced order
v as before

• category Pred defined similarly to Rel: X

P
��

f //

v

Y

Q
��

S S
• want to lift predicates over X to predicates over F X . . .

• predicate lifting of arity n: Predn

p
��

L // Pred
p
��

Set
F
// Set

• e.g. F = 1 + A× Id
• unary modality 〈a〉 defined using La : Pred→ Pred

X

P
��

1 + A× X

L〈a〉(P)
��

S S

∗_

��

(a, x)
_

��

(a′, x)
_

��

0 P(x) 0

Generalised Predicate Liftings: More
Examples

F = 1 + A× Id, arbitrary T:

• binary modality [a] defined using La : Pred→ Pred

X

P1
��

X

P2
��

1 + A× X

L[a](P1,P2)
��

S S S

∗_

��

(a, x)
_

��

(a′, x)
_

��

0 P1(x) P2(x)

• nullary modality ∗ defined using L∗ : 1→ Pred

1 + A× X

L∗
��

T1

∗_

��

(a, x)
_

��

1 0

• example formulas: 〈a〉>, [a](>, ∗)

Generalised Predicate Liftings

• set of predicate liftings ΛF for polynomial functor F =
∐
i∈I

Idji :

(Li)X (P1, . . . ,Pji)(f) =

{
P1(x1) • . . . • Pji (xji) if f = (x1, . . . , xji) ∈ ιi (Idji)

0 otherwise

Extension Predicate Liftings

• predicates over X canonically induce predicates over subsets,
subprobability distributions, or weighted subsets:

• T = P: predicate is true on Y ∈ P(X) iff if it is true on some x ∈ Y

• T = D: P : X → [0, 1] extends to P ′ : D(X)→ [0, 1]

µ : X → [0, 1] 7→
∑
x∈X

µ(x) ∗ P(x)

• T =W: P : X → N∞ extends to P ′ :W(X)→ [0, 1]

w : X → N∞ 7→ min
x∈X

(w(x) + P(x))

• extension lifting PT:

Pred
p
��

PT // Pred
p
��

Set
T
// Set

given by X

P
��

TX
T(P)
��

T1 T21
µ1 // T1

Linear Time Modal Logics: Syntax and
Semantics

• modal logic LΛ

• syntax:
ϕ ::= > | [λ](ϕ1, . . . , ϕar(λ))

• semantics w.r.t. coalgebra (C , γ): JϕKγ : C → T1

J>Kγ(c) = >

J[λ](ϕ1, . . . , ϕar(λ))Kγ = γ∗ ◦ PT(Pλ(Jϕ1Kγ , . . . , JϕnKγ))

Predn
C

Pλ // PredFC
PT // PredTFC

γ∗
// PredC

TF C C
γ

oo

Example: Labelled Transition Systems

T = P, F = 1 + A× Id

s0

a

��

a

��

t0

a

��

s1

b
��

s2

c

��

t1

b

��

c

��

s3

d

44

s4 t2

d

<<

t3

• s1 |= 〈b〉> t1 |= 〈b〉>

• s0 |= 〈a〉〈b〉> t0 |= 〈a〉〈b〉>

• s0 6|= 〈a〉〈a〉> s0 6|= ∗

• s1 6|= 〈a〉> s1 |= [a](>, 〈d〉>)

Example: Probabilistic Transition Systems
T = D, F = 1 + A× Id

s0
1
3
,a

��

2
3
,a

��

t0

1,a

��

s1

1,b

��

s2

1,c

��

t1
1
2
,b

��

1
2
,c

��

s3

1,d

11

s4 t2

1,d

<<

t3

• (s1, 〈b〉>) 7→ 1 (t1, 〈b〉>) 7→ 1
2

• (s0, 〈a〉〈b〉>) 7→ 1
3 (t0, 〈a〉〈b〉>) 7→ 1

2

• (s1, 〈a〉>) 7→ 0 (s0, 〈a〉>) 7→ 1

• (t1, [b](〈d〉>,>)) 7→ 1

Example: Weighted Transition Systems
T =W, F = 1 + A× Id

s0

2,a

��

1,a

��

t0

1,a

��

s1

3,b

��

s2

4,c

��

t1

2,b

��

4,b

��

s3

1,d

11

s4 t2

1,d

<<

t3

• (s1, 〈b〉>) 7→ 3 (t1, 〈b〉>) 7→ 2

• (s0, 〈a〉>) 7→ 1

• (s0, 〈a〉〈b〉>) 7→ 5 (t0, 〈a〉〈b〉>) 7→ 3

• (t1, [b](〈d〉>,>)) 7→ 3

Relational Semantics for Linear Time
Modal Logics

• computing JϕKγ : C → T1 for all ϕ ∈ LΛ same as computing
”satisfaction relation”

R : C × LΛ → T1

• computing the latter can be done iteratively:

1 initially (c , ϕ) 7→ > for all c and ϕ

2 at each step, refine value for (c , [λ]ϕ) by unfolding the coalgebra
structure on c , and using previous values for (c ′, ϕ), with c ′

”reachable” from c in one step

• as each ϕ has finite depth, procedure stabilises after finite number of
steps for each ϕ !

Relational Semantics for Linear Time
Modal Logics

• LΛ =
∑

λ∈Λ Idar(λ) captures the syntax of LΛ

• LΛ is carrier of initial {>}+ LΛ-algebra . . .

. . . and also of a {>}+ LΛ-coalgebra α−1 : LΛ → {>}+ LΛ(LΛ) !

• lifting D : Rel→ Rel of F × LΛ:

Rel

��

D // Rel

��

Set× Set
F×LΛ

// Set× Set

defined using (Pλ)λ∈Λ.

Relational Semantics for Linear Time
Modal Logics

Theorem

The semantics of LΛ is the unique fixpoint of the operator on RelC ,LΛ

given by

RelC ,LΛ

D // RelFC ,LΛLΛ

ET // RelTFC ,LΛLΛ

X // RelTFC ,{>}+LΛLΛ

(γ×α−1)∗
// RelC ,LΛ

Intuition:

• D - one linear step

• ET - amalgamate across different branches

• X - incorporate >
• (γ × α−1)∗ - unfold the coalgebra structures of states and formulas

Linear Time Fixpoint Logics

• modal logic µLΛ

• syntax:
ϕ ::= x | > | [λ](ϕ1, . . . , ϕar(λ)) | µx .ϕ | νx .ϕ

• semantics JϕKVγ w.r.t. coalgebra (C , γ) and valuation V : V → PredC :

- JxKVγ = V (x)

. . .

- Jµx .ϕK and Jνx .ϕK defined using least/greatest fixpoints of operator
on PredC :

P 7−→ JϕKV [P/x]
γ

Example: Labelled Transition Systems

T = P, F = 1 + A× Id

s0

a

~~

a

s1

b
��

s2

c

��
s3

d

44

s4

• s0 6|= νx .〈a〉x

• s0 |= µx .[a](>, x)

• s0 |= νx .µy .[a](x , y)

Example: Probabilistic Transition Systems

T = D, F = 1 + A× Id

s0
1
3
,a

��

2
3
,a

��

t0

1,a

��

s1

1,b

��

s2

1,c

��

t1
1
2
,b

��

1
2
,c

��

s3

1,d

11

s4 t2

1,d

<<

t3

• (s0, νx .〈a〉x) 7→ 0

• (s0, µx .[a](>, x)) 7→ 1 (t0, µx .[b](>, x)) 7→ 1
2

• (s0, νx .µy .[a](x , y)) 7→ 0

Example: Weighted Transition Systems

T =W, F = 1 + A× Id

s0

2,a

��

1,a

��

t0

1,a

��

s1

3,b

��

s2

4,c

��

t1

2,b

��

4,b

��

s3

1,d

11

s4 t2

1,d

<<

t3

• (s0, νx .〈a〉x) 7→ ∞ (because (s1, 〈a〉νx .〈a〉x) 7→ ∞)

• (s0, µx .[a](>, x)) 7→ 1 (t0, µx .[b](>, x)) 7→ 3

• (s0, νx .µy .[a](x , y)) 7→ ∞

Relational Semantics for Linear Time
Fixpoint Logics

• same iterative approach works for fixpoint formulas (assuming only
one type of fixpoints)

• initially (c , ϕ) 7→ ⊥ ((c , ϕ) 7→ >) for lfp formulas (resp. gfp formulas)

• at each step, unfold the formula structure, and if needed also the
coalgebra structure

• to compute new approximation for (s, [λ]ϕ), unfold γ on s and use
previous values for (s ′, ϕ)

• to compute new approximation for (s, µx .ϕ), use value for
(s, ϕ[µx .ϕ/x])

• sufficient to work with formulas in the closure of the formula of
interest, as opposed to the entire fixpoint language !

Relational Semantics for Fixpoint Logics

Theorem

Let ϕ ∈ LΛ be clean, guarded, containing no free variables and only least
(greatest) fixpoint operators. Then JϕKγ can be obtained from the least

(greatest) fixpoint of the operator on RelC ,F given by

RelC ,F
F // RelTFC×C ,LΛF+F

X // RelTFC×C ,{>}+LΛF+F
(〈γ,idC 〉×α)∗

// RelC ,F

where:

• F = Cl(ϕ)

• α : F → {>}+ LΛF + F is the formula coalgebra

Intuition:

• F - one linear step and one branching step

• X - incorporate >
• (〈γ, idC 〉 × α)∗ - unfold the coalgebra structure of states and formulas

So How Can We Use This ?

• can check whether µx .ϕ holds with probability at least p using
iterative approach

• stop (with Yes) as soon as value p reached

• can also check whether νx .ϕ holds with probability at least p

• stop (with No) as soon as value below p reached

• similarly for weighted systems (cost at most C)

• for µx .ϕ, stop (with Yes) as soon as C reached (from above!)

• for νx .ϕ, stop (with No) as soon as C reached (from below!)

Conclusions and Future Work
Summary

• general account of linear time behaviour in systems with branching

• general notion of linear time fixpoint logic for systems with branching

• both are parametric in the choice of branching and linear behaviours

• relational semantics supports approximation-based approach to
model-checking

Ongoing/future work

• study expressiveness of linear time logics

• generalise linear time logics to coalgebras of type F ◦ T ◦ G , . . .

• coalgebraic model-checking of linear time properties

• localised model checking

• large state spaces still a challenge !

• new algorithms for known semantic models ?

• compositional approach: combine different types of branching !

