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Motivation

Starting point

A calculus of state-based components building on a generic
approach to transition systems, described by coalgebras

Q—FQ

where @ is a set of states and FQ captures the future behaviour of
the system, according to evolution “pattern” F

Examples:
e Mealy machines — FQ = B(Q x 0)/
e Moore machines — FQ = (BQ)' x O

for I, O input / output types, and B a behaviour (strong) monad
— e.g. maybe (— + 1), powerset (P), distribution (D), etc.
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Starting point

The component calculus
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Motivation

Motivation: going quantitative

From: may it happen?
... to: how often / how costly / how ... will it happen?

e In particular, can propagation of faults be predicted
(calculated) rather than simulated?

cf, calculating fault propagation in functional programs
([Oliveira’12] in the context of the QAIS project, 2012-15)
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Background

Vast literature, e.g.,

¢ Probabilistic program semantics — [Kozen 79]
e Weighted automata — [Buchholz 08, Droste & Gastin 09]
¢ Probabilistic automata — [Larsen & Skou 91]

¢ Coalgebraic approaches — [Sokolova 05]
In particular, a recent paper
[Bonchi et al 12] — A coalgebraic perspective on

linear weighted automata — Information and
Computation, 211:77-105.

combines coalgebraic reasoning with linear algebra.

But there is a price to pay: functors need to handle quantities
explicitly while states become vectors and coalgebras become linear
maps
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Our aim

e to obtain the same quantitative effect in component
modelling while retaining the simplicity of the original
(qualitative) coalgebra approach

’keep weighting and quantification implicit rather than explicit

i.e., change to a typed linear algebra and hide weight
calculations by matrix operations



Motivation

Typed is the keyword ...

e Functions — functional programming, an advanced type
discipline: typing f : A — B well accepted.

e Relations — ubiquitous (eg. graphs) but still under the
atavistic set of pairs interpretation. Thus RC Ax B

widespread, compared to A R.B.

e Matrices — key concept in mathematics as a whole, many
tools (eg. MATLAB, MATHEMATICA) but still “untyped” —
explicit dimension checking required.
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Matrices as arrows

Given a semiring (S; +, x,0,1)

bl.2 Dl.a
[ |baalDas matrix composition A - B obeys
- 1T 1= to the typing rule
al.l|al.2 ---# O I ) -
i ¥ k<=—n<=—m
A a!1|alz -_-_»o e
such that

r(A-B)c )~ x = (rAx) x (xBc)) (1)

where ) is the finite iteration over n of the 4 operation of S.
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Typed linear algebra

e objects are matrix dimensions and whose

e morphisms ( m M_p . n N_ , etc) are the matrices
themselves.

Strictly speaking, there is one such category per matrix cell-level
algebra.

Notation:
e write rAc for the (r, ¢)-th cell of matrix A

e Matg denotes the category, parametric on semiring S
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Typed linear algebra
Type checking:

For matrices A and B of the same type n<—— m, we can
extend cell level algebra to matrix level, eg. by adding and
multiplying matrices (Hadamard product),

A+B , AxB

The underlying type system is polymorphic and type inference proceeds
by unification, as in programming languages.

For instance, the identity matrix

1 0 0
y 0 1 0
n<—_n — ) )
0 0 1
nxn

is polymorphic on type n.
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Converse

Given matrix n<L m , notation m<M— n denotes its
converse.
(M° is M changed by transposition)

idy- M = M = M- idp,
(M°)° = M
(M- N = N°-M°

B~ w0 N
— — —

Closing



Typed Linear Algebra

Typed linear algebra

Abelian structure

M+0 = M = 0+M
M-0 =0 = 0M

Bilinearity — composition is bilinear relative to +:

M-(N+P) = M-N+M-C
(N+P)M = N-M+P-M

Biproducts — products and coproducts together enabling block
algebra — the whole story goes back to MaclLane & Birkhoff; see

also recent thesis [Macedo 12] for applications



Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

(Polymorphic) block combinators

Two ways of putting matrices together to build larger ones:
e X =[M|N] — M and N side by side (“junc")
o X = [%} — P on top of Q (“split").

m

L
[M|N]

T \ ™

n n+p p

i1 i

I a

A
P [‘%
t

of 11 = [idm[0], 11 = [“=] and P+ Q = [i1 - Pli2 - Q]
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Blocked linear algebra

Rich set of laws, for instance divide-and-conquer,
C
[A|B]-[D} = A-C+B-D (9)

two “fusion”-laws,

C-[AB] = [C-AlC-B] (10)
Je- g w

structural equality,
A9 e ascrseo @

— all offered for free from biproducts.
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Vectors

Vectors are special cases of matrices in which one of the types is
1, for instance

Vi
v=|: and W:[Wl Wn]

Vm

Column vector v is of type m<——1 (m rows, one column) and
row vector w is of type 1 <——n (one row, n columns).



Typed Linear Algebra

Special matrices

e The bottom matrix n<2—m — wholly filled with Os
e The top matrix n<t—m— wholly filled with 1s
e The identity matrix n<9_pn — diagonal of 1s

e The bang (row) vector 1 < m — wholly filled with 1s

Thus, (typewise) bang matrices are special cases of top matrices:

1

l<—m = |
Also note that, on type 1 <——1:

1=1=id
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Type generalization

As is standard is relational mathematics, matrix types can be

generalized from numeric dimensions (n, m € Np) to arbitrary
denumerable types (X, Y), taking disjoint union X + Y for

m + n, Cartesian product X x Y for mn, etc.

In this setting, a function B - A will be represented in Matg
f'
by a (Boolean) matrix B S A such that
b[fla 2 (b=sf a)

Thus

L [F] = !
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Weighted Mealy machines as Mats arrows

A weighted Mealy machine M = (/, O, Q, «,~y) consists of
e input and output alphabets /, O, respectively
e finite set of states Q
e v: Q — S — weighted vector of seed (initial) states

o a: Q — (S9) such that a(p)(i)(qg, 0) is the cost of a
transition from p to g triggered by input / and producing

i/o . .,
output o: p——=¢q (0 if no such transition).

If weights are trivial, the definition boils down to
(Qa:Q—(Q@x0),7:PQ)

i.e., a (seeded) coalgebra for functor FX = (X x O)' in Set.
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Probabilistic Mealy machines as Matg arrows

For a probabilistic Mealy machine make:
e S the interval [0,1] in R

e aissuch that!-a <! le, ! - aisa (0,1)-vector
(because ! - M adds all columns of M).

e Wherever ! - a = ! the machine is total and « is a column
stochastic matrix, or probabilistic function

e For | =1, the definition boils down to a probabilistic
automata A weighted finite automaton W = (/, Q, «, )
where

e v: Q — S — weight functions for leaving a state
o a1 — S®*Q such that pu(a)(p, q) is the cost of transition

p—2=g (0 if no such transition).
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Weighted Mealy machines as Mats arrows

e v: Q@ — Sisencoded as Matg vector Q ——1

1vqg 2 +(q) (13)

o The matrix encoding of o : Q — (S®*9)/ can be regarded as
eitherof type @ X /——=Q x 0 or Q——=1xQ x O, as
these types are isomorphic in Mats.

Putting o and v together into a Mats coalgebra

o

Q (IxQx0)+1

for functor
FX=(id® X®id)®id
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Weighted Mealy machines as Mats arrows

FX = (id ® X @ id) ® id

where ® is Kronecker product and & is direct sum

absorption

(C@D)-m - [g:;‘] (14)

CIR

pointwise Kronecker

fusion

(v, x)(M® N)(b,a) = (yMb) x (xNa) (16)
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Weighted Mealy homomorphisms in Matg

Let us now see how the typed LA encoding of WA regains the
simplicity of the original, qualitative starting point.

A homomorphism between weighted Mealy machines M
and M’ is a function h making the following
Mats-diagram commutes,

IxQxO0+1<—" —Q (17)
(id®h®id)@idi ih

IxQ x0+1 v Q'
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Weighted Mealy homomorphisms in Matg

In cross-checking that this indeed is the usual, quantified definition, we
will resort to two rules of thumb,

y(f-N)x = (Z z » y=1f(z): zNx) (18)
y(g® - N-f)x = (a(y))N(f(x)) (19)

where N is an arbitrary matrix and f, g are functional matrices.

These rules generalize similar equalities in relation algebra.
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Weighted Mealy homomorphisms in Matg

Let us calculate:

(Fh)-M = M -h

& { unfold Fh, M and M’ }

((id ® he id) & id) - [3 _

& { absorption (14), identity

(dohoid)-a]  [a'-h
y ~Lyeh
& { equality (12) }

(deh®id)-a=a -h
v=7"h

(2) and fusion (11) }

Closing
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Weighted Mealy homomorphisms in Matg

Next we unfold (id ® h® id) - o« = o’ - h by extensional equality

(i.q',0)((id @ h@ id) - a)g = (i, q',0)(c/ - h)q
& { (19) on the rhs, since h is a function }
(i,q,0)((id @ h id) - a)q = (i, ', 0)a/ (h(q))
= { (18) on the lhs, since id ® h® id is a function too }
O (".p.d) ¢ (i,q,0)=(id@h@id)(i',p,d'): (i,p,0)aq)
= (i,q',0)'(h(q))
& { simplifying }

- p:d=hp): (i.p,0)aq) = (i,q, 0)(h(q))
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Weighted Mealy homomorphisms in Matg

Finally, writing p (//70 g for the weight of the corresponding
transition:

O p:d=hp): p<L"q) = ¢ <L ()

In words:

. . .. i/o .
the weight associated to transition q' </— h(q) in the
target automaton accumulates the weights of all

. ifo .
transitions p </— g in the source automaton for all p
which h maps to q'.

Unfolding v =+ - h will yield the expected ~v(q) = +'(h(q)).

Closing
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Weighted behaviour

e In Set the final coalgebra for FX = (X x 0)' is

out : O'" — (0" x 0)'
out(f)(i) = (As.f(i : s), f[i])

e Functions f : I™ — O are the behaviours generated by Mealy
machines. A weighted behaviour associates a weight in S to
each of them.

e Seed conditions have to be put into the picture as well.
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Weighted behaviour

+
The function By : Q — SO which associates to each state in Q
of M its weighted behaviour is encoded into a Matg matrix of type

Q—— ol , ie. the F-homomorphism

IxQxO0+1 M Q
(id®BW®id)€BidJ( \LBW
It I+
I x O" x O+1<TO
where
M, =[]

(i,As.f(i:s),f[i]) aw q
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Weighted behaviour
What does homomorphism By, mean?

M, - By = ((id ® By ® id) & id) - M

[%} By = ((id @ By ® id) & id) - [04}

|
: v
& { fusion (11) and absorption (14) }
a,-Bw]| [(id®Bw ® id) -«
By | v
& { equality (12) }

ay,-Bw=(id® By ® id) -«
b Bw =7

Closing
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Weighted behaviour

1("Bw)q = 1v¢q

& { composition; ! and v are functions }
Zz: 1=I(z): zBwq) = ~(q)
& { simplifying }

<Z z = zBwq) = v(q)

i.e., the weight of an initial state g is the sum of all weights all

behaviours generated from gq.

Closing
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Weighted behaviour

la, - By = (id ® By @ id) -«

Let's start by unfolding (id ® By ® id)- «:

(i,f,0)((id® Bw ® id)-a)q

= { matrix composition }

)" i'q.0 = (i, f,0)(id® By @id)(i',q',0')) x (i'.q',0')aq

{ abbreviate (i,q’,0)aq to ¢’ UL qg }

i/
O ¢ = FBwd x ¢ <——q)
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Weighted behaviour

. i/o
(i,f,0) (- Bw)g = (> ¢ = fBwqg x ¢ <—q)

= { matrix composition; «,, is Boolean }

O g (i.f.o)og: gBwa)

i/o
=0 _4¢ = fBwqd x ¢d<—q)

= { one-point rule }

(i,o,f)al,g X ngq = <Z q’ o fBWq/ X ql<Lq>
< { f=As.g(i:s), o=g[i] because (i,0,f)a, g }

/g[]

gBwqg = (> q = (\sg(i:s)Bwdg x ¢ <—q)
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Weighted behaviour

Summing up
a, By =(id® By ® id) -«
'“Bw =7

& { just computed, going index-wise }

{gBWq = q = (As.g(i:s)Bwq x q/ﬂq)
Xz zBwq) = ~(q)

In words:

o (seed rule) Each initial state g generates a number of possible
behaviours; the sum of their weights equals the weight of g.

e (generation rule) A behaviour (As.g(i:s)) is generated from all
states reachable from a state generating g by accepting input / and
outputting g[i], accumulating the weights.
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Weighted bisimulations in Mats

Strategy
e Start from an equivalence relation K over @ and define the
quotient Q/K

e Check whether, whenever states p, p’ € Q evolve under the
same label to the same equivalence class [g] € Q/K, are
related by pKp’, to conclude they are observational equivalent
and K is a bisimulation.

... to be framed in Matg
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Weighted bisimulations in Mats

General construction [Oliveira,12]: Equivalence relation K is a
bisimulation for a F-machine M iff any surjection h, such that

K = h° - h, is a homomorphism M/K <"— M :

Fh-M = (M/K) - h

& { definition of M/K }
Fh-M=Fh-M-h*-h
o { making Ko =h*-h }

FK-M=FK -M- K,

i.e., FK - W is invariant wrt the “weighted equivalence” K.
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Weighted bisimulations in Mats

For Mealy machines

FK-M=FK-M-K,

boils down to the index-wise formulation

, i/o i/o

(Vp,p,qi0: pKp': [glk<=—p = [glk~—0p")

where

p1 Ke p2 = (h(p1))(h-h°) " (h(p2))

Diagonal (h- h°)~! represents the weight vector [which] is well
known in stochastic modeling [Buchholz 08].



Closing

Lessons from this exercise

Much still to be done! — but time already to wrap up with the
main points:

e Shift from qualitative to quantitative methods may proceed
in two ways:

o Extend original definitions in the same category
or
e Stay with original definitions but change the category

e Matg appears to be a suitable choice for calculating with
(simple) weighted (probabilistic) automata.
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Back to the component calculus

Non deterministic components live in two universes related by an
adjunction:

e one is “for calculating”

e the other “for programming” (with the underlying monad)

f=AR <« (Vbaz: bRasbefa)

that is,
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Back to the component calculus

In probabilistic components outputs become distributions,

— T
~J

A— DB A—)LsB

M=[fl] < (Vbya: M(b,a)=(f a)b)
where DB is the B-distribution monad

DB = {pe0,1]%) ub=1}
beB

and LS denotes the category of left-stochastic matrices
(columns in such matrices add up to 1).

Closing
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Towards a linear algebra of components

The smooth interplay between functions, relations and matrices
provides the ground for

e re-interpreting the component calculus in LS (composition as
multiplication)

e introducing faults in both components and their glue: the
calculation of their propagation along an architecture comes
for free



Closing

Towards a linear algebra of components

. but much remains to be done

e coping with both measurable and unmeasurable
non-determinism: characterize the adjoint categories required
by the various forms in which both appear combined in the
literature — see eg. the taxonomy given by [Sokolova 05]

e going ahead of finite support and discrete distributions
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Annex:

computing weighted bisimulation

(details in [Oliveira 12])

Closin
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Annex

Motivation (with a probabilistic automata)

Q
Q A 1 2 3 4 5
[} a [} [} 0 0 0 0
s} b 0 0 0 0 0 0
1 a Josg o 0 0 0 o0
1 b 4] o 0 0 0 V]
2 a Jos o 0 0 0 0
2 b 0 0 0 0 0 0
3 a Josg o 0 0 0 [}
3 b 4] o 0 0 0 o
4 a 0 [} 0 0 0 0
4 b 0 1 0 0 0 H]
5 a 0 0 0 0 0 0
5 b o] o] 1 0 0 [8]

Matrix av is type @ x A<—— Q , for Q = {0, ...,5} and A= {a, b}.
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Annex
Is equivalence relation
Q
0 1 2 3 4 5
0 1 0 0 0 4] 0
1 0 1 1 0 0 0
2o 1 1 o o o
Q 3 0 0 0 1 0 0
4 0 0 0 0 1 1
5 0 0 0 0 1 1

a bisimulation? It has four classes which can be represented by a
quotient automaton using a suitable homomorphism h.



Candidate
surjective
homomorphism

Q<1-Q:

Its kernel

K= Q<L Qs
the given
equivalence:

Closing

Annex
o 1 2 3 4 5
0 1 0] 0 0] 0 o}
S | o 1 1 0] 0 (o}
Q 1] o 0] 0 1 0 o}
III] o 0 0 0 1 1
0 1 2 3 o 5
0 1 0 0 0 0 0
1 0 1 1 o0 0 0
2 0 1 1 0 4] 0
Q 3 0 0 0 1 o 0
4 0 0 0 o0 1 1
5 0 0 0 (] 1 1




Building M" = M/K (below we focus on «, o' only).

First attempt:

M = M/K =
(Fh)- M- h°

that is
o =a/K =
(h®id)-a- h°

Annex

T o T TR

Closing

Q
0 1 11 111
0 0 0 0
0 0 0 0

2/3 o 0 0
0 0 0 0

1/3 o 0 0
0 0 0 0
0 0 0 0
0 2 0 0




It doesn't work because, in
Mats, h° is not a “true”
converse of h: the image
h- h° # id is a diagonal
counting “how much
non-injective” h is, cf.
However, surjective
function h has inverses
such as, eg.

h® — K° . (h . ho)—ly
obtained by
straightforward inversion
of diagonal h- h°:

Annex

II
111

(97 I S

Closing

Q
0 1 II Il
1 0 0 0
0 2 0 0
0 0 1 0
0 0 0 2
Ql

0 1 II I
1 0 0 0
o 1/2 o 0
o 1/2 o 0
0 0 1 0
0 0 o 1/2
0 0 o 1/2
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Annex
Second attempt:
M =M/K =
(Fh)- M - h* Q
_ _ Q A o I Il 1II
that is (aside) o alo o o o
0 b 0 0 0 0
of = a/K = I a |l2/3 o o o
(h®jd).a.h° I blo o o o
I a |1/3 o 0 0
which leads to automaton I blojgemo o
111 a 6] 6] 0 o]
111 b 0 1 0 0
(Clearly, h* - h = K for

injective h)

Closing
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Annex

Definition. Equivalence relation K is a bisimulation for M iff any

surjection h, such that K = h° - h, is a homomorphism M/K <" M

Fh-M = (M/K)-h

& { definition of M/K }
Fh-M=Fh-M-h*-h
& { making Ko =h*-h }

\FK.M:FK.M-K.
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Annex

Noting that FK is an equivalence relation (as K is so and F is a
functor) and unfolding the invariant FK - W, for a:

(g,a)(K @ id) - n)p
= { composition rule (1) }
O d.d = (qa)(K®id)(d,a) x ((d,3)a(p)
= { Kronecker (1) ; term K ® id is Boolean }
" q.d : (gKq') x (a=4a') x ((¢',3")(p))

{ let [g]k denote the equivalence class of g }

O d :deladk: ¢d<"—p)
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Annex

e |n words:
O d :deld: d<"—p)

is the accumulated cost (probability) of transitions within the same
equivalence class, which is invariant for equivalent initial states

Now turn attention to
(g,a)(FK - - Ko)p 0P )(FK - a)p’ x p'Ke p)
The weighted equivalence term is such that
, 1
pKep = —PKp
Pl

where |p|k is the cardinal of equivalence class [p]x.
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Annex

Thus

(q.3)(FK-a-K)p = ﬁ@ b P Elplk: (a.a)(FK-a)p)

whose RHS unfolds into:
|p| O-ppelplk: O, qd"€lgdn: ¢"<"—p'))
In summary:

O q q’e[q]K: ¢<>—p)=

|P| O r.d pelplknd €lade: ¢'<"—p)
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Annex

The following notation abbreviation will help: for R, S subsets of

Q,
S<2 R = (Z p,g : pERAGES: g<="—p)
Then equivalence K is a bisimulation once
Ak ~—p = oo x (ladk—*—[plk)

holds.

Closing
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