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A Specialization Path in UM MSc in Informatics Eng

Context
® 20 ECTS (out of 60) distributed into 4 courses:

Sem 1 | Quantum computation Platforms
computational model architectural paradigms
algorithms simulation & experiments
Sem 2 Quantum Logic Quantum ML
logical & algebraic applications to ML
foundations hybrid algorithms

® possible combinations: Formal Methods, Distributed System,
Cryptography, Machine Learning, Software Engineering, etc.

Challenges

Qantum is trendy ... but weird ... still at a proof-of-concept stage ...
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Relevance

Two main intelectual achievements of the 20th century met

® Computer Science and Information theory progressed by abstracting
from the physical reality. This was the key of its success to an
extent that its origin was almost forgotten.

® On the other hand, quantum mechanics ubiquitously underlies ICT
devices at the implementation level, but had no influence on the
computational model itself ... until now!

Proof-of-concept implementations available ...

— and some pressure from industry to include in regular curricula
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The Quantum Computing course

Background: undergrad complex vector spaces and basic linear algebra.

Syllabus

Quantum effects as computational resources: superposition,
interference, entanglement

The computational model: The representation, evolution,
composition and measurement postulates

The golden patterns
Quantum algorithms

® based on phase amplification
® based on the quantum Fourier transform

Quantum programming in PennylLane
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Difficulty: quantum phenomena as resources

Probabilities and amplitudes Superposition An interference experiment The golden pattern
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Probabilistic systems, probabilistic computation

In any case,

|Computation is always a physical process|

That's our motto!

In several cases, the language of probability theory can describe the
actual physical evolution of a system, i.e.

® Physics identify the system’s structure and assigns numerical
probabilities to elementary transition steps.

® Probability theory, i.e. the Kolmogorov axioms, ensure
mathematical consistency and helps in calculating probabilities
along paths of evolution.
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Extracts from the course slides

Probabilities and amplitudes Superposition An interference experiment The golden pattern
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Quantum systems, quantum computation

Many common quantum phenomena, however, cannot be described this
way, but are accommodated by a modified 'probability theory':

Transitions are labelled by complex numbers, called their amplitudes,
whose norms squared are interpreted as transition probabilities through

Born's rule p = |af?

(for Max Born, 1882-1970)
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Extracts from the course slides

Probabilities and ampli perposition An interference experiment The golden pattern
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Quantum systems, quantum computation
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Let's compute the total probability in o

p = lao+oul
(oo + ox1)(otg + 1)
= (@ + 1) (o + 1)

= |l + o1 + Xgey + o™y

— P0+p1+|060Ho(1|(ei[wlfwn)+e*i(4>1*<vc)>

= po+p1+2+/pop1 cos (91 — @o)
—_

interference

(expressing o in polar form |o|e™®
and resorting to e/® + e " = 2cos0)
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Extracts from the course slides

Probabilities and amplitudes Superposition An interference experiment The golden pattern
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Quantum systems, quantum computation

p = po+ p1+2y/pop1cos (@1 — o)
—_————

interference

The total probability is the sum of the probabilities of the individual
transitions modified by the interference term.

® Depending on term @1 — @q the interference can be either negative
or positive.

® The important quantity is the relative phase @; — ¢ rather than
individual @q, @1

If the system's evolution depends only on that difference then the
system must have, somehow, experienced both paths.
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Difficulty: algorithmic patterns

The whole course builds on two simple patterns, revisiting them along
algorithmic development

® The interference pattern

©
@

H H

® and its combination with entanglement as introduced through
controlled (spy) operators

. maybe instructive to look again at the course slides as this is the
cornerstone of the whole approach:
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Extracts from the course slides

Superposition & interference

An interference experiment The golden pattern
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Probabilities and amplitudes Superposition
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My first quantum circuit

—{r—{r

® A wire represents a two-dimensional state (a qubit)

® Three gates describing quantum operations:

1
B 5 1 0
!?} and P, = [O e""]

D—ASD—A
N

H=|Y%

V2 V2

Hadamard gate

Phase shift gate
A simple matrix multiplication yields

cos § 7isin%] - {Ago AOI}

A= HPoH = [7isinf22 cos § A A
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Extracts from the course slides

Superposition & interference
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My first quantum circuit

which, expressed in a functional way, gives
Al0) = cos %IO) + —isin gll)
All) = —isin %o) + cos %Il)
as read from

P —jsin @
()OS2 ISlIl2

A = HP,H = L.
@ —isin®  cos ¥

Clearly, for @ =0, i.e. in the absence of any phase shift, A|0) =]0) and
A1) = |1), leading to conclude that

HH = Id
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Extracts from the course slides

Superposition & interference

ies and amplitudes Superposition An interference experiment The golden pattern
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The golden pattern

creates superposition interference closes superposition

® H creates/closes a uniform superposition: it is the source of a
natural parallelism,

® but the crucial role in controlling interference is located in Py,.
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as a resource
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Controlled gates
0000

Entanglement and Interference

Let's combine the interference and the entanglement patterns:

and apply it to |00):

(H® 1)(Py ® I)CNOT(H & I) |00)

Extracts from the course slides
Entanglement comes in

Tradeoff
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Step 2: Foundations
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Extracts from the course slides

Entanglement comes in

Entanglem

Controlled gates Tradeoff
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Entanglement and Interference

(H® 1)(Py, ® I)CNOT (H ® 1)100)

® Before P, the system is in the first Bell state; after it becomes
1
V2

® The second H closes superposition yielding

1 io io |0) + e'[1) |0) — e'®[1)
2 00)+110)+<*jo1)—e/*[11) = \0)( : )+\1>( : )

(l00) + e"®[11))

Step 2: Foundations
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Extracts from the course slides

Entanglement comes in

Composition Entanglement Entanglement as a resource Controlled gates Tradeoff
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Entanglement and Interference

An easy calculation shows that the probabilities of measuring 0 or 1 are %
in each case.

Interference (via Py,) was cancelled by entanglement: Indeed the second
qubit learnt the first one, becoming aware of which path in the
superposition was taken.

The CNOT gate, the spy gate, destroyed interference
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Extracts from the course slides
The general pattern

600000000

6000000

as a resource
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Entanglement and Interference
Let's go general: replacing CNOT by a controlled Cy for an arbitrary
unitarian U:

(H&1)(Py ® 1)Cu(H ® 1)]00)

Step 2: Foundations
0000
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Extracts from the course slides

The general pattern

as a resource Controlled gates Tradeoff
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Entanglement and Interference

Cu = 0)0l®! + 1){1]® U

® If the control qubit is |0), the target qubit remains |0)
e if not it is rotated from |0) to U|0)

As before, if U= CNOT the rotation is 7t: the new state becomes
orthogonal to the previous one.
The second qubit acquired full knowledge about the first one.

In general, however, the acquired knowledge may be imperfect:
(0|UI0) = vei

recall: the inner product measures the similarity between states
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Entanglement and Interference

(0lUI0) = ve '™

Special cases

(01X]0) = 0 Interference completely suppressed: the curve becomes
flat at %

(0[/d|0) =1 Full interference: probabilities oscillate as cos %

Step 2: Foundations
0000
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The Quantum Logic course

Syllabus

® Module 1: A brief introduction to category theory.

® What is a category and why we care.

® Functors and natural transformations.

® Basic constructions in a category: duality and universality.
® Monads and adjunctions.

® Module 2: A diagrammatical approach to quantum processes

® Monoidal categories and string diagrams.

® Computational interpretation of quantum mechanics.
Associated categorical structures: monoidal (composition),
compact closed (entanglement), adjunctions (internal
product), biproduts (non deterministic branching).

® Linear and quantum processes.

® A hands-on introduction to the ZX-calculus and PyZX.

® Examples and case studies.
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The Quantum Logic course

Remarks

® Focus: In spite of stressing foundational stuff, what catches
students is ZX and PyZX

® Consolidation project: Analysis in ZX of hybrid algorithms from the
Quantum ML twin course

® References: [Coecke & Kissinger, 17], [Heunen & Vicary, 19],
[Kissinger & Wetering, 24]

® Failed alternative syllabus:

® revisiting the Curry-Howard-Lambek correspondence
® and (some variants of the) quantum A-calculus
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Questions

Current methods and tools are still highly fragmentary and fundamentally
"low-level'.

Reasoning directly with quantum gates sweeps under the carpet all
key ingredients of a mature software engineering discipline:
compositionality, abstraction, refinement, high-order and
property-enforcing type schemes.

Could we reframe C1 with the diagrammatic language of C27?

Or, more conventionally, define a programming language, its
operational semantics and an associated dynamic logic?

How to extend whatever approach to (the increasingly relevant)
hybrid programs?

How to incorporate classical, macroscopic noise into the picture, in
an effective, not implicit way.?
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Questions

The conceptualisation of quantum computing predated its technological
realisation as, in the 1930's, Turing machines anticipated digital
computers.

It seems history is repeating itself. Differently, however, from what
happened before, we may have the chance to get theory in place before
technologies emerge and popularise.

. and teach the subject accordingly
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