
Component models in typed linear algebra

Luis S. Barbosa
(joint work with J.N. Oliveira)

IFIP WG 1.3 Meeting

Rome, March 16, 2013

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Starting point

A calculus of state-based components building on a generic
approach to transition systems, described by coalgebras

Q → FQ

where Q is a set of states and FQ captures the future behaviour of
the system, according to evolution “pattern” F

Examples:

• Mealy machines — FQ = B(Q × O)I

• Moore machines — FQ = (BQ)I × O

for I , O input / output types, and B a behaviour (strong) monad
— e.g. maybe (−+ 1), powerset (P), distribution (D), etc.

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Starting point

The component calculus

22 L. S. Barbosa

where

aCell hu, ti = let n = living t

in

8
><
>:

hfalse, falsei if u = true ^ (n < 1 _ n > 3)

htrue, truei if u = false ^ n = 3)

hu, ui otherwise

Function living above, counts the number of living stimuli (i.e., the number of true
values) in a four Boolean tuple. So, UCell = 2 and B = Id. The game’s behaviour is,
of course, deterministic and all cells in the grid react simultaneously to produce the
new generation. To form a grid of n cells we simply connect them using the parallel
combinator ⇥. The crucial point is to devise a wiring scheme to guarantee that the
joint output of the n connected cells is appropriately fed back. The composed system is
pictured below, where component

Bus : 2n �! 24n

concentrates and correctly distributes the output.
The n cells are organised as a fully connected matrix of k rows and l columns

(n = k ⇥ l), so that the neighbours of cell hi, ji are hi � 1, ji, hi + 1, ji, hi, j � 1i and
hi, j + 1i (in the ‘west’, ‘east’, ‘north’ and ‘south’ directions, respectively) computed
in the k and l rings (i.e., 1 � 1 = k, k + 1 = 1 and 1 � 1 = l, l + 1 = 1).

•

�✏ �⌦�↵�
2n

Cell ⇥ Cell ⇥ · · · ⇥ Cell

24n

•

�✏ �⌦�↵�Bus

24n

To specify Bus we adopt the following convention: the first cell in the ⇥-expression has
coordinates h1, 1i, second is h1, 2i and so on until column n is reached; the next cell is
then h2, 1i. Under this convention the output produced by cell hi, ji is selected from the

A calculus of software components 15

and maps every pair of arrows hh1, h2i into h1 ⇥ h2.

The following laws hold for ⇥:

lax (p ⇥ p0) ; (q ⇥ q0) ⇠ (p ; q) ⇥ (p0 ; q0) (26)
copyK⇥K0 ⇠ copyK ⇥ copyK0 (27)

functions pfq ⇥ pgq ⇠ pf ⇥ gq (28)
assoc (p ⇥ q) ⇥ r ⇠ (p ⇥ (q ⇥ r))[a, a�] (29)

id idle ⇥ p ⇠ p[r, r�] (30)
zero nil ⇥ p ⇠ nil[zl, zl�] (31)

comm p ⇥ q ⇠ (q ⇥ p)[s, s] if B is commutative (32)

Again one may ask whether ⇥ lifts to a universal product construction at the be-
havioural level. Dually to the either combinator, we start by definning the split of two
components as

hp, qi = pMq ; (p ⇥ q) where M= hid, idi
This definition, however, does not guarantee, in general, the commutativity of

I
p

{{xx

x

x

x

x

x

x

x

q

##F

F

F

F

F

F

F

F

F

hp,qi
✏✏

O O ⇥ Rp⇡1q
oo

p⇡2q
// R

It does, however, and a cancellation law

hp, qi ; p⇡1q ⇠ p (33)

holds, for commutative monads B which exclude the possibility of failure (e.g., the non-
empty powerset).

Proof. To establish (33) it is enough to check whether ⇡1 : Up ⇥ Uq �! Up is a morphism. In
fact,

B(⇡1 ⇥ id) · ahp,qi;p⇡1q

= { definitions }
B(⇡1 ⇥ ⇡1) · Bm · �l · (ap ⇥ aq) · m · (id⇥ M)

= { routine: ⇡1 ⇥ ⇡1 = ⇡1 · m, m� = m }
B⇡1 · �l · (ap ⇥ aq) · m · (id⇥ M)

= { ? }
⇡1 · (ap ⇥ aq) · m · (id⇥ M)

= { ⇥ cancellation }
ap · ⇡1 · m · (id⇥ M)

= { routine: ⇡1 ⇥ ⇡1 = ⇡1 · m and ⇡1· M= id}
ap · (⇡1 ⇥ id)

A calculus of software components 23

global output tuple as the j + (n ⇥ (i � 1))-projection, i.e.

outhi,ji : 2n �! 2

outhi,ji = ⇡j+(n⇥(i�1))

Now, the input to cell hi, ji is simply the split of the outputs of its neighbours, i.e.,

inhi,ji : 2n �! 24

inhi,ji = houthi,decnji, outhdecni,ji, outhi,incnji, outhincni,jii

where decnx = (x = 1 ! n, x � 1) and incnx = (x = n ! 1, x + 1). Finally, Bus
is defined as the lifting of the split

w = hinhi,ji | i, j 2 1..ni

The game of life component is then written as

GameLife = ((Cell ⇥ Cell ⇥ · · · ⇥ Cell) ; Bus) �

where

Bus = pwq

Note how the hook combinator is responsible for extending the game’s behaviour to the
infinite, once the component has been stimulated with an initial input.

7 Discussion

This section introduced a semantic model for software components, regarded as con-
crete pointed coalgebras for some Set endofunctors, and a calculus to reason about (and
transform) component-based designs. Both the model and the calculus are paramet-
ric on a strong monad capturing the intended behaviour model. The approach focuses
on state-based components with a form of synchronous interaction. Such assumptions,
which underly popular technologies like, e.g., CORBA [35], DCOM [16] or JAVABEANS
[22], reflects what could be called the object orientation legacy. A component, in this
sense, is essentially a collection of objects and, therefore, component interaction is
achieved by mechanisms implementing the usual method call semantics.

The bicategorical setting adopted in this section seems appropriate to capture a
‘two-level structure’ in the component models. This is clearly in debt to previous work
by R. Walters and his collaborators on models for deterministic input-driven systems
[19, 18, 20]. Two other influences should be acknowledged. The first is the recent area
of coalgebraic specification of object-oriented systems (see e.g., [31, 17]), which has
been developed with a similar motivation, although in a property-oriented, or axiomatic,
framework. The other is the ‘dataflow paradigm’ [28] to which some of the aggregation
patterns and the general idea of structured wiring can eventually be traced back.

An alternative approach to componentware is inspired by research on coordination
languages [14, 30] and favors strict component decoupling in order to support a looser

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Motivation: going quantitative

From: may it happen?
... to: how often / how costly / how ... will it happen?

• In particular, can propagation of faults be predicted
(calculated) rather than simulated?

cf, calculating fault propagation in functional programs
([Oliveira’12] in the context of the QAIS project, 2012-15)

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Background

Vast literature, e.g.,

• Probabilistic program semantics — [Kozen 79]

• Weighted automata — [Buchholz 08, Droste & Gastin 09]

• Probabilistic automata — [Larsen & Skou 91]

• Coalgebraic approaches — [Sokolova 05]
In particular, a recent paper

[Bonchi et al 12] — A coalgebraic perspective on
linear weighted automata — Information and
Computation, 211:77–105.

combines coalgebraic reasoning with linear algebra.

But there is a price to pay: functors need to handle quantities
explicitly while states become vectors and coalgebras become linear
maps

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Our aim

• to obtain the same quantitative effect in component
modelling while retaining the simplicity of the original
(qualitative) coalgebra approach

keep weighting and quantification implicit rather than explicit

i.e., change to a typed linear algebra and hide weight
calculations by matrix operations

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Typed is the keyword ...

• Functions — functional programming, an advanced type
discipline: typing f : A→ B well accepted.

• Relations — ubiquitous (eg. graphs) but still under the
atavistic set of pairs interpretation. Thus R ⊆ A× B

widespread, compared to A
R // B .

• Matrices — key concept in mathematics as a whole, many
tools (eg. Matlab, Mathematica) but still “untyped” —
explicit dimension checking required.

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Matrices as arrows

Given a semiring (S; +,×, 0, 1)
matrix composition A · B obeys
to the typing rule

k n
Aoo m

Boo

A·B

ff

such that

r(A · B)c = 〈
∑

x :: (rAx)× (xBc)〉 (1)

where
∑

is the finite iteration over n of the + operation of S.

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Typed linear algebra

• objects are matrix dimensions and whose

• morphisms (m n
Moo , n k

Noo , etc) are the matrices
themselves.

Strictly speaking, there is one such category per matrix cell-level
algebra.

Notation:

• write rAc for the (r , c)-th cell of matrix A

• MatS denotes the category, parametric on semiring S

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Typed linear algebra
Type checking:

For matrices A and B of the same type n moo , we can
extend cell level algebra to matrix level, eg. by adding and
multiplying matrices (Hadamard product),

A + B , A× B

The underlying type system is polymorphic and type inference proceeds
by unification, as in programming languages.

For instance, the identity matrix

n n
idnoo =




1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1



n×n

is polymorphic on type n.

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Converse

Given matrix n m
Moo , notation m n

M◦oo denotes its
converse.
(M◦ is M changed by transposition)

idn ·M = M = M · idm (2)

(M◦)◦ = M (3)

(M · N)◦ = N◦ ·M◦ (4)

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Typed linear algebra

Abelian structure

M + 0 = M = 0 + M (5)

M · 0 = 0 = 0 ·M (6)

Bilinearity — composition is bilinear relative to +:

M · (N + P) = M · N + M · C (7)

(N + P) ·M = N ·M + P ·M (8)

Biproducts — products and coproducts together enabling block
algebra — the whole story goes back to MacLane & Birkhoff; see
also recent thesis [Macedo 12] for applications

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

(Polymorphic) block combinators

Two ways of putting matrices together to build larger ones:

• X = [M|N] — M and N side by side (“junc”)

• X =
[
P
Q

]
— P on top of Q (“split”).

m

n

M

>>

i1
// n + p

[M|N]

OO

π1oo π2 //
p

i2
oo

N

``

t

P

``
[
P
Q

]OO
Q

>>

cf π1 = [idm|0], ı1 =
[
idm
0

]
and P + Q = [i1 · P|i2 · Q]

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Blocked linear algebra

Rich set of laws, for instance divide-and-conquer,

[A|B] ·
[
C

D

]
= A · C + B · D (9)

two “fusion”-laws,

C · [A|B] = [C · A|C · B] (10)[
A

B

]
· C =

[
A · C
B · C

]
(11)

structural equality,

[
A

B

]
=

[
C

D

]
⇔ A = C ∧ B = D (12)

— all offered for free from biproducts.

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Vectors

Vectors are special cases of matrices in which one of the types is
1, for instance

v =



v1
...
vm


 and w =

[
w1 . . . wn

]

Column vector v is of type m 1oo (m rows, one column) and
row vector w is of type 1 noo (one row, n columns).

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Special matrices

• The bottom matrix n m
0oo — wholly filled with 0s

• The top matrix n m
1oo — wholly filled with 1s

• The identity matrix n n
idoo — diagonal of 1s

• The bang (row) vector 1 m
!oo — wholly filled with 1s

Thus, (typewise) bang matrices are special cases of top matrices:

1 m
1oo = !

Also note that, on type 1 1oo :

1 = ! = id

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Type generalization

As is standard is relational mathematics, matrix types can be
generalized from numeric dimensions (n, m ∈ IN0) to arbitrary
denumerable types (X , Y), taking disjoint union X + Y for
m + n, Cartesian product X × Y for mn, etc.

In this setting, a function B A
foo will be represented in MatS

by a (Boolean) matrix B A
[[f]]oo such that

b[[f]]a 4 (b =S f a)

Thus

! · [[f]] = !

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Weighted Mealy machines as MatS arrows

A weighted Mealy machine M = (I ,O,Q, α, γ) consists of

• input and output alphabets I , O, respectively

• finite set of states Q

• γ : Q → S — weighted vector of seed (initial) states

• α : Q → (SQ×O)I such that α(p)(i)(q, o) is the cost of a
transition from p to q triggered by input i and producing

output o: p
i/o // q (0 if no such transition).

If weights are trivial, the definition boils down to

(Q, α : Q → (Q × O)I , γ : PQ)

i.e., a (seeded) coalgebra for functor FX = (X × O)I in Set.

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Probabilistic Mealy machines as MatS arrows

For a probabilistic Mealy machine make:

• S the interval [0, 1] in R
• α is such that ! · α ≤ !. I.e., ! · α is a (0, 1)-vector

(because ! ·M adds all columns of M).

• Wherever ! · α = ! the machine is total and α is a column
stochastic matrix, or probabilistic function

• For I = 1, the definition boils down to a probabilistic
automata A weighted finite automaton W = (I ,Q, α, γ)
where

• γ : Q → S — weight functions for leaving a state
• α : I → SQ×Q such that µ(a)(p, q) is the cost of transition

p
a // q (0 if no such transition).

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Weighted Mealy machines as MatS arrows

• γ : Q → S is encoded as MatS vector Q // 1

1 γ q 4 γ(q) (13)

• The matrix encoding of α : Q → (SQ×O)I can be regarded as
either of type Q × I // Q × O or Q // I × Q × O , as
these types are isomorphic in MatS.

Putting α and γ together into a MatS coalgebra

Q
M=

[
α
γ

]
// (I × Q × O) + 1

for functor
FX = (id ⊗ X ⊗ id)⊕ id

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Weighted Mealy machines as MatS arrows

FX = (id ⊗ X ⊗ id)⊕ id

where ⊗ is Kronecker product and ⊕ is direct sum

absorption

(C ⊕ D) ·
[
A

B

]
=

[
C · A
D · B

]
(14)

fusion
[
M

N

]
⊗ C =

[
M ⊗ C

N ⊗ C

]
(15)

pointwise Kronecker

(y , x)(M ⊗ N)(b, a) = (yMb)× (xNa) (16)

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Weighted Mealy homomorphisms in MatS

Let us now see how the typed LA encoding of WA regains the
simplicity of the original, qualitative starting point.

A homomorphism between weighted Mealy machines M
and M ′ is a function h making the following
MatS-diagram commutes,

I × Q × O + 1

(id⊗h⊗id)⊕id
��

Q

h
��

Moo

I × Q ′ × O + 1 Q ′
M′

oo

(17)

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Weighted Mealy homomorphisms in MatS

In cross-checking that this indeed is the usual, quantified definition, we
will resort to two rules of thumb,

y(f · N)x = 〈
∑

z : y = f (z) : zNx〉 (18)

y(g◦ · N · f)x = (g(y))N(f (x)) (19)

where N is an arbitrary matrix and f , g are functional matrices.

These rules generalize similar equalities in relation algebra.

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Weighted Mealy homomorphisms in MatS

Let us calculate:

(Fh) ·M = M ′ · h
⇔ { unfold Fh , M and M ′ }

((id ⊗ h ⊗ id)⊕ id) ·
[
α

γ

]
=

[
α′

γ′

]
· h

⇔ { absorption (14), identity (2) and fusion (11) }
[

(id ⊗ h ⊗ id) · α
γ

]
=

[
α′ · h
γ′ · h

]

⇔ { equality (12) }
{

(id ⊗ h ⊗ id) · α = α′ · h
γ = γ′ · h (20)

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Weighted Mealy homomorphisms in MatS

Next we unfold (id ⊗ h ⊗ id) · α = α′ · h by extensional equality

(i , q′, o)((id ⊗ h ⊗ id) · α)q = (i , q′, o)(α′ · h)q

⇔ { (19) on the rhs, since h is a function }
(i , q, o)((id ⊗ h ⊗ id) · α)q = (i , q′, o)α′(h(q))

⇔ { (18) on the lhs, since id ⊗ h ⊗ id is a function too }

〈
∑

(i ′, p, o′) : (i , q′, o) = (id ⊗ h ⊗ id)(i ′, p, o′) : (i ′, p, o′)αq〉
= (i , q′, o)µ′(h(q))

⇔ { simplifying }

〈
∑

p : q′ = h(p) : (i , p, o)αq〉 = (i , q′, o)α′(h(q))

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Weighted Mealy homomorphisms in MatS

Finally, writing p q
i/ooo for the weight of the corresponding

transition:

〈
∑

p : q′ = h(p) : p q
i/ooo 〉 = q′ h(q)

i/ooo

In words:

the weight associated to transition q′ h(q)
i/ooo in the

target automaton accumulates the weights of all

transitions p q
i/ooo in the source automaton for all p

which h maps to q′.

Unfolding γ = γ′ · h will yield the expected γ(q) = γ′(h(q)).

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Weighted behaviour

• In Set the final coalgebra for FX = (X × O)I is

out : O I+ → (O I+ × O)I

out(f)(i) = (λ s. f (i : s), f [i])

• Functions f : I+ → O are the behaviours generated by Mealy
machines. A weighted behaviour associates a weight in S to
each of them.

• Seed conditions have to be put into the picture as well.

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Weighted behaviour

The function BW : Q → SO I+

which associates to each state in Q
of M its weighted behaviour is encoded into a MatS matrix of type

Q // O I+
, ie. the F-homomorphism

I × Q × O + 1

(id⊗BW ⊗ id)⊕ id
��

Q
Moo

BW

��
I × O I+ × O + 1 O I+

Mν

oo

where
Mν =

[
αν
!

]

(i , λ s. f (i : s), f [i]) αν q

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Weighted behaviour

What does homomorphism BW mean?

Mν · BW = ((id ⊗ BW ⊗ id) ⊕ id) ·M

[αν
!

]
· BW = ((id ⊗ BW ⊗ id) ⊕ id) ·

[
α

γ

]

⇔ { fusion (11) and absorption (14) }
[
αν · BW

! · BW

]
=

[
(id ⊗ BW ⊗ id) · α

γ

]

⇔ { equality (12) }
{
αν · BW = (id ⊗ BW ⊗ id) · α
! · BW = γ

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Weighted behaviour

! · BW = γ

1 (! · BW) q = 1 γ q

⇔ { composition; ! and γ are functions }

〈
∑

z : 1 =!(z) : z BW q〉 = γ(q)

⇔ { simplifying }

〈
∑

z :: z BW q〉 = γ(q)

i.e., the weight of an initial state q is the sum of all weights all
behaviours generated from q.

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Weighted behaviour

αν · BW = (id ⊗ BW ⊗ id) · α

Let’s start by unfolding (id ⊗ BW ⊗ id) · α:

(i , f , o) ((id ⊗ BW ⊗ id) · α) q

= { matrix composition }

〈
∑

i ′, q′, o′ :: (i , f , o)(id ⊗ BW ⊗ id)(i ′, q′, o′)〉 × (i ′, q′, o′)α q

= { abbreviate (i , q′, o)α q to q′ q
i/ooo }

〈
∑

q′ :: f BW q′ × q′ q
i/ooo 〉

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Weighted behaviour

(i , f , o) (αν · BW) q = 〈
∑

q′ :: f BW q′ × q′ q
i/ooo 〉

⇔ { matrix composition; αν is Boolean }

〈
∑

g : (i , f , o)αν g : g BW q〉

= 〈
∑

q′ :: f BW q′ × q′ q
i/ooo 〉

⇔ { one-point rule }

(i , o, f)αν g × g BW q = 〈
∑

q′ :: f BW q′ × q′ q
i/ooo 〉

⇔ { f = λ s. g(i : s), o = g [i] because (i , o, f)αν g }

g BW q = 〈
∑

q′ :: (λ s. g(i : s))BW q′ × q′ q
i/g [i]oo 〉

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Weighted behaviour

Summing up
{
αν · BW = (id ⊗ BW ⊗ id) · α
! · BW = γ

⇔ { just computed, going index-wise }
{

g BW q = 〈∑ q′ :: (λ s. g(i : s))BW q′ × q′ q
i/g [i]oo 〉

〈∑ z :: z BW q〉 = γ(q)

In words:

• (seed rule) Each initial state q generates a number of possible
behaviours; the sum of their weights equals the weight of q.

• (generation rule) A behaviour (λ s. g(i : s)) is generated from all
states reachable from a state generating g by accepting input i and
outputting g [i], accumulating the weights.

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Weighted bisimulations in MatS

Strategy

• Start from an equivalence relation K over Q and define the
quotient Q/K

• Check whether, whenever states p, p′ ∈ Q evolve under the
same label to the same equivalence class [q] ∈ Q/K , are
related by pKp′, to conclude they are observational equivalent
and K is a bisimulation.

... to be framed in MatS

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Weighted bisimulations in MatS

General construction [Oliveira,12]: Equivalence relation K is a
bisimulation for a F-machine M iff any surjection h, such that

K = h◦ · h, is a homomorphism M/K M
hoo :

Fh ·M = (M/K) · h
⇔ { definition of M/K }

Fh ·M = Fh ·M · h• · h
⇔ { making K• = h• · h }

FK ·M = FK ·M · K•

i.e., FK ·W is invariant wrt the “weighted equivalence” K•.

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Weighted bisimulations in MatS

For Mealy machines

FK ·M = FK ·M · K•

boils down to the index-wise formulation

〈∀ p, p′, q, i , o : p K p′ : [q]K p
i/ooo = [q]K p′

i/ooo 〉

where

p1 K• p2 = (h(p1))(h · h◦)−1(h(p2))

Diagonal (h · h◦)−1 represents the weight vector [which] is well
known in stochastic modeling [Buchholz 08].

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Lessons from this exercise

Much still to be done! — but time already to wrap up with the
main points:

• Shift from qualitative to quantitative methods may proceed
in two ways:

• Extend original definitions in the same category
or

• Stay with original definitions but change the category

• MatS appears to be a suitable choice for calculating with
(simple) weighted (probabilistic) automata.

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Back to the component calculus

Non deterministic components live in two universes related by an
adjunction:

• one is “for calculating”

• the other “for programming” (with the underlying monad)

f = ΛR ⇔ 〈∀ b, a :: b R a⇔ b ∈ f a〉

that is,

A→ PB
(∈·)

++∼= A→Rel B

Λ

jj

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Back to the component calculus

In probabilistic components outputs become distributions,

A→ DB
++∼= A→LS Bjj

M = [[f]] ⇔ 〈∀ b, a :: M(b, a) = (f a)b〉

where DB is the B-distribution monad

DB = {µ ∈ [0, 1]B |
∑

b∈B
µ b = 1}

and LS denotes the category of left-stochastic matrices
(columns in such matrices add up to 1).

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Towards a linear algebra of components

The smooth interplay between functions, relations and matrices
provides the ground for

• re-interpreting the component calculus in LS (composition as
multiplication)

• introducing faults in both components and their glue: the
calculation of their propagation along an architecture comes
for free

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Towards a linear algebra of components

... but much remains to be done

• coping with both measurable and unmeasurable
non-determinism: characterize the adjoint categories required
by the various forms in which both appear combined in the
literature — see eg. the taxonomy given by [Sokolova 05]

• going ahead of finite support and discrete distributions

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Annex

Annex:

computing weighted bisimulation

(details in [Oliveira 12])

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Annex

Motivation (with a probabilistic automata)

0
a, 1

3

��
a, 1

3
��

a, 1
3

��
1

b,1
��

2

b,1
��

3

4 5

Matrix α is type Q × A Qoo , for Q = {0, ..., 5} and A = {a, b}.

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Annex

Is equivalence relation

a bisimulation? It has four classes which can be represented by a
quotient automaton using a suitable homomorphism h.

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Annex

Candidate
surjective
homomorphism

Q ′ Q
hoo :

Its kernel

K = Q Q
h◦·hoo is

the given
equivalence:

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Annex

Building M ′ = M/K (below we focus on α, α′ only).

First attempt:

M ′ = M/K =
(Fh) ·M · h◦

that is

α′ = α/K =
(h ⊗ id) · α · h◦

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Annex

It doesn’t work because, in
MatS, h◦ is not a “true”
converse of h: the image
h · h◦ 6= id is a diagonal
counting “how much
non-injective” h is, cf.

However, surjective
function h has inverses
such as, eg.
h• = h◦ · (h · h◦)−1,
obtained by
straightforward inversion
of diagonal h · h◦:

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Annex

Second attempt:

M ′ = M/K =
(Fh) ·M · h•

that is (aside)

α′ = α/K =
(h ⊗ id) · α · h•

which leads to automaton

0
a, 2

3

yy

a, 1
3

$$
I

b,1 ��

II

III

(Clearly, h• · h = K for
injective h)

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Annex

Definition. Equivalence relation K is a bisimulation for M iff any

surjection h, such that K = h◦ · h, is a homomorphism M/K M
hoo :

Fh ·M = (M/K) · h
⇔ { definition of M/K }

Fh ·M = Fh ·M · h• · h
⇔ { making K• = h• · h }

FK ·M = FK ·M · K•

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Annex

Noting that FK is an equivalence relation (as K is so and F is a
functor) and unfolding the invariant FK ·W , for α:

(q, a)((K ⊗ id) · µ)p

= { composition rule (1) }

〈
∑

q′, a′ :: (q, a)(K ⊗ id)(q′, a′)× ((q′, a′)α(p)〉

= { Kronecker (1) ; term K ⊗ id is Boolean }

〈
∑

q′, a′ :: (qKq′)× (a = a′)× ((q′, a′)α(p)〉

= { let [q]K denote the equivalence class of q }

〈
∑

q′ : q′ ∈ [q]K : q′ p
aoo 〉

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Annex

• In words:

〈
∑

q′ : q′ ∈ [q]K : q′ p
aoo 〉

is the accumulated cost (probability) of transitions within the same
equivalence class, which is invariant for equivalent initial states

Now turn attention to

(q, a)(FK · α · K•)p = 〈
∑

p′ :: (q, a)(FK · α)p′ × p′K• p〉

The weighted equivalence term is such that

p′K• p =
1

|p|K
p′K p

where |p|K is the cardinal of equivalence class [p]K .

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Annex

Thus

(q, a)(FK · α · K•)p =
1

|p|K
〈
∑

p′ : p′ ∈ [p]K : (q, a)(FK · α)p′〉

whose RHS unfolds into:

1

|p|K
〈
∑

p′ : p′ ∈ [p]K : 〈
∑

q′′ : q′′ ∈ [q]K : q′′ p′
aoo 〉〉

In summary:

〈
∑

q′ : q′ ∈ [q]K : q′ p
aoo 〉 =

1

|p|K
〈
∑

p′, q′′ : p′ ∈ [p]K ∧ q′′ ∈ [q]K : q′′ p′
aoo 〉

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Annex

The following notation abbreviation will help: for R, S subsets of
Q,

S R
aoo = 〈

∑
p, q : p ∈ R ∧ q ∈ S : q p

aoo 〉

Then equivalence K is a bisimulation once

[q]K p
aoo =

1

|p|K
× ([q]K [p]K

aoo)

holds.

	Motivation
	Typed Linear Algebra
	Weighted Mealy machines
	Constructions
	Closing

