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PROPS, INTUITIVELY

Lawvere theories are a way to study algebraic theories categorically 

the objects of Lawvere theory are “variables” 

arrows n → k are k-tuples with n variable 

PROPs are a “linear version” where you cannot duplicate nor 
discard variables 

This allows the study of theories that feature both algebraic and 
coalgebraic operations

S. Mac Lane. Categorical algebra. Bull Amer Math Soc, 71:40–106, 1965. 
	

 S. Lack. Composing PROPs. Theor App Categories, 13(9):147–163, 2004.   



PRO

PROs = strict monoidal categories with objects the natural numbers, 
tensor product on objects = addition 

PRO P of permutations  

no arrows n → k if n different from k 

otherwise arrows are permutations [n] → [n], composition is as 
expected 

morphisms of PROs = strict identity-on-objects monoidal functors



PROP

the category of PROPs is P/PRO 

to give a PROP we need to  

give a PRO 

identify the permutations  

make sure that they behave like (satisfy the same 
equations as) permutations on finite sets



THE PROP OF FUNCTIONS F

arrows n → m are functions [n] → [m] 

identities and composition are as expected 

the PROP permutations are the permutations



PROP OF COMMUTATIVE 
MONOIDS

Observation:  
The free PROP on these 
equations is isomorphic 

to the PROP F of 
functions

=

=

=



TWO KINDS OF PROPS

“Semantic PROPs” - eg. the PROP F of functions 

“Syntactic PROPs” - eg. the PROP of commutative 
monoids 

freely generated from a set of generators (the 
syntax) modulo a set of equations



PROP OF COCOMMUTATIVE 
COMONOIDS

Observation:  
The free PROP is 

isomorphic to 
the PROP of Fop

=

=

=



COMPOSING PROPS

Monads are not always functors, the theory of monads works in any 2-
category, not just Cat 

A monad is a 1-cell and two 2-cells, satisfying the triangle equations 

(small) category = monad in Span(Set) 

multiplication = composition or arrows, identity = pick out identity arrows 

So categories (with the same object set) can be composed as 1-cells 

the resulting span of sets can be given a categorical structure if there is a 
distributive law

	

 R. Street. The formal theory of monads. J Pure Appl Algebra, 2(1):243–265, 2002.   

	

 S. Lack. Composing PROPs. Theor App Categories, 13(9):147–163, 2004. 	

  



DISTRIBUTIVE LAW - THE MEAT

compose 
in green PROP

λ

λ λ

compose 
in green PROP

compose 
in blue PROP

λ

λ λ

compose 
in blue PROP



EXAMPLE 1 - SPANS

The universal properties of pullbacks guarantee that 
this indeed defines a distributive law 

Makes Fop;F into a PROP - the PROP of spans of 
finite sets (isomorphic spans are identified)

Pb: F ; Fop → Fop ; F

	

 S. Lack. Composing PROPs. Theor App Categories, 13(9):147–163, 2004. 	

  



READING THE AXIOMS
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1Any other pullback is a coproduct of these basic ones



A THEORY OF SPANS

= the theory of commutative bialgebra 

Corollary: free PROP on equations above is isomorphic to the PROP of spans

=

=

=

Id0=



EXAMPLE 2 - COSPANS

The universal properties of pushouts guarantee that 
this indeed defines a distributive law 

Makes F ; Fop into a PROP - the PROP of cospans of 
finite sets (isomorphic cospans are identified)

Po: Fop ; F → F ; Fop

	

 S. Lack. Composing PROPs. Theor App Categories, 13(9):147–163, 2004. 	

  



READING THE AXIOMS
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A THEORY OF COSPANS

= the theory of separable Frobenius algebra 

Corollary: the free PROP on the equations above is isomorphic 
to the PROP of cospans

=

= =



THE PROP OF 
EQUIVALENCE RELATIONS

arrows n → m are equivalence relations on n+m 

composition is relational 

the PROP permutations are the graphs of 
permutations



GLUING PROPS

The PROP of equivalence relation is given by the 
pushout (in the category of PROPs) above
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Thus the theory of equivalence relations is given by a pushout of the theories

=

=

=

=

=

=

=

=

=

Id0=

=

= =

= =

=

=

=
Id0=

theory of commutative monoids 
+ theory of cocommutative comonoids

theory of spans theory of cospans 



THE PROP OF Z2  MATRICES

Mat Z2: arrows n → m are functions m ✕ n matrices 
with entries from Z2 = {0, 1} 

composition is matrix multiplication 

the PROP permutations are rearrangements of the 
rows of the identity matrix 

Equivalent to the category of f.d. Z2 vector spaces



THEORY OF Z2 MATRICES 

The free PROP AB is isomorphic to Mat Z2

=

=

=

=
Id0=

	

 Y. Lafont. Towards an algebraic theory of boolean circuits. J Pure Appl Alg, 184:257–310, 2003.  



EXAMPLE

, and . The set EAB contains the equations making the black struc-
ture a commutative comonoid, the white structure a commutative monoid, bial-
gebra equations (Q1)-(Q4) and (ASep). In short, an anti-separable bialgebra is
just a bialgebra quotiented by (ASep)4. We call AB its free PROP.

Our reason to study AB is that, in virtue of Remark 2.(b)-(c), IB contains
both a copy of AB and one of ABop . AB describes how the black comonoid and
the white monoid of IB interact. Its opposite ABop , whose circuits can be seen as
those of AB “rotated by 180�”, yields instead the interaction between the white
comonoid and the black monoid of IB.
Remark 4. As the free PROP for bialgebras is the composite Span(F ) = Fop ;F
(cf. Example 1), AB enjoys the same decomposition, given as in Remark 1.(†):
any circuit t 2 AB[n,m] can be factorised as s;s0 2 AB[n,m], where s 2 Fop [n, z]
is part of the black comonoid and s0 2 F[z,m] is part of the white monoid.
Moreover, by (ASep), we can assume that any port on the left boundary has at
most one connection with any one on the right boundary.

We say that any circuit s;s0 of the above shape is in matrix form: indeed, it
has an intuitive representation as a matrix, as shown by the following example.

Example 2. The picture shows on the left a circuit t 2 AB[3, 4] in matrix form
and on the right its representation as a 4⇥ 3 matrix.

M =

0

BB@

1 0 0
1 0 0
1 1 0
0 0 0

1

CCA

The values in M are calculated as follows. For each boundary of t, suppose
a top-down enumeration of its ports. Then M [i, j] is 1 if, reading the circuit
from the left to the right, one finds a path connecting the jth port on the left
boundary to the ith port on the right, and 0 otherwise.

We now make the matrix semantics of AB formal. Let MatZ2 be the PROP
with arrows k ! l being l⇥ k Z2-matrices, where ; is matrix multiplication and
⌦ is defined in the obvious way. The permutations are the rearrangements of
the rows of the identity matrix. Clearly, MatZ2 is equivalent to the symmetric
monoidal category of finite-dimensional Z2-vector spaces and linear maps.

Definition 4. The homomorphism SAB : AB ! MatZ2 is defined inductively by

7! ! 7! ¡ 7!

�
1 1

�
7!

✓
1
1

◆

s⌦ t 7! SAB(s)⌦ SAB(t) s ; t 7! SAB(s) ; SAB(t)

where ! : 0 ! 1 and ¡ : 1 ! 0 are the arrows given by initiality and finality of 0.
It can be checked that SAB is well defined, as it respects the equations of AB.

Theorem 2 ([16]). AB ⇠= MatZ2 and SAB : AB ! MatZ2 is full and faithful.

4 We can consider this as Hopf algebra with a trivial antipode.

9



SPANS OF MATRICES

The universal properties of pullbacks guarantee that 
this indeed defines a distributive law 

Makes (Mat Z2)op ; Mat Z2 into a PROP - the PROP of 
spans of Z2 matrices

Pb: Mat Z2 ; (Mat Z2)op → (Mat Z2)op ; Mat Z2



READING THE AXIOMS
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THEORY OF SPANS OF Z2 
MATRICES

The free PROP is isomorphic to the PROP of spans of 
Z2 matrices

= =

=

=

= =

=



COSPANS OF MATRICES

Po: (Mat Z2)op ; Mat Z2 → Mat Z2 ; (Mat Z2)op

The universal properties of pushouts guarantee that 
this indeed defines a distributive law 

Makes Mat Z2 ; (Mat Z2)op into a PROP - the PROP of 
cospans of Z2 matrices



THE THEORY OF 
COSPANS OF MATRICES

The free PROP is isomorphic to the PROP of cospans 
of Z2 matrices

=

=

= =

=

= =



Z2 VECTOR SUBSPACES

SV: arrows n → m are subspaces of Z2n ✕ Z2m 

identities and composition are as expected 

the PROP permutations are the subspaces 
“generated by permutations”



GLUING PROPS

so Z2 vector subspaces arise via a similar construction to equivalence relations!
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=

=

=

=

Id0= =

=

=

=

Id0 =

= =

=

=

= =
=

=

=

= =

=
= =

=

=

= =

=

= =

=

So the theory of Z2 vector subspaces is given by a pushout of theories



THE THEORY OF 
INTERACTING BIALGEBRAS IB

=

=

= =

=

= =

=

The free PROP is isomorphic to the PROP of spans of 
Z2 vector subspaces



OTHER NAMES FOR IB

A sub-calculus of the ZX-calculus (Coecke and 
Duncan) for quantum things  

A tweak of the calculus of stateless connectors 

is this an amazing coincidence or is there 
something deeper here?

B. Coecke and R. Duncan. Interacting quantum observables. In ICALP‘08, pages 298–310, 2008. 
	

 B. Coecke, R. Duncan, A. Kissinger, and Q. Wang. Strong complementarity and non-locality in categorical quantum mechanics. In LiCS‘12, pages 245–254, 2012.    

R. Bruni, I. Lanese, and U. Montanari. A basic algebra of stateless connectors. Theor Comput Sci, 366:98–120, 2006.	





FUTURE WORK

Slogan: compositional theories for concurrency and quantum information are 
often both algebraic and colgebraic  

so we need something like PROPs to understand them 

Other examples (there are many) 

graphical linear algebra! 

the theory of Petri nets with boundaries 

axiomatising behavioural equivalences 

understand more deeply the connections with Quantum information


