Component models in typed linear algebra

Luis S. Barbosa
(joint work with J.N. Oliveira)

Universidade do Minho

IFIP WG 1.3 Meeting

Rome, March 16, 2013

Motivation

Starting point

A calculus of state-based components building on a generic
approach to transition systems, described by coalgebras

Q—FQ

where @ is a set of states and FQ captures the future behaviour of
the system, according to evolution “pattern” F

Examples:
e Mealy machines — FQ = B(Q x 0)/
e Moore machines — FQ = (BQ)' x O

for I, O input / output types, and B a behaviour (strong) monad
— e.g. maybe (— + 1), powerset (P), distribution (D), etc.

Motivation Typed Linear Algebra Weighted Mealy machines

Starting point

The component calculus

94"

Cell® Cell¥ - -- X Cell

Bus

24"

GamelLife = ((Cell X Cell® - -- X Cell) ; Bus)

functions
assoc

id

zero

comm

Constructions Closing

(pRp);(g8q) ~ (39 B('5¢)
copy kR ~ copy Kcopy
rfoFgT ~ fog‘l

(PR Rr ~ (PR (gR1))fa,2°]
idle®p ~ plr,r]

nil®p ~ nilzl,zI°]

p®q ~ (¢Xp)s,s| if Bis commutative

Motivation

Motivation: going quantitative

From: may it happen?
... to: how often / how costly / how ... will it happen?

e In particular, can propagation of faults be predicted
(calculated) rather than simulated?

cf, calculating fault propagation in functional programs
([Oliveira’12] in the context of the QAIS project, 2012-15)

Motivation

Background

Vast literature, e.g.,

¢ Probabilistic program semantics — [Kozen 79]
e Weighted automata — [Buchholz 08, Droste & Gastin 09]
¢ Probabilistic automata — [Larsen & Skou 91]

¢ Coalgebraic approaches — [Sokolova 05]
In particular, a recent paper
[Bonchi et al 12] — A coalgebraic perspective on

linear weighted automata — Information and
Computation, 211:77-105.

combines coalgebraic reasoning with linear algebra.

But there is a price to pay: functors need to handle quantities
explicitly while states become vectors and coalgebras become linear
maps

Motivation

Our aim

e to obtain the same quantitative effect in component
modelling while retaining the simplicity of the original
(qualitative) coalgebra approach

’keep weighting and quantification implicit rather than explicit

i.e., change to a typed linear algebra and hide weight
calculations by matrix operations

Motivation

Typed is the keyword ...

e Functions — functional programming, an advanced type
discipline: typing f : A — B well accepted.

e Relations — ubiquitous (eg. graphs) but still under the
atavistic set of pairs interpretation. Thus RC Ax B

widespread, compared to A R.B.

e Matrices — key concept in mathematics as a whole, many
tools (eg. MATLAB, MATHEMATICA) but still “untyped” —
explicit dimension checking required.

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Matrices as arrows

Given a semiring (S; +, x,0,1)

bl.2 Dl.a
[|baalDas matrix composition A - B obeys
- 1T 1= to the typing rule
al.l|al.2 ---# O I) -
i ¥ k<=—n<=—m
A a!1|alz -_-_»o e
such that

r(A-B)c)~ x = (rAx) x (xBc)) (1)

where) is the finite iteration over n of the 4 operation of S.

Typed Linear Algebra

Typed linear algebra

e objects are matrix dimensions and whose

e morphisms (m M_p . n N_ , etc) are the matrices
themselves.

Strictly speaking, there is one such category per matrix cell-level
algebra.

Notation:
e write rAc for the (r, ¢)-th cell of matrix A

e Matg denotes the category, parametric on semiring S

Typed Linear Algebra

Typed linear algebra
Type checking:

For matrices A and B of the same type n<—— m, we can
extend cell level algebra to matrix level, eg. by adding and
multiplying matrices (Hadamard product),

A+B , AxB

The underlying type system is polymorphic and type inference proceeds
by unification, as in programming languages.

For instance, the identity matrix

1 0 0
y 0 1 0
n<—_n —))
0 0 1
nxn

is polymorphic on type n.

Motivation Typed Linear Algebra Weighted Mealy machines Constructions

Converse

Given matrix n<L m , notation m<M— n denotes its
converse.
(M° is M changed by transposition)

idy- M = M = M- idp,
(M°)° = M
(M- N = N°-M°

B~ w0 N
— — —

Closing

Typed Linear Algebra

Typed linear algebra

Abelian structure

M+0 = M = 0+M
M-0 =0 = 0M

Bilinearity — composition is bilinear relative to +:

M-(N+P) = M-N+M-C
(N+P)M = N-M+P-M

Biproducts — products and coproducts together enabling block
algebra — the whole story goes back to MaclLane & Birkhoff; see

also recent thesis [Macedo 12] for applications

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

(Polymorphic) block combinators

Two ways of putting matrices together to build larger ones:
e X =[M|N] — M and N side by side (“junc")
o X = [%} — P on top of Q (“split").

m

L
[M|N]

T \ ™

n n+p p

i1 i

I a

A
P [‘%
t

of 11 = [idm[0], 11 = [“=] and P+ Q = [i1 - Pli2 - Q]

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Blocked linear algebra

Rich set of laws, for instance divide-and-conquer,
C
[A|B]-[D} = A-C+B-D (9)

two “fusion”-laws,

C-[AB] = [C-AlC-B] (10)
Je- g w

structural equality,
A9 e ascrseo @

— all offered for free from biproducts.

Typed Linear Algebra

Vectors

Vectors are special cases of matrices in which one of the types is
1, for instance

Vi
v=|: and W:[Wl Wn]

Vm

Column vector v is of type m<——1 (m rows, one column) and
row vector w is of type 1 <——n (one row, n columns).

Typed Linear Algebra

Special matrices

e The bottom matrix n<2—m — wholly filled with Os
e The top matrix n<t—m— wholly filled with 1s
e The identity matrix n<9_pn — diagonal of 1s

e The bang (row) vector 1 < m — wholly filled with 1s

Thus, (typewise) bang matrices are special cases of top matrices:

1

l<—m = |
Also note that, on type 1 <——1:

1=1=id

Typed Linear Algebra

Type generalization

As is standard is relational mathematics, matrix types can be

generalized from numeric dimensions (n, m € Np) to arbitrary
denumerable types (X, Y), taking disjoint union X + Y for

m + n, Cartesian product X x Y for mn, etc.

In this setting, a function B - A will be represented in Matg
f'
by a (Boolean) matrix B S A such that
b[fla 2 (b=sf a)

Thus

L [F] = !

Weighted Mealy machines

Weighted Mealy machines as Mats arrows

A weighted Mealy machine M = (/, O, Q, «,~y) consists of
e input and output alphabets /, O, respectively
e finite set of states Q
e v: Q — S — weighted vector of seed (initial) states

o a: Q — (S9) such that a(p)(i)(qg, 0) is the cost of a
transition from p to g triggered by input / and producing

i/o . .,
output o: p——=¢q (0 if no such transition).

If weights are trivial, the definition boils down to
(Qa:Q—(Q@x0),7:PQ)

i.e., a (seeded) coalgebra for functor FX = (X x O)' in Set.

Weighted Mealy machines

Probabilistic Mealy machines as Matg arrows

For a probabilistic Mealy machine make:
e S the interval [0,1] in R

e aissuch that!-a <! le, ! - aisa (0,1)-vector
(because ! - M adds all columns of M).

e Wherever ! - a = ! the machine is total and « is a column
stochastic matrix, or probabilistic function

e For | =1, the definition boils down to a probabilistic
automata A weighted finite automaton W = (/, Q, «,)
where

e v: Q — S — weight functions for leaving a state
o a1 — S®*Q such that pu(a)(p, q) is the cost of transition

p—2=g (0 if no such transition).

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Weighted Mealy machines as Mats arrows

e v: Q@ — Sisencoded as Matg vector Q ——1

1vqg 2 +(q) (13)

o The matrix encoding of o : Q — (S®*9)/ can be regarded as
eitherof type @ X /——=Q x 0 or Q——=1xQ x O, as
these types are isomorphic in Mats.

Putting o and v together into a Mats coalgebra

o

Q (IxQx0)+1

for functor
FX=(id® X®id)®id

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Weighted Mealy machines as Mats arrows

FX = (id ® X @ id) ® id

where ® is Kronecker product and & is direct sum

absorption

(C@D)-m - [g:;‘] (14)

CIR

pointwise Kronecker

fusion

(v, x)(M® N)(b,a) = (yMb) x (xNa) (16)

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Weighted Mealy homomorphisms in Matg

Let us now see how the typed LA encoding of WA regains the
simplicity of the original, qualitative starting point.

A homomorphism between weighted Mealy machines M
and M’ is a function h making the following
Mats-diagram commutes,

IxQxO0+1<—" —Q (17)
(id®h®id)@idi ih

IxQ x0+1 v Q'

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Weighted Mealy homomorphisms in Matg

In cross-checking that this indeed is the usual, quantified definition, we
will resort to two rules of thumb,

y(f-N)x = (Z z » y=1f(z): zNx) (18)
y(g® - N-f)x = (a(y))N(f(x)) (19)

where N is an arbitrary matrix and f, g are functional matrices.

These rules generalize similar equalities in relation algebra.

Motivation Typed Linear Algebra Weighted Mealy machines Constructions

Weighted Mealy homomorphisms in Matg

Let us calculate:

(Fh)-M = M -h

& { unfold Fh, M and M’ }

((id ® he id) & id) - [3 _

& { absorption (14), identity

(dohoid)-a] [a'-h
y ~Lyeh
& { equality (12) }

(deh®id)-a=a -h
v=7"h

(2) and fusion (11) }

Closing

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Weighted Mealy homomorphisms in Matg

Next we unfold (id ® h® id) - o« = o’ - h by extensional equality

(i.q',0)((id @ h@ id) - a)g = (i, q',0)(c/ - h)q
& { (19) on the rhs, since h is a function }
(i,q,0)((id @ h id) - a)q = (i, ', 0)a/ (h(q))
= { (18) on the lhs, since id ® h® id is a function too }
O (".p.d) ¢ (i,q,0)=(id@h@id)(i',p,d'): (i,p,0)aq)
= (i,q',0)'(h(q))
& { simplifying }

- p:d=hp): (i.p,0)aq) = (i,q, 0)(h(q))

Motivation Typed Linear Algebra Weighted Mealy machines Constructions

Weighted Mealy homomorphisms in Matg

Finally, writing p (//70 g for the weight of the corresponding
transition:

O p:d=hp): p<L"q) = ¢ <L ()

In words:

. . .. i/o .
the weight associated to transition q' </— h(q) in the
target automaton accumulates the weights of all

. ifo .
transitions p </— g in the source automaton for all p
which h maps to q'.

Unfolding v =+ - h will yield the expected ~v(q) = +'(h(q)).

Closing

Constructions

Weighted behaviour

e In Set the final coalgebra for FX = (X x 0)' is

out : O'" — (0" x 0)'
out(f)(i) = (As.f(i : s), f[i])

e Functions f : I™ — O are the behaviours generated by Mealy
machines. A weighted behaviour associates a weight in S to
each of them.

e Seed conditions have to be put into the picture as well.

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Weighted behaviour

+
The function By : Q — SO which associates to each state in Q
of M its weighted behaviour is encoded into a Matg matrix of type

Q—— ol , ie. the F-homomorphism

IxQxO0+1 M Q
(id®BW®id)€BidJ(\LBW
It I+
I x O" x O+1<TO
where
M, =[]

(i,As.f(i:s),f[i]) aw q

Motivation Typed Linear Algebra Weighted Mealy machines Constructions

Weighted behaviour
What does homomorphism By, mean?

M, - By = ((id ® By ® id) & id) - M

[%} By = ((id @ By ® id) & id) - [04}

|
: v
& { fusion (11) and absorption (14) }
a,-Bw]| [(id®Bw ® id) -«
By | v
& { equality (12) }

ay,-Bw=(id® By ® id) -«
b Bw =7

Closing

Motivation Typed Linear Algebra Weighted Mealy machines Constructions

Weighted behaviour

1("Bw)q = 1v¢q

& { composition; ! and v are functions }
Zz: 1=I(z): zBwq) = ~(q)
& { simplifying }

<Z z = zBwq) = v(q)

i.e., the weight of an initial state g is the sum of all weights all

behaviours generated from gq.

Closing

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Weighted behaviour

la, - By = (id ® By @ id) -«

Let's start by unfolding (id ® By ® id)- «:

(i,f,0)((id® Bw ® id)-a)q

= { matrix composition }

)" i'q.0 = (i, f,0)(id® By @id)(i',q',0')) x (i'.q',0')aq

{ abbreviate (i,q’,0)aq to ¢’ UL qg }

i/
O ¢ = FBwd x ¢ <——q)

Motivation Typed Linear Algebra Weighted Mealy machines Constructions

Weighted behaviour

. i/o
(i,f,0) (- Bw)g = (> ¢ = fBwqg x ¢ <—q)

= { matrix composition; «,, is Boolean }

O g (i.f.o)og: gBwa)

i/o
=0 _4¢ = fBwqd x ¢d<—q)

= { one-point rule }

(i,o,f)al,g X ngq = <Z q’ o fBWq/ X ql<Lq>
< { f=As.g(i:s), o=g[i] because (i,0,f)a, g }

/g[]

gBwqg = (> q = (\sg(i:s)Bwdg x ¢ <—q)

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Weighted behaviour

Summing up
a, By =(id® By ® id) -«
'“Bw =7

& { just computed, going index-wise }

{gBWq = q = (As.g(i:s)Bwq x q/ﬂq)
Xz zBwq) = ~(q)

In words:

o (seed rule) Each initial state g generates a number of possible
behaviours; the sum of their weights equals the weight of g.

e (generation rule) A behaviour (As.g(i:s)) is generated from all
states reachable from a state generating g by accepting input / and
outputting g[i], accumulating the weights.

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Weighted bisimulations in Mats

Strategy
e Start from an equivalence relation K over @ and define the
quotient Q/K

e Check whether, whenever states p, p’ € Q evolve under the
same label to the same equivalence class [g] € Q/K, are
related by pKp’, to conclude they are observational equivalent
and K is a bisimulation.

... to be framed in Matg

Constructions

Weighted bisimulations in Mats

General construction [Oliveira,12]: Equivalence relation K is a
bisimulation for a F-machine M iff any surjection h, such that

K = h° - h, is a homomorphism M/K <"— M :

Fh-M = (M/K) - h

& { definition of M/K }
Fh-M=Fh-M-h*-h
o { making Ko =h*-h }

FK-M=FK -M- K,

i.e., FK - W is invariant wrt the “weighted equivalence” K.

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Weighted bisimulations in Mats

For Mealy machines

FK-M=FK-M-K,

boils down to the index-wise formulation

, i/o i/o

(Vp,p,qi0: pKp': [glk<=—p = [glk~—0p")

where

p1 Ke p2 = (h(p1))(h-h°) " (h(p2))

Diagonal (h- h°)~! represents the weight vector [which] is well
known in stochastic modeling [Buchholz 08].

Closing

Lessons from this exercise

Much still to be done! — but time already to wrap up with the
main points:

e Shift from qualitative to quantitative methods may proceed
in two ways:

o Extend original definitions in the same category
or
e Stay with original definitions but change the category

e Matg appears to be a suitable choice for calculating with
(simple) weighted (probabilistic) automata.

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Back to the component calculus

Non deterministic components live in two universes related by an
adjunction:

e one is “for calculating”

e the other “for programming” (with the underlying monad)

f=AR <« (Vbaz: bRasbefa)

that is,

Motivation Typed Linear Algebra Weighted Mealy machines Constructions

Back to the component calculus

In probabilistic components outputs become distributions,

— T
~J

A— DB A—)LsB

M=[fl] < (Vbya: M(b,a)=(f a)b)
where DB is the B-distribution monad

DB = {pe0,1]%) ub=1}
beB

and LS denotes the category of left-stochastic matrices
(columns in such matrices add up to 1).

Closing

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Towards a linear algebra of components

The smooth interplay between functions, relations and matrices
provides the ground for

e re-interpreting the component calculus in LS (composition as
multiplication)

e introducing faults in both components and their glue: the
calculation of their propagation along an architecture comes
for free

Closing

Towards a linear algebra of components

. but much remains to be done

e coping with both measurable and unmeasurable
non-determinism: characterize the adjoint categories required
by the various forms in which both appear combined in the
literature — see eg. the taxonomy given by [Sokolova 05]

e going ahead of finite support and discrete distributions

Annex

Annex:

computing weighted bisimulation

(details in [Oliveira 12])

Closin

Closing

Annex

Motivation (with a probabilistic automata)

Q
Q A 1 2 3 4 5
[} a [} [} 0 0 0 0
s} b 0 0 0 0 0 0
1 a Josg o 0 0 0 o0
1 b 4] o 0 0 0 V]
2 a Jos o 0 0 0 0
2 b 0 0 0 0 0 0
3 a Josg o 0 0 0 [}
3 b 4] o 0 0 0 o
4 a 0 [} 0 0 0 0
4 b 0 1 0 0 0 H]
5 a 0 0 0 0 0 0
5 b o] o] 1 0 0 [8]

Matrix av is type @ x A<—— Q , for Q = {0, ...,5} and A= {a, b}.

Closing

Annex
Is equivalence relation
Q
0 1 2 3 4 5
0 1 0 0 0 4] 0
1 0 1 1 0 0 0
2o 1 1 o o o
Q 3 0 0 0 1 0 0
4 0 0 0 0 1 1
5 0 0 0 0 1 1

a bisimulation? It has four classes which can be represented by a
quotient automaton using a suitable homomorphism h.

Candidate
surjective
homomorphism

Q<1-Q:

Its kernel

K= Q<L Qs
the given
equivalence:

Closing

Annex
o 1 2 3 4 5
0 1 0] 0 0] 0 o}
S | o 1 1 0] 0 (o}
Q 1] o 0] 0 1 0 o}
III] o 0 0 0 1 1
0 1 2 3 o 5
0 1 0 0 0 0 0
1 0 1 1 o0 0 0
2 0 1 1 0 4] 0
Q 3 0 0 0 1 o 0
4 0 0 0 o0 1 1
5 0 0 0 (] 1 1

Building M" = M/K (below we focus on «, o' only).

First attempt:

M = M/K =
(Fh)- M- h°

that is
o =a/K =
(h®id)-a- h°

Annex

T o T TR

Closing

Q
0 1 11 111
0 0 0 0
0 0 0 0

2/3 o 0 0
0 0 0 0

1/3 o 0 0
0 0 0 0
0 0 0 0
0 2 0 0

It doesn't work because, in
Mats, h° is not a “true”
converse of h: the image
h- h° # id is a diagonal
counting “how much
non-injective” h is, cf.
However, surjective
function h has inverses
such as, eg.

h® — K° . (h . ho)—ly
obtained by
straightforward inversion
of diagonal h- h°:

Annex

II
111

(97 I S

Closing

Q
0 1 II Il
1 0 0 0
0 2 0 0
0 0 1 0
0 0 0 2
Ql

0 1 II I
1 0 0 0
o 1/2 o 0
o 1/2 o 0
0 0 1 0
0 0 o 1/2
0 0 o 1/2

Motivation Typed Linear Algebra Weighted Mealy machines

Constructions

Annex
Second attempt:
M =M/K =
(Fh)- M - h* Q
_ _ Q A o I Il 1II
that is (aside) o alo o o o
0 b 0 0 0 0
of = a/K = I a |l2/3 o o o
(h®jd).a.h° I blo o o o
I a |1/3 o 0 0
which leads to automaton I blojgemo o
111 a 6] 6] 0 o]
111 b 0 1 0 0
(Clearly, h* - h = K for

injective h)

Closing

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Annex

Definition. Equivalence relation K is a bisimulation for M iff any

surjection h, such that K = h° - h, is a homomorphism M/K <" M

Fh-M = (M/K)-h

& { definition of M/K }
Fh-M=Fh-M-h*-h
& { making Ko =h*-h }

\FK.M:FK.M-K.

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Annex

Noting that FK is an equivalence relation (as K is so and F is a
functor) and unfolding the invariant FK - W, for a:

(g,a)(K @ id) - n)p
= { composition rule (1) }
O d.d = (qa)(K®id)(d,a) x ((d,3)a(p)
= { Kronecker (1) ; term K ® id is Boolean }
" q.d : (gKq') x (a=4a') x ((¢',3")(p))

{ let [g]k denote the equivalence class of g }

O d :deladk: ¢d<"—p)

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Annex

e |n words:
O d :deld: d<"—p)

is the accumulated cost (probability) of transitions within the same
equivalence class, which is invariant for equivalent initial states

Now turn attention to
(g,a)(FK - - Ko)p 0P)(FK - a)p’ x p'Ke p)
The weighted equivalence term is such that
, 1
pKep = —PKp
Pl

where |p|k is the cardinal of equivalence class [p]x.

Motivation Typed Linear Algebra Weighted Mealy machines Constructions Closing

Annex

Thus

(q.3)(FK-a-K)p = ﬁ@ b P Elplk: (a.a)(FK-a)p)

whose RHS unfolds into:
|p| O-ppelplk: O, qd"€lgdn: ¢"<"—p'))
In summary:

O q q’e[q]K: ¢<>—p)=

|P| O r.d pelplknd €lade: ¢'<"—p)

Motivation Typed Linear Algebra Weighted Mealy machines Constructions

Annex

The following notation abbreviation will help: for R, S subsets of

Q,
S<2 R = (Z p,g : pERAGES: g<="—p)
Then equivalence K is a bisimulation once
Ak ~—p = oo x (ladk—*—[plk)

holds.

Closing

	Motivation
	Typed Linear Algebra
	Weighted Mealy machines
	Constructions
	Closing

