PROPS FOR CONCURRENCY AND QUANTUM INFORMATION

Pawel Sobocinski (joint work with Filippo Bonchi and Fabio Zanasi)
Interacting Bialgebras are Frobenius, FoSSaCS `14
IFIP WG1.3 10/01/14
Hothorpe Hall, Theddingworth

PROPS, INTUITIVELY

- S. Mac Lane. Categorical algebra. Bull Amer Math Soc, 71:40-106, 1965.
- S. Lack. Composing PROPs. Theor App Categories, 13(9):147–163, 2004.
- Lawvere theories are a way to study algebraic theories categorically
 - the objects of Lawvere theory are "variables"
 - arrows $n \rightarrow k$ are k-tuples with n variable
- PROPs are a "linear version" where you cannot duplicate nor discard variables
- This allows the study of theories that feature **both** algebraic and coalgebraic operations

PRO

- PROs = strict monoidal categories with objects the natural numbers, tensor product on objects = addition
 - PRO P of permutations
 - no arrows $n \rightarrow k$ if n different from k
 - otherwise arrows are permutations [n] → [n], composition is as expected
 - morphisms of PROs = strict identity-on-objects monoidal functors

PROP

- the category of PROPs is P/PRO
- to give a PROP we need to
 - give a PRO
 - identify the permutations
 - make sure that they behave like (satisfy the same equations as) permutations on finite sets

THE PROP OF FUNCTIONS F

- arrows $n \rightarrow m$ are functions $[n] \rightarrow [m]$
 - identities and composition are as expected
 - the PROP permutations are the permutations

PROP OF COMMUTATIVE MONOIDS

Observation:

The free PROP on these equations is isomorphic to the PROP **F** of functions

TWO KINDS OF PROPS

- "Semantic PROPs" eg. the PROP F of functions
- "Syntactic PROPs" eg. the PROP of commutative monoids
 - freely generated from a set of generators (the syntax) modulo a set of equations

PROP OF COCOMMUTATIVE COMONOIDS

Observation:

The free PROP is isomorphic to the PROP of **F**op

COMPOSING PROPS

S. Lack. Composing PROPs. Theor App Categories, 13(9):147–163, 2004.

 Monads are not always functors, the theory of monads works in any 2category, not just Cat

R. Street. The formal theory of monads. J Pure Appl Algebra, 2(1):243–265, 2002.

- A monad is a 1-cell and two 2-cells, satisfying the triangle equations
- (small) category = monad in Span(**Set**)
 - multiplication = composition or arrows, identity = pick out identity arrows
- So categories (with the same object set) can be composed as 1-cells
 - the resulting span of sets can be given a categorical structure if there is a distributive law

DISTRIBUTIVE LAW - THE MEAT

EXAMPLE 1 - SPANS

S. Lack. Composing PROPs. Theor App Categories, 13(9):147–163, 2004.

Pb:
$$\mathbf{F}$$
; $\mathbf{F}^{\mathrm{op}} \to \mathbf{F}^{\mathrm{op}}$; \mathbf{F}

- The universal properties of pullbacks guarantee that this indeed defines a distributive law
- Makes F^{op}; F into a PROP the PROP of spans of finite sets (isomorphic spans are identified)

READING THE AXIOMS

Any other pullback is a coproduct of these basic ones

A THEORY OF SPANS

- = the theory of commutative bialgebra
- Corollary: free PROP on equations above is isomorphic to the PROP of spans

EXAMPLE 2 - COSPANS

S. Lack. Composing PROPs. Theor App Categories, 13(9):147–163, 2004.

Po:
$$\mathbf{F}^{\mathrm{op}}$$
; $\mathbf{F} \to \mathbf{F}$; \mathbf{F}^{op}

- The universal properties of pushouts guarantee that this indeed defines a distributive law
- Makes **F**; **F**^{op} into a PROP the PROP of cospans of finite sets (isomorphic cospans are identified)

READING THE AXIOMS

A THEORY OF COSPANS

- = the theory of separable Frobenius algebra
- **Corollary:** the free PROP on the equations above is isomorphic to the PROP of cospans

THE PROP OF EQUIVALENCE RELATIONS

- arrows n → m are equivalence relations on n+m
 - composition is relational
 - the PROP permutations are the graphs of permutations

GLUING PROPS

• The PROP of equivalence relation is given by the pushout (in the category of PROPs) above

• Thus the theory of equivalence relations is given by a pushout of the theories

theory of commutative monoids + theory of cocommutative comonoids

theory of spans

theory of cospans

THE PROP OF Z₂ MATRICES

- Mat Z_2 : arrows $n \rightarrow m$ are functions $m \times n$ matrices with entries from $Z_2 = \{0, 1\}$
 - composition is matrix multiplication
 - the PROP permutations are rearrangements of the rows of the identity matrix
- Equivalent to the category of f.d. Z₂ vector spaces

THEORY OF Z₂ MATRICES

Y. Lafont. Towards an algebraic theory of boolean circuits. J Pure Appl Alg, 184:257–310, 2003.

• The free PROP AB is isomorphic to Mat Z₂

EXAMPLE

SPANS OF MATRICES

Pb: Mat Z_2 ; (Mat Z_2)^{op} \rightarrow (Mat Z_2)^{op}; Mat Z_2

- The universal properties of pullbacks guarantee that this indeed defines a distributive law
- Makes (Mat Z_2)^{op}; Mat Z_2 into a PROP the PROP of spans of Z_2 matrices

READING THE AXIOMS

THEORY OF SPANS OF Z₂ MATRICES

• The free PROP is isomorphic to the PROP of spans of Z₂ matrices

COSPANS OF MATRICES

Po: $(Mat Z_2)^{op}$; $Mat Z_2 \rightarrow Mat Z_2$; $(Mat Z_2)^{op}$

- The universal properties of pushouts guarantee that this indeed defines a distributive law
- Makes Mat Z_2 ; (Mat Z_2)^{op} into a PROP the PROP of cospans of Z_2 matrices

THE THEORY OF COSPANS OF MATRICES

• The free PROP is isomorphic to the PROP of cospans of Z₂ matrices

Z₂ VECTOR SUBSPACES

- SV: arrows $n \rightarrow m$ are subspaces of $\mathbb{Z}_2^n \times \mathbb{Z}_2^m$
 - identities and composition are as expected
 - the PROP permutations are the subspaces "generated by permutations"

GLUING PROPS

• so Z2 vector subspaces arise via a similar construction to equivalence relations!

So the theory of Z2 vector subspaces is given by a pushout of theories

THE THEORY OF INTERACTING BIALGEBRAS IB

• The free PROP is isomorphic to the PROP of spans of Z₂ vector subspaces

OTHER NAMES FOR IB

- B. Coecke and R. Duncan. Interacting quantum observables. In ICALP'08, pages 298-310, 2008.
- B. Coecke, R. Duncan, A. Kissinger, and Q. Wang. Strong complementarity and non-locality in categorical quantum mechanics. In LiCS'12, pages 245–254, 2012.
- A sub-calculus of the ZX-calculus (Coecke and Duncan) for quantum things
- R. Bruni, I. Lanese, and U. Montanari. A basic algebra of stateless connectors. Theor Comput Sci, 366:98–120, 2006.
 - A tweak of the calculus of stateless connectors
 - is this an amazing coincidence or is there something deeper here?

FUTURE WORK

- Slogan: compositional theories for concurrency and quantum information are often both algebraic and colgebraic
 - so we need something like PROPs to understand them
- Other examples (there are many)
 - graphical linear algebra!
- the theory of Petri nets with boundaries
 - axiomatising behavioural equivalences
- understand more deeply the connections with Quantum information