
Semantics and Analysis of KLAIM Models in
Maude*

Martin Wirsing1

In cooperation with
Jonas Eckhardt2, Tobias Mühlbauer2, José Meseguer3

1Ludwig-Maximilians-Universität München
2Technische Universität München, 3University of Illinois at Urbana-Champaign
IFIP WG 1.3
Hothorpe Hall, January 2014

• Partially supported by EU-project ASCENS

Goal and Approach

• ASCENS Project
• Languages, theories and tools for engineering autonomic systems

in distributed environments

• Case studies:

• Robot swarm, Peer2Peer Cloud, E-mobility

 Goal of this talk:
 Correct simulation and analysis of a specification language for

distributed (autonomic) systems

 Approach:
 Choose KLAIM as coordination language

 Rewriting Logic as a semantic framework

 Formal analysis using the Maude environment

Why KLAIM?

• Tuple space coordination model

• Linda [Gelernter et al 1985]

– Tuple space concept

• KLAIM [De Nicola et al. 1997]

– Distributed tuple space, CCS-like

computation

• SCEL [Pugliese, De Nicola et. al. 2011/13]

– Distributed tuple space, policy-controlled

computation

Linda

out(t)

Tuple Space

t

P1

P2

in(t)

KLAIM

KLAIM

(Kernel Language for Agents Interaction and Mobility)

• Language for distributed mobile computing

• KLAIM Structure

• Nets are composed of Nodes

• Nodes have a unique location and contain a CCS-like process

• Processes reflect the tuple space concept

• Mobility is modeled by moving processes

s1: l~s2

TS out(t)@ l

s2: r2

TS P

s3: r3

TS in(t)@ self

KLAIM

Example

Syntax

s1: l2~s2

TS out(t)@ l

s2: r2

TS in(t)@ self

KLAIM Semantics

Structured Reduction semantics

 describes the process behavior in a net

Maude-based Implementations of KLAIM
(*-KLAIM)

We developed three Maude-based implementations of
KLAIM:

 M-KLAIM

 a formal executable specification of KLAIM

 MP-KLAIM

 an refinement of M-KLAIM for asynchronous message-passing
specification

 D-KLAIM

 an extension of MP-KLAIM for distributed execution (communication
through sockets)

Questions

We used the *-KLAIM implementations for simulation and analysis with the Maude tools
such as

• Distributing a cloud service over a several Maude runtimes

• LTL-model checking of a mutual exclusion algorithm

• State space analysis of a load balancer using the Maude search command

but

 What are the semantic relationships of *-KLAIM with KLAIM?

 Which properties are preserved?

KLAIM

M-KLAIM syntax

• Direct correspondence to KLAIM syntax

 KLAIM:

 M-KLAIM:

s1: l2~s2

TS out(1)@ l

s2: r2

TS in(t)@ self

M-KLAIM

Rewriting semantics of KLAIM:

 Reduction semantics can be naturally expressed in rewriting logic

 KLAIM:

 M-KLAIM:

Definitions and Notations

• (A, ->) (Unlabelled) transition system

• (A, ->, L) Kripke structure where

• L: A -> P(AP) labeling function,

• AP set of atomic propositions

• Logic CTL*(AP)

• ACTL*(AP): CTL* formulas in negation normal form

• ACTL*(AP) \ X: ACTL* formulas without next-operator

• ACTL*(AP) \ ”not”: ACTL* formulas without negation

Simulation

• Simulation of tss (A, ->A) by (B, ->B) is a binary relation ~> s.th.

 if a ~> b and a ->A a’ then there is b’ with b ->B b’ and a’ ~> b’

• AP-simulation of (A, ->A, L A) by (A, ->B, L B) is a simulation of tss

 s.th. if a ~> b then L B(b) is a subset of L A(a).

• ~> is strict if a ~> b implies L B(b) = L A(a)

• Bisimulation, AP-bisimulation: as usual.

• ~> reflects the satisfaction of a formula f if B,b |= f and a ~> b imply A,a |= f

• Theorem (Clarke, Grumberg, Peled 1999)

AP-simulations reflect the satisfaction of ACTL*(AP) \ not(AP) formulas, strict simulations reflect the satisfaction of
ACTL*(AP) formulas.

KLAIM and M-KLAIM are Bisimilar

• Theorem 1

 TSKLAIM and TSM-KLAIM are bisimilar w.r.t.

 N ~ M if N = ns1 … nsk. m2k(M)

 where m2k translates M-KLAIM terms into KLAIM:

• The KLAIM and M-KLAIM semantics are transition systems:

 where KLAIM-Net denotes all ground KLAIM terms of sort net,

 T (M-KLAIM)net all ground valid M-KLAIM terms of sort Net and =>1 the one-step rewrite relation.
•

KLAIM and M-KLAIM are Bisimilar

• Corollary 1

 TSKLAIM and TSM-KLAIM are AP-bisimilar and

 reflect the satisfaction of ACTL*(AP) formulas.

• Extend TSKLAIM and TSM-KLAIM to Kripke structures by choosing

 AP to be a subset of {pt | t ground KLAIM term}

 such that

 N |= pt iff M |= pt and N = ns1 … nsk. m2k(M)

• Example: M |= ps,t iff N = ns1 … nsk. (s ::r <t> | P) || R

MP-KLAIM

Maude supports modeling of distributed object-based systems in which objects
communicate asynchronously via message passing

 Message passing is a natural way of expressing communication in distributed systems

 We alter the KLAIM semantics by introducing asynchronous inter-node communication

Object

Object

Message

Object

Soup (Configuration)

Object

Message

MP-KLAIM

• An out-action is split into two steps:

• Producing an out-message an sending it into the “soup”

• Consuming the out-message by inserting the contents into the tuple space

Messages

s1: l2~s2

TS out(1)@ l

s2:
TS

Messages ||
msg(s2, remote-out(1))

s1: l2~s2

TS nill

s2:
TS

Messages

s1: l2~s2

TS nil

s2:

TS || <1>

MP-KLAIM

Out-rules formally:

Stuttering Simulation

• Matching path

• Stuttering Simulation of tss (A, ->A) by (B, ->B) is a binary relation ~> s.th.
 if for each a ~> b and each path starting at a there is a matching path starting at b
• Stuttering AP-Simulation as before

• Theorem (Meseguer, Palomino, Marti-Oliet 2010)

Stuttering AP-simulations reflect the satisfaction of ACTL*(AP) \ (X, not)(AP) formulas;

strict simulations reflect the satisfaction of ACTL*(AP) \ X(AP) formulas

~
~

~
>

a

b

MP-KLAIM is a Stuttering Simulation of M-KLAIM

• Theorem 2

 TSMP-KLAIM is a strict stuttering AP-Simulation of TSM-KLAIM and thus reflects the satisfaction of
ACTL*(AP) \ X(AP) formulas.

• But satisfaction of atomic props is often nonstandard:

 M |= ps,t iff M = (s ::r <t> | P) || R or M = (s ::r P) || <t> || R

s1: l2~s2

out(1)@ l

s2:

msg(s2, remote-
out(1))

s2:

s1: l2~s2

nil

s1: l2~s2

nil

s2:
<1>

[out-remote]

[out-remote-produce] [out-remote-consume]

D-KLAIM

The D-KLAIM extension allows multiple instances of Maude to execute specifications
based on MP-KLAIM.

 Instances communicate through sockets

 Socket communication is supported by rewriting with external objects in Maude

 D-KLAIM introduces objects to handle the socket communication

 D-KLAIM uses a buffered approach for reliable communication

Soup of Soups

Object

Message Object

Object

Object

Message

D-KLAIM Socket Abstraction

• For formal analysis we developed a socket abstraction that captures the behavior of
Maude’s socket capabilities inside a Maude specification.

|| ... ||

D-KLAIM Socket Abstraction

• The communicator wraps a message addressed to another instance in a transfer message:

• The communicator in the receiving net unwraps the transfer message;

• Then it is handled via the MP-KLAIM rules.

D-KLAIM and MP-KLAIM are Stuttering Bisimilar

• Stuttering bisimulation:

• Self-actions are the same in MP-KLAIM and D-KLAIM

• Transfer-actions are stuttering actions and complement the actions communicating with nodes of another site.

• Theorem 3

 TSMP-KLAIM and TSD-KLAIM are stuttering bisimilar and thus reflect the satisfaction of ACTL*(AP) \
X(AP) formulas.

Concluding Remarks

• *-KLAIM provides provably correct implementations of KLAIM

• Related with KLAIM by

 bisimulation, stuttering simulation and

 stuttering bisimulation

• .Reflecting ACTL*(AP) formulas

• Future Work

• Transition to full socket specification

• Strengthening the transition to MP-KLAIM

• Fairness assumptions

• Real-time architectural patterns (PALS)

• Analyzing novel formalisms such as SCEL

