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Topics of this talk 
!  Some introductory remarks on Formal Methods, 

CafeOBJ, and Proof Scores 
!  Combination of inference and search in the proof 

score method 
!  Abstraction-with-Inference + search 
!  Induction Guided Falsification 

! Backward-search (inference) + forward-
search (search) 

!  Sound and complete proof rules underlie the proof 
score method 

!  Concluding remarks 



Our Perception on  
Formal Methods and  

Specification Verifications
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Application areas of formal methods (FM)     

1.  Analysis and verification of developed  program 
codes (post-coding) 

2.  Analysis and verification of (models/specs of) 
domains, requirements, and designs before/ 
without coding (pre-coding or without coding)

Successful application of formal methods to the area 
of (modeling/specification of) domains, requirements, 
designs can bring drastic good effects for systems 
developments, but it is not well exploited and/or 
practiced yet. 

specification = description of model 
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The current situation of FM  

!  Verification with formal specifications still have a 
potential to improve the practices in upstream (pre-
coding) of systems development processes 

!  Model checking has brought a big success but still 
has limitations 
!  It is basically “model checking” for program codes 

!  Still mainly for post-coding 
!  Infinite state to finite state transformation can be unnatural 

and difficult 
!  Established interactive theorem provers (Isabelle/ 

HOL, Coq, PVS, etc.) are still to be well accepted to 
ordinary software/systems engineers 
!  especially in upstream (pre-coding) phase 
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!  Reasonable blend of user and machine 
capabilities, intuition and rigor, high-level 
planning and tedious formal calculation 
•  fully automated proofs/verifications are not 

necessary good for human beings to perceive 
logical structures of real problems/systems 

•  interactive understanding/description of real 
problem domains/requirements/designs is 
necessary 

Our approach 

Proof Score Approach 
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Proof Score 
as a Complete Set of Symbolic Test cases 

!  Domain/requirement/design engineers are 
expected to construct proof scores together 
with formal specifications 

!  Proof score is a complete set of symbolic test 
cases such that when executed (or evaluated/
reduced) and everything evaluates as expected, 
then the desired property is convinced (or 
proved) to hold.  Proof score is supposed to be 
read by engineers. 
!  Proof by construction/development 
!  Proof by computation/reduction/rewriting 
!  Test Driven (Specification) Development 

IFIP WG1.3, Winchester, 110904 8  

Development of proof scores in CafeOBJ 

!  Many simple proof scores are written in OBJ 
language from 1980’s; some of them are not 
trivial 

!  From around 1997 CafeOBJ group at JAIST use 
proof scores seriously for verifying 
specifications for various examples 
!  From static to dynamic/reactive system 
!  From ad hoc to more systematic proof scores 
!  Introduction of OTS (Observational Transition 

System) was a most an important step
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Some achievements of  
CafeOBJ/OTS proof score approach   

! Some classical mutual exclusion algorithms 
! Some real time algorithms 
   e.g. Fischer’s mutual exclusion protocol 
! Railway signaling systems  
! Authentication protocol 
    e.g.  NSLPK,  Otway-Rees, STS protocols 
! Practical sized e-commerce protocol of SET 
     (some of proof score exceeds 60,000 lines; 
      specification is about 2,000 lines,  
      20-30 minutes for reduction of the proof score) 
! UML semantics (class diagram + OCL-assertions) 
! Formal Fault Tree Analysis 
! Secure workflow models, internal control 

CafeOBJ/OTS approach has been applied to the following 
kinds of problems and found usable: 

Verification by Inference and Search 
in 

Proof Scores

Inference Search
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Two topics 

!  Abstraction by inference (TP) and counter 
example finding by search (MC) 
!  QLOCK example 

!  Counter example finding by MC (Search) 
and TP (Inference) 
!  NSPK example 
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Modeling QLOCK (via Signature Diagram)  
with OTS (Observational Transition System) 
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action declaration 

initial state declaration 

system sort declaration 

observation declaration 

visible sort declaration 

CafeOBJ signature for QLOCKwithOTS 
-- state space of the system 
*[Sys]* 
 
-- visible sorts for observation 
[Queue Pid Label]  
 
-- observations  
bop pc : Sys Pid -> Label 
bop queue : Sys -> Queue 
 
-- any initial state 
bop init : -> Sys {constr} 
-- actions 
bop want : Sys Pid -> Sys {constr} 
bop try  : Sys Pid -> Sys {constr} 
bop exit : Sys Pid -> Sys {constr} 
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Transition system for QLOCK (1)
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mod* QLOCKconfig {!
  inc(QLOCK)!
  [ Config ]!
  op <_> : Sys -> Config .!
}!
-- pre-transiton system with an agent/process p!
mod* QLOCKpTrans {!
  inc(QLOCKconfig)!
  op p : -> PidConst .!
  var S : Sys .!
  -- possible transitions!
  ctrans < S > => < want(S,p) > if c-want(S,p) .!
  ctrans < S > => < try(S,p) >  if c-try(S,p) .!
  ctrans < S > => < exit(S,p) > if c-exit(S,p) .!
}!



Transition system for QLOCK (2)
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-- transition system with 2 agents i j!
mod* QLOCKijTrans {!
  inc((QLOCKpTrans * {op p -> i}) +!
      (QLOCKpTrans * {op p -> j}))!
}!
!
-- transition system with of 3 agents i j k!
mod* QLOCKijkTrans {!
  inc(QLOCKijTrans +!
      (QLOCKpTrans * {op p -> k}))!
}!
!

Search predicate of CafeOBJ 
 a la Maude’s search command 

pred _=(_,_)=>*_ : Any NzNat* NzNat* Any 

CafeOBJ System has the following built-in predicate: 
 - Any is any sort (that is, the command is available for any sort) 
 - NzNat* is a built-in sort containing non-zero natural number 

and the special symbol “*” which stands for infinity 

(t1 =(m,n)=>* t2) returns true if t1 can be translated (or  
rewritten), via more than 0 times transitions, to some term which 
matches to t2. Otherwise, it returns false .  Possible 
transitions/rewritings are searched in breadth first fashion.  n is 
upper bound of the depth of the search, and m is upper bound of 
the number of terms which match to t2.  If either of the depth of 
the search or the number of the matched terms reaches to the 
upper bound, the search stops. 
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t1 =(m,n)=>* t2 

… 

… 

… 

… 

… 

… 

t1 

…
 

n : the depth of  
     the search tree 

m : the number of  
     the searched terms 

which match to t2  
…

 …
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suchThat predicate  

pred1(t2) is a predicate about t2 and can 
refer to the variables which appear in t2.  
pred1(t2) enhances the condition used to 
determine the term which matches to t2.  

t1 =(m,n)=>* t2 suchThat pred1(t2)  
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t1 =(m,n)=>* t2 suchThat pred1(t2)  

… 

… 

… 

… 

… 

… 

t1 

…
 

n : the depth of  
     the search tree 

m : the number of  
     the searched terms 

which match to t2 and 
satisfy pred(t2)  

…
 …
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withStateEq predicate 

t1 =(m,n)=>* t2  
   withStateEq pred2(V1:St,V2:St) 

Pred2(V1:St,V2:St) is a binary predicate of two 
arguments with the same sort St of the term t2.  
Pred2(V1:St,V2:St) is used to determine a newly 
searched term (a state configuration) is already searched one.  
If this withStateEq predicate is not given, the term identity 
binary predicate is used for the purpose. 

t1 =(m,n)=>* t2 suchThat pred1(t2) 
                withStateEq pred2(S1:Sort,S2:Sort) 

Using both of suchTant and withStateEq is also possible 
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t1 =(m,n)=>* t2  
withStateEq pred2(V1:St,V2:St) 

… 

… 

… 

… 

… 

… 

t1 

…
 

n : the depth of  
     the search tree 

…
 …

 

m : the number of  
     the searched terms 

which match to t2  

: pred2 = true 
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Verification by Searching with  
Observational Equivalence

red in (QLOCKijTrans + QLOCKobEq + MEX) :!
       < init > =(*,*)=>* < S:Sys > !
       suchThat (not mutualEx(S,i,j))!
       withStateEq (C1:Config =ob= C2:Config) .!

This CafeOBJ code searches for a counter 
example of mutual exclusion property in 
the whole state space Sys(i,j) of two 
agents system.  If this returns false, the 
two agents system is verified to have the 
mutual exclusion property. 
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Simulation of any number of agents systems 
by the two agents system

let i and j be any two distinctive process identifiers, and 
let Sys(i,j) be the state space of  QLOCK  with only the 
two processes i and j,  
then  
            (there is a counter example in Sys) 
                               implies  
        (there exits a counter example in Sys(i,j)) 
that is, 
                   (for-all t:Sys(i,j)).pred(t,i,j) 
                                implies 
                     (for-all s:Sys).pred(s,i,j) 

verify the following 

simOfQLOCKbyQLOCKijPS.mod 
csQtopPS.modProof  of

 
 
 
Counter example finding  
by forward and backward search 
-- another kind of collaborative use of MC & TP
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!  MC & TP can be collaboratively used to find a 
counterexample that exists at a deep position. 
•  Properties concerned are invariants. 
•  Bounded model checking (BMC) is used as an MC 

technique. 
•  Induction is mainly used as a TP technique. 

!  We have proposed a collaborative use of BMC & induction 
to find a deep counterexample for invariants: Induction-
Guided Falsification (IGF).

K. Ogata, M. Nakano, W. Kong, K. Futatsugi: Induction-Guided Falsification,  
8th ICFEM, LNCS 4260, Springer, pp.114-131 (2006). 



Induction-Guided Falsification (IGF) 
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transition t 
¬G 

¬L 

init 

"   Suppose that a counterexample of an invariant G exists outside of the 
bounded reachable state space that can be exhaustively traversed. 

"   induction may conjecture a lemma L such that its counterexample exists 
in the space. 

Forward 

Backward 

"   BMC tries to find a 
counterexample forward. "   Induction tries to show 

that there are no paths 
from any states such that 
¬G to any initial states. 

"   IGF can be regarded 
as a combination of 
forward & backward 
reachability analysis 
methods. 
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Sound and “Complete” Proof Rules  
for  

Proof Scores
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Topics 

!  Specification/Descriptions, Models, and Realities 

!  Constructor-based Order Sorted Algebra 

!  Satisfaction of a Property by a Specification 
#  SPEC |= prop 

#  Proof rules for SPEC |= prop and SPEC |- prop 
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Specifications, Models, Realities 
Specifications/Descriptions (Texts) 

Realities/Real-World 

Models (Conceptual, Diagram, Formal/Mathematical) 

Theories/Mathematics/Logics 

Engineering/Technology 

Implements/ 
Realizes 
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Specification   

An constructor-based equational specification SPEC 
in CafeOBJ (a text in the CafeOBJ language with only 
equational axioms) is defined as a pair (Sig,E) of order-
sorted constructor-based signature Sig and a set E of 
conditional equations over Sig.  A signature Sig is defined 
as a triple (S,F,Fc) of an partially ordered set S of sorts, 
an indexed family F of sets of S-sorted functions/
operations, and a set Fc of constructors.  Fc is a family of 
subsets of F, i.e. Fc ⊆ F .  

SPEC = ((S,F,Fc),E)
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Model:  (S,F)-Algebra 

A formal/mathematical model of a specification 
SPEC = ((S,F,Fc),E) is an reachable order-sorted 
algebra A which has the signature (S,F) and satisfies 
all equations in E.   

An order-sorted algebra which has a signature (S,F) is 
called an (S,F)-algebra.  An (S,F)-algebra A interprets 
a sort symbol s in S as a (non empty) set Asand an 
operation (function) symbol f :s1 s2 …sn->s(n+1) in F 
as a function Af : As1,As2,..,Asn->As(n+1). The 
interpretation respects the order-sort constrains. 
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An example of Signature and its Algebra 
-- Let (PNAT+)-sig be  
-- the  signature of PNAT+ 
-- sort 
[ Zero NzNat < Nat ] 
-- operators 
op 0 :  -> Nat {constr} 
op s_ :  Nat -> NzNat {constr} 
op _+_ : Nat Nat -> Nat 

S_ 

Nat 

0
NzNat Zero 

_+_ 

A (PNAT+)-sig-algebra 
Order-Sorted Algebra with Signature (PNAT+)-sig: 

 
<Nat, NzNat, Zero; 0, s_, _+_> 
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Model:  (S,F,FC)-Algebra  

If a sort s ∈ S is the co-arity of some operator f ∈ FC, 
the sort s is called a constrained sort.  A  sort which is 
not constrained is called a loose sort.   

An (S,F)-algebra A is called (S,F,FC)-algebra if any value 
v ∈ As for any constrained sort s ∈ S is expressible only 
using  
  (1) function Af for f ∈ FC 

and 
  (2) function Ag for g ∈ F whose co-arity is loose sort . 
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(S,F,FC)-algebra can also be called FC-reachable algebra 
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Valuation, Evaluation 

Given a model A and a valuation v, a term t of sort s, 
which may contain variables, is evaluated to a value 
Av(t) in  As 

A valuation (or an assignment) is a sort preserving 
map from the (order-sorted) set of variables of a 
specification to an order-sorted algebra (a model), 
and assigns values to all variables. 
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Equation 

Given terms t, t’,t1,t1’,t2,t2’…tn,tn’ , a conditional equation 
is a sentence of the form:  
         t = t’ if (t1 = t1’) /\ (t2 = t2’) /\  …/\  (tn = tn’) 
An ordinary equation is a sentence of the form: 
                                  t = t’     
that is n=0. 
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A conditional equation in CafeOBJ notation: 
                               t = t' if c 
where t,t' are any terms and c is a Boolean term is an 
abbreviation of  
                          t = t' if c = true 
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Satisfiability of Equation 

An ordered-sorted algebra A satisfies a conditional 
equation:  
       t = t’ if (t1 = t1’) /\ (t2 = t2’) /\…/\ (tn = tn’)  
iff  
Av(t1)=Av(t1’) and Av(t2)=Av(t2’) and…and Av(tn)=Av(tn’)  
               implies Av(t)=Av(t’)  
for any valuation v . 

The satisfaction of an equation by a model A is denoted by  
A |= (t = t’ if (t1 = t1’) /\ (t2 = t2’) /\…/\ (tn = tn’))  
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CafeOBJ _=_ (meta-level equality) and  
               Boolean _=_ (object-level equality)
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If a specification SP includes, 
op _=_ : S S -> Bool .  
eq (X = X) = true .  
ceq X = Y if (X = Y) .  

then  
        SP |= t=t' if (t1=t1')/\ (t2=t2')/\.../\(tn=tn')  
   iff  
        SP |= ((t1=t1' and t2=t2' and ...and tn=tn’)  
                   implies t=t') = true  . 

1.  Object-level equality can substitute for meta-
level equality 

2.  Every sentence (conditional equation) can be 
written as a Boolean term. 
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For a specification SPEC = ((S,F,Fc), E), a 
SPEC-algebra is a (S,F,FC)-algebra which 
satisfies all equations in E . 

SPEC-algebra
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Satisfiability of property by specification: 
SPEC |= prop 

A specification SPEC = ((S,F,Fc),E) is defined to satisfy a 
property p (a term of sort Bool) iff  A |= (p = true) holes 
for any SPEC-algebra A. 

The satisfaction of a predicate prop by a specification 
SPEC = ((S,F,Fc),E) is denoted by: 

SPEC |= p  or  E |= p 

A most important purpose of developing a specification 
SPEC = ((S,F,Fc),E) in CafeOBJ is to check whether  

SPEC |= prop  
holds for a predicate prop which describes some 
important property of the system which SPEC specifies. 
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Proof rules for  
             SPEC |= prop (semantic entailment)
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For doing formal verification, it is common to think of  
syntactic (proof theoretic) entailment:  
                             SPEC |- prop    
which corresponds to semantic entailment: 
                             SPEC |= prop  . 
 
We have developed a sound and quasi complete set of 
proof rules for |- which satisfies: 
           SPEC |- prop    iff    SPEC |= prop 
for unstructured specifications and constitutes a 
theoretical foundation for verifications with proof scores.

Proof Rules (1)  -- entailment system 
     (S, P, or Ei denotes a set of equations)
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 E1 |- E2 

E1 |- E2 , E2 |- E3  
-------------------------------------------------- 

E1 |- E3 

E1 |- E2 ,  E1 |- E3  
 

E1 |- E2 U E3 

S |-! P 
 

 "(S) |-!’ "(P) 
 for any signature morphism 
　　 ": ! -> !’ 

Translation:

Monotonicity:

Transitivity:

Unions:

 for any E2⊆E1



Proof Rules (2)  -- equational reasoning  
     (t and ti denotes terms, f denotes operator, p denotes predicate)
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|- {t=t} 

 
 

{t1=t2, t2=t3} |- {t1=t3} 

Reflexivity:

Transitivity:

Symmetry:
 
 

{t1=t2} |- {t2=t1} 

 
 

 {t1=t1’,t2=t2’,…,tn=tn’} |- f(t1,t2,…,tn)=f(t1’,t2’,…,tn’) 
Congruence: 

 
 

{t1=t1’,t2=t2’,…,tn=tn’} U {p(t1,t2,…,tn)} |- p(t1’,t2’,…,tn’) 

P-Congruence: 

Proof Rules (3)  
(H denotes a set of equations, p denotes predicate, 
 X, Y, or Z denotes set of variables, x denotes variable)

IFIP WG1.3, Winchester, 110904 
     

42 

S |- P U {(/\H=>p)} 
 

 S U H |- P U {p} 

S |- P 
 

S U {(∀x)p} |- P U {(∀Y)p(x<-t)} 

S |-! P U {(∀Z)p} 
 

S |-!(Z) P U {p} 

Implication:

Generalization: 

Substitutivity: 

S U H |- P U {p} 
 

S |- P U {(/\H=>p)}  
and

S |-!(Z) P U {p} 
 

S |-! P U {(∀Z)p} 
and



Proof Rules (4) – these are infinite in nature 
(p denotes predicate, Y denotes set of variables,  
 x denotes variable, f denotes a function, ti denotes a term)
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 { (S |- {(∀Y)p(x<-t)}) | t is constructor Y-term, Y are loose vars } 
 

S |- {(∀x)p}  

Case Analysis:

C-Abstraction (Constructor Abstraction): 

 { (S U {f(t1,…,tn)=t} |-!(Y) {p}) | t is constructor Y-term, Y are loose vars } 
 

S |-! {p}  

Concluding Remarks
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Three levels of CafeOBJ applications 

1.  Construct formal models; describe formal 
specifications 

2.  Do rapid prototypings or animations and check the 
properties of specifications; execute specifications 
for validations/verifications 

3.  Write proof scores to verify properties of 
specifications; verifications/proofs with reductions/
rewritings

Choose an appropriate level  
depending on problems and situations 

    45 
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Prerequisites for  
proof score writing in CafeOBJ  (1) 

!  Algebraic modeling: development of algebraic 
specifications 
•  defining signature for a real problem 
•  expressing the semantics of a problem in 

equations 
!  more exactly, expressing the problem in reduction 

rules 

    46 
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Prerequisites for  
proof score writing in CafeOBJ (2)

!  Equational logic, rewriting, and 
propositional calculus  
!  equationl reasoning  

!  equivalence relation, equational calculus, … 
!  propositional calculus with “xor” 

normal forms which has the complete 
rewriting calculus 

!  reduction/rewriting 
!  termination, confluence, sufficiently 

completeness 

    47 

IFIP WG1.3, Winchester, 110904 

Prerequisites for  
proof score writing in CafeOBJ (3)

!  Proof by induction and case analysis 
!  case splitting using constructors or key 

predicates in specifications 
!  discovery of lemmas  
!  decomposition of a goal predicate into 

an appropriate conjunctive form 

These are the most difficult parts of 
proof score writing
But this is common to any kind of interactive verifiers! 
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Traceability in proof score approach with CafeOBJ 

!  All reductions are done exactly using 
equations in specifications as rewriting rules 
!  this make it easy to detect necessary changes in 

specs for letting something happen (or not happen) 
!  Usually reductions are sufficiently fast, and 

encourage prompt interactions between user 
and system
This is a quit unique feature of the proof 
score approach with CafeOBJ comparing 
to other verification method which often 
involves several formalisms/logics and 
translations between them

    49 
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Equational proofs by reduction/rewriting 

Why do we care about “equational reasoning by 
reduction” ? 
#  It is simple and powerful and a promising light 

weighted formal reasoning method 
!  easy to understand and can be more acceptable for 

software engineers 
#  It supports transparent relation between specs 

and reasoning by reduction (good traceability) 

    50 



IFIP WG1.3, Winchester, 110904 

Future Issues 
!  Development of the environment for proof score constructions 

!  Standard platforms for programming environment can be 
naturally used 

!  Proof score checker to check correctness of the proof scores 
as independently as possible  

!  Farther development of the Kumo/Tatami scheme to realize a 
web (or hypertext) based constructions of specs and proof 
scores 

!  Serious development of practical domain/requirement/design 
specifications in the application area like e-government, e-
commerce, open standards for automotive software, etc.  
!  The development should  aim at reasonable balance of 

informal and the formal specifications, and verify as much as 
meaningful and important properties of the models/problems 
the specifications are describing
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CafeOBJ official home page 

http://www.ldl.jaist.ac.jp/cafeobj/ 
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