
Many-sorted (Co)Algebraic Specification with Base Sets

(http://fldit-www.cs.uni-dortmund.de/∼peter/IFIP2014.pdf)

Peter Padawitz
TU Dortmund

January 30, 2014

More details can be found in:

• Algebraic Compiler Construction, course notes in German
• (Co)Algebras, (Co-)Horn Logic, and (Co)Induction

1

http://fldit-www.cs.uni-dortmund.de/~peter/CbauFolien.pdf
http://fldit-www.cs.uni-dortmund.de/~peter/DialgSlides.pdf

�
�

�

Abstract

We present some fundamentals of a uniform approach to specify, implement and reason
about (co)algebraic models in a many-sorted setting that covers constant, polynomial
and collection types. Three kinds of (infinite-)tree models (finite terms, coterms and
continuous trees) Emphasis yield concrete representations (and Haskell implementations)
of initial resp. final models.

On the axiomatic side, a format for recursive equations, which define either constructors
on a final model or destructors on an initial one, is introduced. We show how the well-
known iterative equations, which define continuous trees, can be translated into recursive
equations so that the unique solvability of the latter implies the unique solvability of the
former.

The recursive Brzozowski equations define automata whose states are regular expressions
and which accept regular languages. We show how this set of equations can be extended
by equations representing a non-left-recursive grammar G such that it defines an acceptor
of the language of G.

2

�
�

�

Contents

• Syntax 4
• Semantics 10
• Initial and final algebras 23
• Recursive equations 36
• Iterative equations 46
• (Co-)Horn Logic 60

3

�
�

�

Syntax

Let S be a set of sorts.

An S-sorted set is a tuple A = (As)s∈S of sets.

We also write A for the union of As over all s ∈ S.

An S-sorted subset B of A, written as B ⊆ A, is an S-sorted set with Bs ⊆ As for all
s ∈ S.

Given S-sorted sets A1, . . . , An, an S-sorted relation r ⊆ A1× · · · ×An is an S-sorted
set with rs ⊆ A1,s × . . .× An,s for all s ∈ S.

The S-sorted binary relation ∆A = {∆A,s | s ∈ S} is called the diagonal of A2.

Given S-sorted sets A and B, an S-sorted function f : A→ B is an S-sorted set such
that for all s ∈ S, fs is a function from As to Bs.

SetS denotes the category of S-sorted sets and S-sorted functions.

4

�� ��Syntax

Let S and BS be sets of sorts and base sets, respectively.

The set T(S,BS) of types over S and BS is inductively defined as follows:

• S ⊆ T(S,BS). (sorts)
• BS ⊆ T(S,BS). (base sets)
• For all n > 0, e1, . . . , en ∈ T(S,BS), e1 × · · · × en ∈ T(S,BS). (product types)
• For all n > 0, e1, . . . , en ∈ T(S,BS), e1 + · · · + en ∈ T(S,BS). (sum types)
• For all e ∈ T(S,BS), word(e), bag(e), set(e) ∈ T(S,BS). (collection types over e)
• For all X ∈ BS and e ∈ T(S,BS), eX ∈ T(S,BS). (power types over e)
• For all e, e′ ∈ T(S,BS) with e′ 6∈ BS, ee′ ∈ T(S,BS). (functional types over e)

A type is first-order if it does not contain functional types.

T1(S,BS) denotes the set of first-order types over S and BS.

A type is flat if it is a sort, a base set or a collection type over a sort or a base set.
FT(S,BS) denotes the set of flat types over S and BS.

5

�� ��Syntax

A signature Σ = (S,BS, F, P) consists of

• a finite set S of sorts,
• a finite set BS of base sets,
• a finite set F of operations f : e→ e′ where e, e′ ∈ T(S,BS),
• a finite set P of predicates p : e where e ∈ T(S,BS).

For all f : e→ e′ ∈ F , dom(f) = e resp. ran(f) = e′ is the domain resp. range of f .

For all p : e ∈ P , dom(p) = e is the domain of p.

f ∈ F is a constructor if there are e1, . . . , en ∈ FT(S,BS)

such that dom(f) = e1 × · · · × en and ran(f) ∈ S.

Σ is constructive if F consists of constructors.

f ∈ F is a destructor if there are e1, . . . , en ∈ FT(S,BS) and X ∈ BS

such that dom(f) ∈ S and ran(f) = (e1 + · · · + en)X .

Σ is destructive if F consists of destructors.

6

�� ��Syntax

A constructive signature Let CS be a set of sets (of constants).

Reg(CS) 1 regular expressions over CS
The singletons among CS form the traditional “alphabet” of “terminal symbols”.

S = {reg}, BS = {1, CS}, F = { eps : 1→ reg,

mt : 1→ reg,

con : CS → reg,

par : reg × reg → reg,

seq : reg × reg → reg,

iter : reg → reg }.

A destructive signature Let X and Y be sets.

DAut(X, Y) 1 deterministic Moore automata with input from X and output in Y

S = {state}, BS = {X, Y }, F = { δ : state→ stateX ,

β : state→ Y }.
Stream(X) =def DAut(1, X) 1 streams over X

Acc(X) =def DAut(X, 2) 1 deterministic acceptors of subsets of X∗

7

�� ��Syntax

Let V be a T(S,BS)-sorted set of variables.

The T(S,BS)-sorted set TΣ(V) of Σ-terms over V is inductively defined as follows:

• For all s ∈ S ∪BS, Vs ⊆ TΣ(V)s.
• For all X ∈ BS, X ⊆ TΣ(V)X .
• For all n > 1, e1, . . . , en ∈ T(S,BS), t = (t1, . . . , tn) ∈ TΣ(V)e1×···×en and i ∈ [n],
πit ∈ TΣ(V)ei.
• For all n > 1, e1, . . . , en ∈ T(S,BS), i ∈ [n] and t ∈ TΣ(V)ei, ιit ∈ TΣ(V)e1+···+en.
• For all n > 1, e1, . . . , en ∈ T(S,BS) and ti ∈ TΣ(V)ei, i ∈ [n],

(t1, . . . , tn) ∈ TΣ(V)e1×···×en.
• For all c ∈ {word, bag, set}, e ∈ T(S,BS) and t ∈ TΣ(V)∗e, c(t) ∈ TΣ(V)c(e).
• For all f : e→ e′ ∈ F and t ∈ TΣ(V)e, ft ∈ TΣ(V)e′.
• For all n > 0, ei, e ∈ T(S,BS), xi ∈ Vei and ti ∈ TΣ(V)e, 1 ≤ i ≤ n,
λx1.t1| . . . |xn.tn ∈ TΣ(V)ee1+···+en .
• For all e, e′ ∈ T(S,BS), t ∈ TΣ(V)ee′ and u ∈ TΣ(V)e′, t(u) ∈ TΣ(V)e.
• For all e ∈ T(S,BS), t ∈ TΣ(V)2 and u, v ∈ TΣ(V)e, ite(t, u, v) ∈ TΣ(V)e.

8

�� ��Syntax

For all f : 1→ e ∈ F , we write f for the term f (ε). (ε is the unique element of 1.)

A Σ-term t is first-order if the range of each subterm of t is first-order.

If t does not contain variables or ite, then t is called ground.

TΣ denotes the set of ground Σ-terms.

The set FoΣ(V) of Σ-formulas over V is inductively defined as follows:

• True,False ∈ FoΣ(V).
• For all p : e ∈ P and t ∈ TΣ(V)e, p(t) ∈ FoΣ(V). (Σ-atoms over V)
• For all ϕ ∈ FoΣ(V), ¬ϕ ∈ FoΣ(V).
• For all ϕ, ψ ∈ FoΣ(V), ϕ ∧ ψ, ϕ ∨ ψ, ϕ⇒ ψ, ϕ⇐ ψ, ϕ⇔ ψ ∈ FoΣ(V).
• For all x ∈ V and ϕ ∈ FoΣ(V), ∀xϕ, ∃xϕ ∈ FoΣ(V).

9

�
�

�

Semantics

Predicate lifting

For alle e ∈ T1(S,BS), the functor Fe : SetS → Set is inductively defined as follows:
For all S-sorted sets A,B, S-sorted functions h : A → B, s ∈ S, X ∈ BS, n > 1 and
e, e1, . . . , en ∈ T1(S,BS),

Fs(A) = As, Fs(h) = hs, (projection functor)
FX(A) = X, FX(h) = idX , (constant functor)
Fe1+···+en(A) = Fe1(A) + · · · + Fen(A), Fe1+···+en(h) = Fe1(h) + · · · + Fen(h),

Fe1×···×en(A) = Fe1(A)× . . .× Fen(A), Fe1×···×en(h) = Fe1(h)× . . .× Fen(h),

Fword(e)(A) = Fe(A)∗, Fword(e)(h) = Fe(h)∗,

Fbag(e)(A) = Bfin(Fe(A)), Fbag(e)(h) = Bfin(Fe(h)),

Fset(e)(A) = Pfin(Fe(A)), Fset(e)(h) = Pfin(Fe(h)),

FeX(A) = Fe(A)X , FeX(h) = Fe(h)X .

We mostly write Ae instead of Fe(A).

10

�� ��Semantics

[0] =def ∅

For all n > 0, [n] =def {1, . . . , n}.

(a1, . . . , an) =word (b1, . . . , bn) ⇔def (a1, . . . , am) = (b1, . . . , bn)

(a1, . . . , an) =bag (b1, . . . , bn) ⇔def ∃ f : [n] ↪→ [n] : (af(1), . . . , af(n)) = (b1, . . . , bn)

(a1, . . . , an) =set (b1, . . . , bn) ⇔def {a1, . . . , am} = {b1, . . . , bn}

Bfin(A) = {[(a1, . . . , an)]=set | a1, . . . , an ∈ A, n ∈ N}

Bfin(h) : Bfin(A)→ Bfin(B) maps [(a1, . . . , an)]=bag
to [(h(a1), . . . , h(an))]=bag

.

Pfin(A) = {{a1, . . . , an} | a1, . . . , an ∈ A, n ∈ N}

Pfin(h) : Pfin(A)→ Pfin(B) maps {a1, . . . , an} to {h(a1), . . . , h(an)}.

11

�� ��Semantics

Relation lifting

Given an S-sorted relation R ⊆ A × B, R is extended to a T1(S,BS)-sorted relation
inductively as follows:

Let s ∈ S, e1, . . . , en, e ∈ T1(S,BS) and X ∈ BS.

RX = ∆X ,

Re1+···+en = {((a, i), (b, i)) | (a, b) ∈ Rei, i ∈ [n]},
Re1×···×en = {((a1, . . . , an), (b1, . . . , bn)) | ∀ i ∈ [n] : (ai, bi) ∈ Rei)},
Rword(e) =

⋃
n∈N{((a1, . . . , an), (b1, . . . , bn)) | ∀ i ∈ [n] : (ai, bi) ∈ Re)},

Rbag(e) =
⋃
n∈N{((af(1), . . . , af(n)), (b1, . . . , bn)) | f : [n] ↪→ [n],

∀ i ∈ [n] : (ai, bi) ∈ Re},
Rset(e) =

⋃
n∈N{((a1, . . . , am), (b1, . . . , bn)) | ∀ i ∈ [m] ∃ j ∈ [n] : (ai, bj) ∈ Re,

∀ j ∈ [n] ∃ i ∈ [m] : (ai, bj) ∈ Re},
ReX = {(f, g) | ∀ x ∈ X : (f (x), g(x)) ∈ Re}.

12

�� ��Semantics

A Σ-algebra A consists of

• an S-sorted set, usually also denoted by A,
• for each f : e→ e′ ∈ F , a function fA : Ae → Ae′,
• for each p : e ∈ P , a subset pA of Ae.

Suppose that all function and relation symbols of Σ have first-order domains and ranges.
Let A,B be Σ-algebras.

An S-sorted function h : A → B is a Σ-homomorphism if for all f : e → e′ ∈ F ,
he′ ◦ fA = fB ◦ he, and for all p : e ∈ P , he(pA) ⊆ pB.

AlgΣ denotes the category of Σ-algebras and Σ-homomorphisms.

1 A Σ-homomorphism h is iso in AlgΣ iff h is bijective and for all p : e ∈ P , pB ⊆ he(p
A).

Let US be the forgetful functor from AlgΣ to SetS.

13

�� ��Semantics

For all f : e → e′ ∈ F , f : FeUS → Fe′US with f (A) =def f
A for all A ∈ AlgΣ is a

natural transformation:

Ae
fA
�Ae′

Be

he

g fB
�Be′

he′

g

Given a category K and an endofunctor F on K,

• an F -algebra or F -dynamics is a K-morphism α : F (A)→ A,
• an F -coalgebra or F -codynamics is a K-morphism α : A→ F (A).

AlgF and coAlgF denote the categories of F -algebras resp. F -coalgebras where

• an AlgF -morphism from α : F (A) → A to β : F (B) → B is a K-morphism
h :A→ B with h ◦ α = β ◦ F (h),
• a coAlgF -morphism from α : A : F (A) to β : B → F (B) is aK-morphism h :A→ B

with F (h) ◦ α = β ◦ h.

14

�� ��Semantics

A constructive signature Σ = (S,BS, F, P) induces a functor HΣ : SetS → SetS:

Let s ∈ S and {f1 : e1 → s, . . . , fn : en → s} = {f ∈ F | ran(f) = s}.

HΣ(A)s =def Ae1+···+en.

AlgΣ and AlgHΣ are equivalent categories:

Let A ∈ AlgΣ and α : A→ HΣ(A) ∈ AlgHΣ.

α(A) : A→ HΣ(A) and the Σ-algebra A(α) are defined as follows:

For all s ∈ S and f : e→ s ∈ F ,

HΣ(A)s
α(A)s = [fA]f :e→s∈F�As

Ae

ιf

f

fA(α) = αs ◦ ιf

�

15

�� ��Semantics

Example Reg(CS) HReg(CS)(A)reg = 1 + 1 + CS + A2
reg + A2

reg + Areg. o

1 h : A→ B is a Σ-homomorphism ⇔ h is an AlgHΣ-morphism from α(A) to α(B):

Ae
fA
�As HΣ(A)s

α(A)s�As

⇐⇒

Be

he

g

fB
�Bs

hs

g
HΣ(B)s

HΣ(h)s

g

α(B)s
�Bs

hs

g

1 h : α→ β is an AlgHΣ-morphism ⇔ h is a Σ-homomorphism from A(α) to A(β):

HΣ(A)s
αs �As Ae

fA(α)

�As

⇐⇒

HΣ(B)s

HΣ(h)s

g

βs
�Bs

hs

g
Be

he

g

fA(β)
�Bs

hs

g

16

�� ��Semantics

A destructive signature Σ = (S,BS, F, P) induces a functor HΣ : SetS → SetS:

Let s ∈ S and {f1 : s→ e1, . . . , fn : s→ en} = {f ∈ F | dom(f) = s}.

HΣ(A)s =def Ae1×···×en.

AlgΣ and coAlgHΣ are equivalent categories:

Let A ∈ AlgΣ and α : HΣ(A)→ A ∈ coAlgHΣ.

α(A) : HΣ(A)→ A and the Σ-algebra A(α) are defined as follows:

For all s ∈ S and f : s→ e ∈ F ,

As

α(A)s = 〈fA〉f :s→e∈F�HΣ(A)s

Ae

πf

g
fA(α) = πf ◦ αs

�

17

�� ��Semantics

Example DAut(X, Y) HDAut(X,Y)(A)state = AX
state × Y . o

Haskell implementation of AlgΣ (without predicates)

Let Σ = (S,BS, F) be a signature, S = {s1, . . . , sm} and F = {fi : ei → e′i | 1 ≤ i ≤ n}.

data Sigma s_1 ... s_m = Sigma {f_1 :: e_1 -> e_1’, ...,
f_n :: e_n -> e_n’}

Let V be an T(S,BS)-sorted set of variables, A be an S-sorted set and AV be the set of
valuations of V in A, i.e., T(S,BS)-sorted functions from V to A.

For all g ∈ AV , e ∈ T(S,BS), a ∈ Ae, x ∈ Ve and z ∈ V .

g[a/x](z) =def

{
a if z = x,

g(z) otherwise.

18

�� ��Semantics

Evaluation of terms and formulas

The T(S,BS)-sorted extension g∗ : TΣ(V)→ A of g is defined as follows:

• For all x ∈ V , g∗(x) = g(x).
• For all x ∈ X ∈ ∪BS, g∗(x) = x.
• For all n > 1, e1, . . . , en ∈ T(S,BS), t = (t1, . . . , tn) ∈ TΣ(V)e1×···×en and i ∈ [n],
g∗(πit) = g∗(ti).
• For all n > 1, e1, . . . , en ∈ T(S,BS), i ∈ [n] and t ∈ TΣ(V)ei, g

∗(ιit) = (g∗(t), i).
• For all n ∈ N and t1, . . . , tn ∈ TΣ(V), g∗(t1, . . . , tn) = (g∗(t1), . . . , g∗(tn)).
• For all c ∈ {word, bag, set}, c(t) ∈ TΣ(V)c(e), g∗(c(t)) = [g∗(t)]=c.
• For all f : e→ e′ ∈ F and t ∈ TΣ(V)e, g∗(f (t)) = fA(g∗(t)).
• For all n > 0, ei, e ∈ T(S,BS), xi ∈ Vei, ti ∈ TΣ(V)e, i ∈ [n], and (a, i) ∈ Ae1+···+en,

g∗(λx1.t1| . . . |xn.tn)(a, i) = g[a/xi]
∗(ti).

• For all e, e′ ∈ T(S,BS), t ∈ TΣ(V)ee′ and u ∈ TΣ(V)e′,

g∗(t(u)) = g∗(t)(g∗(u)).

19

�� ��Semantics

• For all e ∈ T(S,BS), t ∈ TΣ(V)2 and u, v ∈ TΣ(V)e,

g∗(ite(t, u, v)) =

{
g∗(u) if g∗(t) = 1,

g∗(v) otherwise.

For all e ∈ T(S,BS) and first-order Σ-terms t, we define:

tA : AV → Ae

g 7→ g∗(t)

t : _V → FeUS with tA =def t
A for all A ∈ AlgΣ is a natural transformation:

AV tA
�Ae

(1)

BV

hV

g

tB
�Be

he

g

20

�� ��Semantics

(1) is equivalent to the Substitution Lemma:

For all g ∈ AV , Σ-homomorphisms h : A→ B and first-order Σ-terms t,

(h ◦ g)∗(t) = (h ◦ g∗)(t). (2)

A interprets a Σ-formula ϕ over V by the set ϕA of valuations that satisfy ϕ:

For all e ∈ T(S,BS), p : e ∈ P , t, u ∈ TΣ(V)e, ϕ, ψ ∈ FoΣ(V), s ∈ S ∪BS and x ∈ Vs,

TrueA = AV ,

FalseA = ∅,
p(t)A = {g ∈ AV | g∗(t) ∈ pA},
(¬ϕ)A = AV \ ϕA,
(ϕ ∧ ψ)A = ϕA ∩ ψA,
(ϕ ∨ ψ)A = ϕA ∪ ψA,
(∀xϕ)A = {g ∈ AV | ∀ a ∈ As : g[a/x] ∈ ϕA},
(∃xϕ)A = {g ∈ AV | ∃ a ∈ As : g[a/x] ∈ ϕA}.

21

�� ��Semantics

A satisfies ϕ (A |= ϕ) if ϕA = AV .

The Substitution Lemma implies:

For all g ∈ AV , Σ-homomorphisms h : A→ B and negation-free Σ-formulas ϕ,

g ∈ ϕA ⇒ h ◦ g ∈ ϕB.

22

�
�

�

Initial and final algebras

An S-sorted binary relation R on A is a Σ-congruence on A

if for all f : e→ e′ ∈ F and (a, b) ∈ Re, (fA(a), fA(b)) ∈ Re′.

If Σ is destructive, then Σ-congruences are also called Σ-bisimulations.

An S-sorted subset B of A is a Σ-invariant (or Σ-subalgebra of A)
if for all f : e→ e′ ∈ F andl a ∈ Ae, fA(a) ∈ Ae′.

A Σ-algebra A satisfies the induction principle if for all S-sorted subsets B of A,
A ⊆ B iff B contains a Σ-invariant.
A is initial in AlgΣ ⇐⇒ A satisfies the induction principle and for all Σ-algebras B
there is a Σ-homomorphism from A to B.

A Σ-algebra A satisfies the coinduction principle if for all S-sorted binary relations
R on A, R ⊆ ∆A iff R is contained in a Σ-congruence.

A is final in AlgΣ ⇐⇒ A satisfies the coinduction principle and for all Σ-algebras B
there is a Σ-homomorphism from B to A.

23

�� ��Initial and final algebras

Let Σ = (S,BS, F) be a constructive signature.

TΣ is a Σ-algebra: For all f : e→ s ∈ F and t ∈ TΣ,e, fTΣ(t) = ft.

Let ∼ be the least FT(S,BS)-sorted equivalence relation on TΣ such that

• for all n > 1, e1, . . . , en ∈ FT(S,BS) and ti, t′i ∈ TΣ,ei, i ∈ [n],

t1 ∼e1 t
′
1 ∧ · · · ∧ tn ∼en t′n implies (t1, . . . , tn) ∼e1×···×en (t′1, . . . , t

′
n),

• for all n > 1, e ∈ FT(S,BS) and ti, t′i ∈ TΣ,e, i ∈ [n],

t1 ∼e t′1 ∧ · · · ∧ tn ∼e t′n implies word(t1, . . . , tn) ∼word(s) word(t′1, . . . , t
′
n),

• for all n > 1, e ∈ FT(S,BS), f : [n] ↪→ [n] and ti, t′i ∈ TΣ,e, i ∈ [n],

t1 ∼e t′1 ∧ · · · ∧ tn ∼e t′n implies bag(f (t1), . . . , f (tn)) ∼bag(s) bag(t′1, . . . , t
′
n),

• for all m,n > 0, e ∈ FT(S,BS), ti ∈ TΣ,e, i ∈ [m], and t′i ∈ TΣ,e, i ∈ [n],

∀ i ∈ [m] ∃ j ∈ [n] : ti ∼e t′j ∧ ∀ j ∈ [n] ∃ i ∈ [m] : ti ∼e t′j
implies set(t1, . . . , tm) ∼set(s) set(t′1, . . . , t′n),

24

�� ��Initial and final algebras

• for all s ∈ S, f : e→ s ∈ F and t, t′ ∈ TΣ,e, t ∼e t′ implies ft ∼s ft′,
• for all X ∈ BS, ∼X= ∆X .

For simplicity, we identify TΣ with TΣ/∼.

TΣ is initial in AlgΣ.

For all Σ-algebras A, the unique Σ-homomorphism

foldA : TΣ → A

is defined inductively as follows: For all s ∈ S, X ∈ BS, x ∈ X , c ∈ {word, bag, set},
e ∈ S ∪BS, t ∈ T ∗Σ,e, f : e′ → s′ ∈ F and t′ ∈ TΣ,e′,

foldAc(e)(c(t)) = [foldAe (t)]=c,

foldAs (ft′) = fA(foldAe′(t
′)).

Haskell implementation of TΣ

Let S = {s1, . . . , sm} and F = {cij : eij → si | 1 ≤ i ≤ m, 1 ≤ j ≤ ni}.

25

�� ��Initial and final algebras

data Ts1 = C11 e11 | ... | C1n_1 e1n_1
...
data Tsm = Cm1 em1 | ... | Cmn_m emn_m

Example Reg(CS)

data RegT cs = Eps | Mt | Con cs | Par (RegT cs) (RegT cs) |
Seq (RegT cs) (RegT cs) | Iter (RegT cs) Reg(CS)-terms

regT :: cs -> Reg cs (RegT cs) term algebra
regT cs = Reg Eps Mt Con Var Par Seq Iter

foldReg :: Reg cs reg -> RegT cs -> reg
foldReg alg Eps = eps alg
foldReg alg Mt = mt alg
foldReg alg (Con c) = con alg c
foldReg alg (Var x) = var alg x
foldReg alg (Par t u) = par alg (foldReg alg t) (foldReg alg u)
foldReg alg (Seq t u) = seq_ alg (foldReg alg t) (foldReg alg u)
foldReg alg (Iter t) = iter alg (foldReg alg t) o

26

�� ��Initial and final algebras

Algebra makes compilers generic

Given a CF grammar G and a target language (= Σ(G)-algebra A), a compiler composes
a parser parseG : X∗ → TΣ(G) with foldA : TΣ(G) → A.

Hence the compiler algorithm is completely determined by the parser algorithm and thus
the compiler can be made a generic function that transforms input from X∗ directly –
without constructing and traversing syntax trees (= Σ(G)-terms) – into output:

compileG : AlgΣ(G) ×X∗ → A

Let Σ = (S,BS, F) be a destructive signature and

D = {d ∈ F | ran(d) is not a power type} ∪
{dx : s→ e | d : s→ eX ∈ F, x ∈ X}.

For all d : s→ eX , a ∈ As and x ∈ X , dAx (a) =def d
A(a)(x).

27

�� ��Initial and final algebras

coTΣ denotes the greatest FT(S,BS)-sorted set of prefix closed partial functions

t : ((D × N) ∪ N)∗ (→ 1 + {word, bag, set} + ∪BS
such that the following conditions hold true:

• For all s ∈ S, t ∈ coTΣ,s and d : s→ e1 + · · ·+ en ∈ D, t(ε) = ε and there is id ∈ [n]

such that λw.t((d, id)w) ∈ coTΣ,ei and def (t)∩((D×N)∪N) = {(d, id) | dom(d) = s}.
• For all c ∈ {word, bag, set}, s ∈ S ∪ BS and t ∈ coTΣ,c(s), t(ε) = c and there is
nt ∈ N such that for all i ∈ nt, λw.t(iw) ∈ coTΣ,s, and def (t)∩ ((D×N)∪N) = [nt].
• For all X ∈ BS, coTΣ,X = X (here identified with the set 1→ X of functions).

Example A DAut(X, Y)-coterm of sort state:
ε

ε

y1β
δx1

y2δx1
β

ε y3β
ε y4β

δx2
δx3

δx2
δx3 δx1

δx1

ε

ε εεε
ε

ε

δx2

εε

δx3

δx2
δx3

28

�� ��Initial and final algebras

s4

s2

s1

s2

s3

s4

s4

s1

s2

b

ε

f2,2

f1,3

f5,2

f6,3

f7,2

f3,1

f4,1

f3,2

f4,4

f5,3

s1

e

f5,2

f1,2

f2,1

f3,2
f4,2

c
f1,2

f2,1d

f8,2

b

set

s1
f1,3

f2,3
c

1

2

A Σ-coterm with destructors f1, . . . , f8 mapping into sum types.
Green-colored nodes contain base elements (a, b, c, d, e, ε).

Each red label s is the sort of the subcoterm whose root is labelled with s.

29

�� ��Initial and final algebras

Let ∼ be the greatest FT(S,BS)-sorted equivalence relation on coTΣ such that

• for all s ∈ S, t ∼s t′ and d ∈ D × N, λw.t(dw) ∼ λw.t′(dw),
• for all s ∈ S ∪BS and t ∼word(s) t

′, nt = nt′ and for all i ∈ [nt],
λw.t(iw) ∼s λw.t′(iw),
• for all s ∈ S ∪BS, t ∼bag(s) t

′ and f : [nt] ↪→ [nt], nt = nt′ and for all i ∈ [nt],
λw.t(f (i)w) ∼s λw.t′(iw),
• for all s ∈ S ∪ BS, t ∼set(s) t′, i ∈ [nt] and j ∈ [nt′] there are k ∈ [nt′] and l ∈ [nt]

such that λw.t(iw) ∼s λw.t′(kw) and λw.t(lw) ∼s λw.t′(jw),
• for all X ∈ BS, ∼X= ∆X .

For simplicity, we identify coTΣ with coTΣ/∼.

coTΣ is a Σ-algebra: Let s ∈ S, t ∈ coTΣ,s, e1, . . . , en ∈ FT(S,BS) and w ∈ D∗.

• For all d : s→ e1 + · · · + en ∈ F , dcoTΣ(t)(w) = t((d, id)w).
• For all X ∈ BS, d : s→ (e1 + · · · + en)X ∈ F and x ∈ X ,

dcoTΣ(t)(x)(w) = t((dx, idx)w).

30

�� ��Initial and final algebras

coTΣ is final in AlgΣ.

For all Σ-algebras A, the unique Σ-homomorphism unfoldA : A → coTΣ is defined as
follows: For all s ∈ S, a ∈ As, d ∈ D, w ∈ D∗ and i, k ∈ N,

unfoldAs (a)(ε) = ε,

unfoldAs (a)((d, i)w) =


unfoldAei(b)(w) if dom(d) = s ∧

∃ e1, . . . , en ∈ FT(S,BS) :

ran(d) = e1 + · · · + en ∧ dA(a) = (b, i),

undefined otherwise,

unfoldAs (a)(kw) =


unfoldAs (ak)(w) if ∃ c ∈ {word, bag, set}, e ∈ S ∪BS :

s = c(e) ∧ a = [(a1, . . . , an)]=c ∧ k ∈ [n],

undefined otherwise.

Example DAut(X, Y) coTDAut(X,Y) is DAut(X, Y)-isomorphic to the DAut(X, Y)-
Algebra Beh(X, Y) of behavior functions:

Beh(X, Y)state =def Y X∗.

31

�� ��Initial and final algebras

For all f : X∗ → Y , x ∈ X und w ∈ X∗,

δBeh(f)(x)(w) =def f (xw) and βBeh(f) =def f (ε).

For all a ∈ Astate, x ∈ X and w ∈ X∗,

unfoldA(a)(ε) = βA(a),

unfoldA(a)(xw) = unfoldA(δA(a)(x))(w).

Given f : X∗ → Y , a DAut(X, Y)-algebra A and an initial state s ∈ Astate,

the initial automaton (A, s) realizes f ⇔def unfoldA(s) = f . o

Haskell implementation of coTΣ

Let S = {s1, . . . , sm} and F = {dij : si → eij | 1 ≤ i ≤ m, 1 ≤ j ≤ ni}.

data Ts1 = C1 {attr_11 :: e11, ..., attr_1n_1 :: e1n_1}
...
data Tsm = Cm {attr_m1 :: em1, ..., attr_mn_m :: emn_m)}

32

�� ��Initial and final algebras

Example DAut(X, Y)

data DAutT x y = State {next :: x -> DAutT x y, out :: y}
DAut(X,Y)-coterms

dAutT :: DAut x y (DAutT x y)
dAutT = DAut {delta = next, beta = out} coterm algebra

dAutB :: DAut x y ([x] -> y)
dAutB = DAut {delta = \f x w -> f $ x:w, beta = \f -> f []}

algebra of behavior functions
unfoldDAut :: DAut x y state -> state -> DAutT x y
unfoldDAut alg s = State {next = unfoldDAut alg . delta alg s,

out = beta alg s} unfold into coterms

unfoldDAutF :: DAut x y state -> state -> [x] -> y
unfoldDAutF alg s [] = beta alg s
unfoldDAutF alg s (x:w) = unfoldDAutF alg (delta alg s x) w

unfold into behavior functions

33

�� ��Initial and final algebras

esum,osum :: DAutT Int Bool
esum = State {next = \x -> if even x then esum else osum, out = True}
osum = State {next = \x -> if even x then osum else esum, out = False}

ε

ε

1β
δx

for all even x

ε 0β

δx
for all odd x

esum

esum osum

osum
ε

δx
for all even x δx

for all odd x

ε
esum

34

�� ��Initial and final algebras

Let A be the Acc(Z)-subalgebra of coTAcc(Z) with Astate = {esum, osum} and

f : Z∗ → 2 g : Z∗ → 2

(x1, . . . , xn) 7→
∑n

i=1 xi is even (x1, . . . , xn) 7→
∑n

i=1 xi is odd

h : A → Beh(Z, 2)

esum 7→ f

osum 7→ g

Since h is Acc(Z)-homomorphic and Beh(Z, 2) is final in AlgAcc(Z), (A, esum) realizes f
and (A, osum) realizes g:

unfoldDAutF dAutT esum = even . sum
unfoldDAutF dAutT osum = odd . sum o

35

�
�

�

Recursive equations

Given a constructive signatureCΣ = (S,BS,C), a destructive signatureDΣ = (S,BS ′, D)

and a signature BΣ = (∅, BS ∪BS ′, B) of base operations, Ψ = (S,BS ∪BS ′, B, C,D)

is called a bisignature.

A set

E = {d(c(x1, . . . , xnc)) = td,c | d : s→ e ∈ D, c : s1 × · · · × snc → s ∈ C}

is a recursive system of Ψ-equations if the following conditions hold true:

• For all d ∈ D and c ∈ C, freeVars(td,c) ⊆ {x1, . . . , xnc}.
• C is the union of disjoint sets C1 and C2.
• For all d ∈ D, c ∈ C1 and subterms du of td,c, u is a variable and td,c is a term without
elements of C2.
⇒ no nesting of destructors, but possible nestings of constructors from C1

• For all d ∈ D, c ∈ C2, subterms du of td,c and paths p of (the tree representation of)
td,c, u consists of destructors and a variable and p contains at most one occurrence of
an element of C2.
⇒ no nesting of constructors from C2, but possible nestings of destructors

Let Σ = (S,BS,B ∪ C ∪D). A Ψ-algebra is a Σ-algebra.

36

�� ��Recursive equations

Let E be a recursive system of Ψ-equations and A,A′ be Ψ-algebras that satisfy E.

A|CΣ = A′|CΣ is initial in AlgCΣ, A|BΣ = A′|BΣ and C2 is empty
⇒ A|DΣ = A′|DΣ, i.e., all f : s→ e ∈ CΣ have unique interpretations in A|CΣ:

fA is inductively defined on A|CΣ. (1)

A|DΣ = A′|DΣ is final in AlgDΣ and A|BΣ = A′|BΣ

⇒ A|CΣ = A′|CΣ, i.e., all f : e→ s ∈ CΣ have unique interpretations in A|DΣ:
fA is coinductively defined on A|DΣ.
Moreover, TCΣ ∈ AlgDΣ, coTDΣ ∈ AlgCΣ and fold coTDΣ = unfoldTCΣ. (2)

TCΣ
unfoldTCΣ

� coTDΣ

TCΣ(coTDΣ)

inc

≺

inc

�
=

=

TCΣ

id

g

fold coTDΣ
� coTDΣ

id

gunfoldTCΣ(coTDΣ) �

37

�� ��Recursive equations

Example 1 DΣ = Stream(X)

Ψ = ({stream}, {X, 1}, ∅,
{evens, odds, exchange, exchange′ : stream→ stream},
{head : stream→ X, tail : stream→ stream}).

The equations

head(evens(s)) = head(s), tail(evens(s)) = evens(tail(tail(s))),

head(odds(s)) = head(tail(s)), tail(odds(s)) = odds(tail(tail(s))),

head(exchange(s)) = head(tail(s)), tail(exchange(s)) = exchange′(s),

head(exchange′(s)) = head(s), tail(exchange′(s)) = exchange(tail(tail(s)))

form a recursive system of Ψ-equations. (Klin’s coGSOS?)

evens(s) und odds(s) list the elements of s at even resp. odd positions.
exchange(s) exchanges the elements at even positions with those at odd positions.

(2) ⇒ evens, odds, exchange, exchange′ have unique interpretations in the final
DΣ-algebra.

38

�� ��Recursive equations

Example 2 Reg(CS) + Acc(X)

where the sort reg is substituted for state and X =
⋃
CS

Ψ = ({reg}, {CS,X, 2},
{∈: X × CS → 2, max : 2× 2→ 2, ∗ : 2× 2→ 2},
{eps,mt : 1→ reg, con : CS → reg, par, seq : reg × reg → reg,

star : reg → reg},
{δ : reg → regX , β : reg → 2}).

The equations

δ(eps) = λx.mt,

δ(mt) = λx.mt,

δ(con(C)) = λx.ite(x ∈ C, eps,mt),
δ(par(t, u)) = λx.par(δ(t)(x), δ(u)(x)),

δ(seq(t, u)) = λx.par(seq(δ(t)(x), u), ite(β(t), δ(u)(x),mt)),

δ(iter(t)) = λx.seq(δ(t)(x), iter(t)),

β(eps) = 1,

β(mt) = 0,

39

�� ��Recursive equations

β(con(C)) = 0,

β(par(t, u)) = max{β(t), β(u)},
β(seq(t, u)) = β(t) ∗ β(u),

β(iter(t)) = 1

form the recursive system BRE of Ψ-equations, called Brzozowski equations.

(1) ⇒ δ, β have unique interpretations in the initial Reg(CS)-algebra TReg(CS).
They form the Acc(X)-Algebra Bro(CS), called the Brzozowski automaton.

(2) ⇒ eps,mt, con, par, seq, star have unique interpretations in the final
Acc(X)-algebra Beh(X, 2).
They form the Reg(CS)-algebra Lang(X) of (characteristic functions of)
languages over X that is defined as follows:

40

�� ��Recursive equations

For all C ∈ CS and L,L′ ⊆ X∗,

Lang(X)reg = 2X
∗
,

epsLang(X) = {ε},
mtLang(X) = ∅,
conLang(X)(C) = C,

parLang(X)(χ(L), χ(L′)) = χ(L ∪ L′),
seqLang(X)(χ(L), χ(L′)) = χ({vw | v ∈ L,w ∈ L′}),
iterLang(X)(χ(L)) = χ({w1 . . . wn | w1, . . . , wn ∈ L, n > 0} ∪ {ε}).

(2) ⇒ foldLang(X) = unfoldBro(CS)

⇒ For all t ∈ TReg(CS), (Bro(CS), t) accepts the language of t, foldLang(t)−1(1).

The Brzozowski automaton becomes more efficient if its states (= Reg(CS)-terms) are
normalized between transitions with respect to the semiring axioms, which Lang(X)

satisfies. δ is interpreted accordingly:

For all t ∈ TReg(CS), δNorm(CS)(t) = reduce ◦ δBro(CS)(t). o

41

�� ��Recursive equations

Let Ψ = (S,BS,B,C,D) be a bisignature, DΣ = (S,BS,D) and A be a DΣ-algebra.

Given an S-sorted relation ∼ on A, the C-equivalence closure ∼C is the least S-sorted
equivalence relation on A that contains ∼ and satisfies the following condition: For all
c : e→ s ∈ C and a, b ∈ Ae,

a ∼C b implies cA(a) ∼C cA(b).

An S-sorted relation ∼ on A is a DΣ-congruence up to C if for all d : s→ e ∈ D and
a, b ∈ As,

a ∼ b implies dA(a) ∼C dA(b).

∼ is a DΣ-congruence up to C, A is final in AlgDΣ and there is a recursive system of
Ψ-equations
⇒ ∼C is a DΣ-congruence. (3)

42

�� ��Recursive equations

Example

Let Ψ be as in Example 2, V = {x, y, z},

t = seq(x, par(y, z)) and t′ = par(seq(x, y), seq(x, z)).

∼ = {(g∗(t), g∗(t′) | g : TReg(CS)(V)→ Beh(X, 2)}

is an Acc(X)-congruence up to C.

⇒ Since Beh(X, 2) is final in AlgAcc(X), (3) implies that ∼C is Acc(X)-congruence.

⇒ Since Beh(X, 2) satisfies the coinduction principle, ∼ ⊆ ∆Beh(X,2) and thus

Beh(X, 2) |= t = t′.

o

43

�� ��Recursive equations
As a recursive system E of Ψ-equations defines both

• destructors on constructors inductively and
• constructors on destructors coinductively,

so do the rules of a transition system specification or structural operational se-
mantics (SOS) or the natural transformations λ that are called distributive laws:
They all provide both

• an inductive definition of a semantics (destructors) of the syntax (constructors) of
some language and
• a coinductive definition of the constructors on the language’s behavioral model.

Ψ-algebras satisfying E correspond to λ-bialgebras.

The types of inductively or coinductively defined functions that come as unique solutions
of recursive systems of Ψ-equations are those of destructors resp. constructors.

(Co)Recursion schemas that define functions with other types have been studied mainly
in category-theoretical settings like distributive laws or adjunctions. For instance, in
Adjoint Folds and Unfolds, Hinze obtains the desired types by characterizing the functions
as (co)extensions of initial resp. final morphisms with respect to suitable adjunctions.

44

�� ��Recursive equations

Future work: We think that most examples investigated in category-theoretical settings
can be presented as recursive systems of Ψ-equations. For some of them, it might be
necessary to generalize the schema, others will match the schema already because of the
power of our term language that involves polynomial and even non-polynomial types.

Some application areas where (co)inductive definability has been studied in detail:

• basic process algebra
1 Rutten, Processes as Terms: Non-well-founded Models for Bisimulation
• stream expressions and infinite sequences

1 Rutten, A Coinductive Calculus of Streams
• tree expressions and infinite trees

1 Silva, Rutten, A Coinductive Calculus of Binary Trees
• arithmetic expressions and valuations, CCS and transition trees

1 Hutton, Fold and Unfold for Program Semantics
• stream function expressions and causal stream functions

1 Hansen, Rutten, Symbolic Synthesis of Mealy Machines from Arithmetic Bitstream
Functions

45

�
�

�

Iterative equations

Let Σ = (S,BS, F) be a constructive signature and V be an S-sorted set.

An S-sorted function E : V → TΣ(V) with img(E) ∩ V = ∅ is called an iterative
system of Σ-equations.

Let V be an S-sorted set, A be a Σ-algebra and AV be the set of S-sorted functions

g ∈ AV solves E in A if g∗ ◦ E = g.

Iterative equations have unique solutions in the set CTΣ of (continuous) Σ-trees:

CTΣ denotes the greatest FT(S,BS)-sorted set of prefix closed partial functions

t : N∗ (→ F + {word, bag, set} + ∪BS

such that

• for all s ∈ S and t ∈ CTΣ,s, def (t) = ∅ or there are n > 0 and e1, . . . , en ∈ FT(S,BS)

with t(ε) : e1 × · · · × en → s ∈ F , def (t) ∩ N ⊆ [n] and λw.t(iw) ∈ CTΣ,ei for all
1 ≤ i ≤ n,

46

�� ��Iterative equations

• for all c ∈ {word, bag, set}, s ∈ S ∪ BS and t ∈ CTΣ,c(s) there is nt ∈ N with
t(ε) = c, def (t) ∩ N = [nt] and λw.t(iw) ∈ CTΣ,s for all 1 ≤ i ≤ nt,
• for all X ∈ BS, CTΣ,X = X (again identified with the set 1→ X of functions).

Let ∼ be the greatest FT(S,BS)-sorted equivalence relation on CTΣ such that

• for all s ∈ S and t ∼s t′, t(ε) = t′(ε) and for all i ∈ N, λw.t(iw) ∼ λw.t′(iw),
• for all s ∈ S ∪BS and t ∼word(s) t

′, nt = nt′ and for all i ∈ [nt],
λw.t(iw) ∼s λw.t′(iw),
• for all s ∈ S ∪BS, t ∼bag(s) t

′ and f : [nt] ↪→ [nt], nt = nt′ and for all i ∈ [nt],
λw.t(f (i)w) ∼s λw.t′(iw),
• for all s ∈ S ∪ BS, t ∼set(s) t′, i ∈ [nt] and j ∈ [nt′] there are k ∈ [nt′] and l ∈ [nt]

such that λw.t(iw) ∼s λw.t′(kw) and λw.t(lw) ∼s λw.t′(jw),
• for all X ∈ BS, ∼X= ∆X .

For simplicity, we identify CTΣ with CTΣ/∼.

47

�� ��Iterative equations

CTΣ is a Σ-algebra: For all f : e→ s ∈ F , t = (t1, . . . , tn) ∈ CTΣ,e and w ∈ N∗,

fCTΣ(t)(w) =def

{
f if w = ε,

ti(v) if ∃ i ∈ N : iv = w.

Usually, fCTΣ(t) is written as ft.

CTΣ is initial in CAlgΣ, the category of ω-continuous Σ-algebras as objects and strict
and ω-continuous Σ-homomorphisms.
1 Goguen et al., Initial Algebra Semantics and Continuous Algebras, 1978

The constructive signature Σ induces a destructive signature coΣ such that HΣ = HcoΣ

coΣ = (S, {ds : s→
∐

f :e→s∈F e | s ∈ S} ∪
{πi : e1 × · · · × en → ei | n > 1, e1, . . . , en ∈ FT(S,BS), 1 ≤ i ≤ n})

CTΣ is a coΣ-algebra: For all s ∈ S and t ∈ CTΣ,s,

dCTΣ
s (t) =def ((λw.t(1w), . . . , λw.t(nw)), t(ε))

where n = |dom(t(ε))|.

48

�� ��Iterative equations

CTΣ is final in AlgcoΣ.

For all coΣ-algebras A, the unique Σ-homomorphism unfoldA : A → CTΣ is defined as
follows: For all s ∈ S, a ∈ As, i ∈ N and w ∈ N∗,

unfoldA(a)(ε) = f,

unfoldA(a)(iw) =

{
unfoldA(ai)(w) if i ∈ [n],

undefined otherwise,

where dAs (a) = ((a1, . . . , an), f).

Indeed, CTΣ
∼= coTcoΣ.

49

�� ��Iterative equations

A coΣ-coterm:

ε

ds0,f0

π1 π2

ds1,f1

π1 π2

ds3,f3

ds6,f6

ds4,f4

π1 π2

b0

ds7,f7π1 π2

ds9,f9

ds2,f2

ds5,f5

π2π1

b1 ε

ds8,f8

π1 π2

b2

π3

50

�� ��Iterative equations

... and the corresponding Σ-tree:

f1

f3

f7f6

f5f4

f8

f9

f0

f2

b0

b1

ε

ε b2

The coΣ-algebra TEΣ (V) is defined as follows:

• For all s ∈ S, TEΣ (V)s = TΣ(V)s.

• For all f : e→ s ∈ F and t ∈ TΣ(V)e, d
TE

Σ (V)
s (ft) = (t, f).

• For all x ∈ V , f : e→ s ∈ F and t ∈ TΣ(V)e, E(x) = ft implies dT
E
Σ (V)
s (x) = (t, f).

51

�� ��Iterative equations

unfoldT
E
Σ (V) ◦ incV : V → CTΣ solves E in CTΣ. (4)

Context-free grammars with base sets

A context-free grammar (CFG) G = (S,BS, Z,R) (with base sets) consists of

• a set S of nonterminals,
• a set BS of base sets,
• a set Z of terminals,
• a set R of rules s→ w with s ∈ S and w ∈ (S ∪ Z ∪BS)∗.

The abstract syntax of G is the constructive signature Σ(G) = (S,BS, F) with

F = {fr : ei1 × . . .× eik → s | r = (s→ e1 . . . en) ∈ R, s ∈ S,
{i1, . . . , ik} = {1 ≤ i ≤ n | ei ∈ S ∪BS}.

52

�� ��Iterative equations

Let CS = BS ∪ {{z} | z ∈ Z} and X =
⋃
CS.

The Σ(G)-word algebra Word(G) recovers the concrete from the abstract syntax:

For all s ∈ S, Word(G)s = X∗. For all r = (s→ e1 . . . en) ∈ R,

f
Word(G)
r : (X∗)k → X∗

(wi1, . . . , wik) 7→ v1 . . . vn

where for all 1 ≤ i ≤ n,

vi =def

{
wi if i ∈ {i1, . . . , ik} = {1 ≤ i ≤ n | ei ∈ S ∪BS},
ei otherwise.

The language L(G) of G is the image of TΣ(G) under foldWord(G):

L(G) =def img(foldWord(G)).

53

�� ��Iterative equations

For all t1, . . . , tn ∈ TReg(CS)(S),∑n
i=1 ti =def par(t1, par(t2, . . . , tn)),∏n
i=1 ti =def seq(t1, seq(t2, . . . , tn)).

G induces an iterative system of Reg(CS)-equations:

EG : S → TReg(CS)(S)

s 7→
∑k

i=1wi

where
{w1, . . . , wk} = {w ∈ (S ∪ CS)∗ | s→ w ∈ R},

and for all n > 1, e1, . . . , en ∈ S ∪ CS, s ∈ S and C ∈ CS,
e1 . . . en =

∑k
i=1 ei,

s = s,

C = con(C).

lang(G) : S → 2X
∗

s 7→ χ(L(G)s)

is the least solution of EG in Lang(X).

54

�� ��Iterative equations

How to translate and add iterative to recursive equations

Let CΣ = (S,BS,C), DΣ = (S,BS ′, D), Ψ = (S,BS ∪BS ′, B, C,D) be a bisignature,
E : V → TCΣ(V) be an iterative system of CΣ-equations,

CV = {vars : Vs → s | s ∈ S},
ΨV = (S,BS ∪BS ′ ∪ V,B,C ∪ CV , D),

V ′ be an S-sorted set of variables, E ′ be a recursive system of ΨV -equations over V ′ and

E ′V = {d(c(x)) = t ∈ E ′ | d ∈ D, c ∈ CV , x ∈ V }

such that E ′ \ E ′V is a recursive system of Ψ-equations.

There is at most one solution of E in every Ψ-algebra A that is final in AlgDΣ and
satisfies E ′ whenever varA solves E in A. (5)

Proof. Let A be a Ψ-algebra such that A|DΣ is final in AlgDΣ. Suppose that g, h : V → A

solve E in A. We extend A to ΨV -algebras A1, A2 by defining varA1 = g and varA2 = h.
By assumption, both A1 and A2 satisfy E ′V . By (3), A1 = A2. Hence g = varA1 =

varA2 = h. o

55

Example 3 Σ + coΣ

Let Σ = (S,BS,C) be a constructive signature, coΣ = (S,BS,D), E : V → TΣ(V) be
an iterative system of Σ-equations, CV and ΨV be defined as above,

E ′ = {ds(fx) = ιf(x) | s ∈ S, f : e→ s ∈ C, x ∈ Ve},
E ′V = {ds(vars(x)) = ιf(σ∗(t)) | s ∈ S, x ∈ Vs, E(x) = ft}

where for all s ∈ S and x ∈ Vs, the substitution σ assigns the term vars(x) to x.

Let A be a ΨV -algebra with A|Σ+coΣ = CTΣ such that varA solves E in A.

A satisfies E ′: For all S-sorted functions g : V ′ → CTΣ,

g∗(ds(fx)) = dAs (fA(g∗(x))) = dAs (f (g∗(x))) = (g∗(x), f) = g∗(ιf(x)).

A satisfies E ′V : Let s ∈ S, x ∈ Vs and E(x) = ft. Since varA solves E in A,

varAs (x) = (varAs)∗(E(x)) = fA((varAs)∗(t)). (6)

Moreover,
g∗(σ(x)) = g∗(var(x)) = varA(g∗(x)) = varA(x) (7)

because, within E ′V , x is a base element and not a variable!

56

�� ��Iterative equations

By (6) and (7), for all S-sorted functions g : V → CTΣ,

g∗(ds(vars(x))) = dAs (varAs (x))
(6)
= dAs (fA((varAs)∗(t))) = dAs (f ((varAs)∗(t)))

= ((varAs)∗(t), f)
(7)
= (g∗ ◦ σ)∗(t), f) = (g∗(σ∗(t)), f) = g∗(ιf(σ∗(t))).

Hence A satisfies E ′ ∪ E ′V and thus by (4) and (5), E has a unique solution in A. o

Example 4 Reg(CS) + Acc(X) (with reg for state) + G + acceptor of L(G)

Let G = (S,BS, Z,R) be a non-left-recursive CFG (excludes s +−→G sw) and reduce
be a function that simplifies regular expressions by applying semiring axioms.

Let CS = BS ∪ {{z} | z ∈ Z}. For all s ∈ S there are ks, ns > 0, Cs,i ∈ CS,
ts,i ∈ TReg(CS)(S), 1 ≤ i ≤ ns, such that

reduce((E∗G)ks(s)) ∈ {ts, par(ts, eps)}
where ts =

∑ns
i=1 seq(con(Cs,i), ts,i).

Let X =
⋃
CS, Ψ = (S,BS,B,C,D) be as in Example 2,

CS = {var : S → reg | s ∈ S},
ΨS = (S,BS ∪ {S}, B, C ∪ CS, D),

57

�� ��Iterative equations

E ′G = {δ(var(s)) = λx.
∑ns

i=1 ite(x ∈ Cs,i, σ∗(ts,i),mt) | s ∈ S} ∪
{β(var(s)) = us | s ∈ S}

where the substitution σ replaces each s ∈ S by the term var(s) and

us =

{
0 if reduce((E∗G)ks) = ts,

1 if reduce((E∗G)ks) = par(ts, eps).

Let A be a ΨS-algebra with A|Reg(CS)+Acc(X) = Lang(X) such that varA solves EG in A.
In Example 2, we have seen that A satisfies BRE .

A satisfies E ′G: Let s ∈ S. Since varA solves EG in A,

varA(s) = (varA)∗(s) = (varA)∗((E∗G)ks(s)) = (varA)∗(reduce((E∗G)ks(s)))

= {(varA)∗(
∑ns

i=1 seq(con(Cs,i), ts,i)), (varA)∗(par(
∑ns

i=1 seq(con(Cs,i), ts,i), eps))}

**** If varLang : S → Lang(X) is a solution of EG in Lang(X), then the unique
coinductive solution of BRE in Beh(X, 2) is extended to a coinductive solution of BRE∪
E ′(G).

If G is non-left-recursive, then Lang(X) contains lang(G) is the only solution of
EG in Beh(X, 2).

58

⇒ As BRE provided an acceptor for every regular language, BRE ∪ E ′(G) yields an
acceptor of every context-free language, given by a non-left-recursive CFG.

59

�
�

�

(Co-)Horn Logic

(Co-)Horn clauses

Let Σ = (S,BS, F, P) and Σ′ = (S,BS, F, P ∪ P ′) be signatures and C be a Σ-algebra.

AlgΣ′,C denotes the full subcategory of AlgΣ consisting of all Σ′-algebras A with A|Σ = C.

AlgΣ′,C is a complete lattice: For all A,B ∈ AlgΣ′,C ,

A ≤ B ⇔def ∀ p ∈ P ′ : pA ⊆ pB.

For all A ⊆ AlgΣ′,C and p : e ∈ P ′,

p⊥ = ∅, p> = Ae, ptA =
⋃
A∈A

pA and puA =
⋂
A∈A

pA.

60

�
�

�
�(Co-)Horn Logic

A Σ′-formula ϕ is negation-free w.r.t. Σ if ϕ does not contain ⇒, ⇐ or ⇔ and all
subformulas of ϕ with a leading negation symbol belong to FoΣ(V).

A Horn clause for P ′ is a Σ′-formula p(t)⇐ ϕ such that p ∈ P ′ and ϕ is negation-free
w.r.t. Σ.

Let AX be a set of Horn clauses for P ′.

The AX-step function Φ : AlgΣ′,C → AlgΣ′,C is defined as follows:

For all A ∈ AlgΣ′,C and p ∈ P ′,

pΦ(A) =def {g∗(t) | p(t)⇐ ϕ ∈ AX, g ∈ ϕA}.

Φ is monotone and thus by the Fixpoint Theorem of Knaster and Tarski, Φ has the least
fixpoint

lfp(Φ) = u {A ∈ AlgΣ′,C | Φ(A) ≤ A}.
Consequently,

lfp(φ) |= p(x)⇔
∨

p(t)⇐ϕ∈AX

∃ var(t, ϕ) : (x = t ∧ ϕ).

61

�
�

�
�(Co-)Horn Logic

A co-Horn clause for P ′ is a Σ′-formula p(t)⇒ ϕ such that p ∈ P ′ and ϕ is negation-
free w.r.t. Σ.

Let AX be a set of co-Horn clauses for P ′.

The AX-step function Φ : AlgΣ′,C → AlgΣ′,C is defined as follows:

For all A ∈ AlgΣ′,C and p : e ∈ P ′,

pΦ(A) =def Ce\{g∗(t) | pt⇒ ϕ ∈ AX, g ∈ CV \ϕA}.

Φ is monotone and thus by the Fixpoint Theorem of Knaster and Tarski, Φ has the
greatest fixpoint

gfp(Φ) = t {A ∈ AlgΣ′,C | A ≤ Φ(A)}.
Consequently,

gfp(φ) |= p(x)⇔
∧

p(t)⇒ϕ∈AX

∀ var(t, ϕ) : (x 6= t ∨ ϕ).

*** to be continued ***

62

	Abstract
	Contents
	Syntax
	Semantics
	Initial and final algebras
	Recursive equations
	Iterative equations
	Logic

