A structural hybrid logic

for CSP and other process algebras

Till Mossakowski, Lutz Schroder
DFKI Bremen and University of Bremen

IFIP WG 1.3, Winchester — 2011, Sep 4th

@ project SHIP: semantic integration of heterogeneous processes

@ formal development of concurrent systems from requirement
to design

@ requirements: more abstract formalism than
“CSP + refinement”

Till Mossakowski, Lutz Schréder DFKI Bremen and University of A structural hybrid logic

Example: mutual exclusion

System in Csp:

P1 = tryy — entery — exit; — P
Py = try, — enters — exity — P»
System =P ||@ P>

Till Mossakowski, Lutz Schréder DFKI Bremen and University of A structural hybrid logic

Example: mutual exclusion

System in Csp:

P1 = tryy — entery — exit; — P
Py = try, — enters — exity — P»
System =P ||@ P>

System requirement in CsP:

Req = (enter; — exit; — Req)O(enter, — exity — Req)
Req Ct System \ {tryi, trys2} does not hold here. ..

Till Mossakowski, Lutz Schréder DFKI Bremen and University of A structural hybrid logic

Example: mutual exclusion

System in Csp:

P1 = tryy — entery — exit; — P
Py = try, — enters — exity — P»
System =P ||@ P>

System requirement in CsP:

Req = (enter; — exit; — Req)O(enter, — exity — Req)

Req Ct System \ {tryi, trys2} does not hold here. ..
System requirement in pCsP: System design in uCsp:

P = —¢ Ci = [A \ exit,-]c,-

wi = P; A (‘\C,‘U(C,'UP,')) [eXI't,']—\C,' [enter,-]c,-

(ng HX QOQ) VAN G—|(C1 VAN Cz) -C = [A\ enter,-]—|c,-

Till Mossakowski, Lutz Schréder DFKI Bremen and University of A structural hybrid logic

Example: mutual exclusion

System in Csp:

P1 = tryy — entery — exit; — P
Py = try, — enters — exity — P»
System =P ||@ P>

System requirement in CsP:

Req = (enter; — exit; — Req)O(enter, — exity — Req)

Req Ct System \ {tryi, trys2} does not hold here. ..
System requirement in pCsP: System design in uCsp:

P = —¢ Ci = [A \ exit,-]c,-

wi = P; A (‘\C,‘U(C,'UP,')) [eXI't,']—\C,' [enter,-]c,-

(ng HX QOQ) VAN G—|(C1 VAN Cz) -C = [A\ enter,-]—|c,-

Till Mossakowski, Lutz Schréder DFKI Bremen and University of A structural hybrid logic

Example: mutual exclusion

System in Csp:

P1 = tryy — entery — exit; — P
Py = try, — enters — exity — P»
System =P ||@ P>

System requirement in CsP:

Req = (enter; — exit; — Req)O(enter, — exity — Req)

Req Ct System \ {tryi, trys2} does not hold here. ..
System requirement in pCsP: System design in uCsp:

P = —¢ Ci = [A \ exit,-]c,-

wi = P; A (‘\C,‘U(C,'UP,')) [eXI't,']—\C,' [enter,-]c,-

(ng HX QOQ) VAN G—|(C1 VAN Cz) -C = [A\ enter,-]—|c,-

Till Mossakowski, Lutz Schréder DFKI Bremen and University of A structural hybrid logic

Related work

@ A. Roscoe: Theory and Practice of Concurrency, Prentice Hall
1997

@ Lus Caires, Luca Cardelli: A spatial logic for concurrency.
Part I: Inf. Comput. 186(2): 194-235 (2003),
Part II: Theor. Comput. Sci. 322(3): 517-565 (2004)

@ Martin Berger, Kohei Honda and Nobuko Yoshida:
Completeness and Logical Full Abstraction in Modal Logics
for Typed Mobile Processes, ICALP (2), 2008, p. 99-111

contextual C bisimilarity - trace

equivalence equivalence
spatial logics Csp

Till Mossakowski, Lutz Schréder DFKI Bremen and University of A structural hybrid logic

LTS semantics of Csp

Skip % Q

GoP 5P
P3P
Pllx @3 P [|x @
PSP Q3
Pllx @2 P |Ix @

(a e (A\X)U{T})

(ae X)

Drawback: one big syntactic LTS, not compositional

Till Mossakowski, Lutz Schréder DFKI Bremen and University of A structural hybrid logic

Compositional LTS semantics of parallel composition

et fins] y*y[nT]
zlly=a |y

S || T is defined over the product of S-states and T -states.

(IISYNC) is read as (JISYNC)

Works also for other process algebra operators.

Ichiro Hasuo: The Microcosm Principle and Compositionality of
GSO0S-Based Component Calculi, CALCO 2011, p. 222-236

Till Mossakowski, Lutz Schréder DFKI Bremen and University of A structural hybrid logic

Institutions

Institutions

Signatures

‘ - ‘
Satisfaction =5 |:Z’
Mod o
Models

i
f

Till Mossakowski, Lutz Schroder DFKI Bremen and University of A structural hybrid logic

The CSP institution — signatures

A signature a pair (A, N) where

@ A is an alphabet of communications and

@ N is a set of process names;
A signature morphism o = (o, v) : (A, N) — (A, N') consists of
two maps

@ a: A— A an injective translation of communications, and

e v: N — N, a translation of process names.

Till Mossakowski, Lutz Schréder DFKI Bremen and University of A structural hybrid logic

The CSP institution — sentences

Process over (A, N):

P,Qu=n %% process name n € N
| Skip %% successfully terminating process
| Stop %% deadlock process
| a— P %% action prefix with a communication a € A
| POQ %% external choice
| PIQ %% internal choice
| if pthenPelse @ %% conditional
| Pllx @ %% generalized parallel
| P\ X %% hiding
| P[[r]] %% relational renaming
| PsQ@Q %% sequential composition

Sentences over (A, N) are process definitions:
n=P"P

Sentence translation along o = («, v) is substitution.

Till Mossakowski, Lutz Schréder DFKI Bremen and University of A structural hybrid logic

The CsP institution — LTS models

An (A, N)-model (L, init) consists of
@ a labeled transition system L = (5,=C S x A x S) with
labels in A

@ an assignment init : N — S of states to the names in NV

The model reduct of (Ly, inity) along
o= (Oé,l/) : (Al, Nl) — (AQ, N2) is (Ll, initl) with

. . afa .
(] 51—3)52 n L1 If51 L>)52 n L2

@ inity = initp o v

Till Mossakowski, Lutz Schréder DFKI Bremen and University of A structural hybrid logic

The CsSP institution — satisfaction

(L, init) |= n = P iff (L, init(n)) ~ [P]L init
[Skip]L it = O % Q2
[Stop] L,init = O
la = Pl init = a = [PlL,init
[P O QlL,init = [PlL,init O [QIL init
[P 11 Q] L,init = [P]L,inic T [Q]L,init
[[if @) then P else Q]] L,init = if [[go]] L,init then [[P]] L,init else [[Q]] L,init
[P |Ix QlLinit = [PlL,init ||x [QIL,init
[P\ Xwinit = [P init \ X
[P L init = [P]Linie[[r]]
[P s Q)L init = [P]L,init 8 [QRL,init

Till Mossakowski, Lutz Schréder DFKI Bremen and University of A structural hybrid logic

Modal logic p Csp

@ Signatures (A, P, O) where
e A s an alphabet of labels,
e P is a set of propositions, and
e O is a set of nominals
o models are Kripke frames (=LTS) (L, Val”, Val©), where
L=(S5,3CSxAxS), Val’: P = P(S), Val®: 0~ S
pu= T |p|-pleAe]
@ Sentences: <a>@|i| @y | uXyp]
Skip | Stop | ¢ O | ¢llx @ | ...
@ Satisfaction: as in hybrid p-calculus, and:
(L, Va/P, Va/o) |:5 ¥1 HX ®2 if
(L, ValP Val® s) ~ (Ly, Valf, ValP) ||x (L2, Valy, Val?,s,) and
(L;, ValP ValP) k=, i for i = 1,2, etc.

Till Mossakowski, Lutz Schréder DFKI Bremen and University of A structural hybrid logic

Institution comorphims

I nstitution comor phisms

()
Signatures ‘ —_——
as
Satisfaction — =J
2z >

Till Mossakowski, Lutz Schroder DFKI Bremen and University of A structural hybrid logic

Institution comorphism Csp — u Csp

@ signatures:
communications — labels, process names — nominals
ie. (A,N)— (A0, N)

@ sentences: n= P — ©Q,P

e models: (L, Val”, Val©) — (L, Val©)

Till Mossakowski, Lutz Schréder DFKI Bremen and University of A structural hybrid logic

Development methodology

Start with a ;4 CSP specification

Refine it, also using the structural operators. ..

until a process decomposition has been reached
e note that propositions have to be hidden

This then “is” a Csp process

Till Mossakowski, Lutz Schréder DFKI Bremen and University of A structural hybrid logic

@ proof system, model checking

@ Can we express everthing that can be expressed as "Csp
process plus (trace, stable failures, ...) refinement”?

@ Generalisation to CsP-CASL

Till Mossakowski, Lutz Schréder DFKI Bremen and University of A structural hybrid logic

Generalisation to Csp-CASL

@ alphabet = disjoint union of CASL carrier sets

@ process names as well as nominals have parameter sorts
@ alphabet letters are replaced with terms
e in particular: term modalities

Till Mossakowski, Lutz Schréder DFKI Bremen and University of A structural hybrid logic

