Some notes on teaching quantum programming

Luís Soares Barbosa www.di.uminho.pt/~lsb/

Universidade do Minho

IFIP WG 1.3 Glasgow, 13 - 15 June, 2025

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

A Specialization Path in UM MSc in Informatics Eng

Context

• 20 ECTS (out of 60) distributed into 4 courses:

Sem 1	Quantum computation	Platforms
	computational model	architectural paradigms
	algorithms	simulation & experiments
Sem 2	Quantum Logic	Quantum ML
	logical & algebraic	applications to ML
	foundations	hybrid algorithms

• possible combinations: Formal Methods, Distributed System, Cryptography, Machine Learning, Software Engineering, etc.

Challenges

Qantum is trendy ... but weird ... still at a proof-of-concept stage ...

Step 2: Foundations

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Relevance

Two main intelectual achievements of the 20th century met

- Computer Science and Information theory progressed by abstracting from the physical reality. This was the key of its success to an extent that its origin was almost forgotten.
- On the other hand, quantum mechanics ubiquitously underlies ICT devices at the implementation level, but had no influence on the computational model itself ... until now!

Proof-of-concept implementations available ...

- and some pressure from industry to include in regular curricula

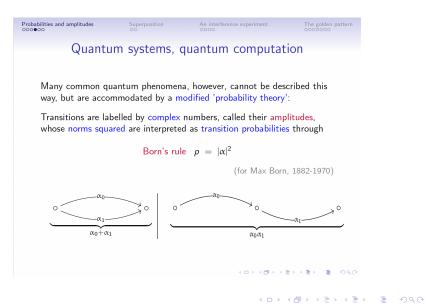
▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The Quantum Computing course

Background: undergrad complex vector spaces and basic linear algebra.

Syllabus

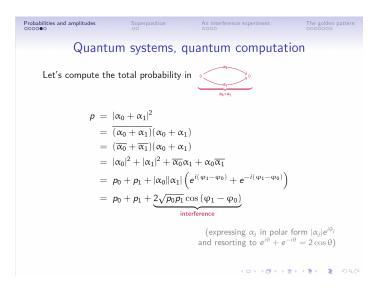
- Quantum effects as computational resources: superposition, interference, entanglement
- The computational model: The representation, evolution, composition and measurement postulates
- The golden patterns
- Quantum algorithms
 - based on phase amplification
 - based on the quantum Fourier transform
- Quantum programming in PennyLane


▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Difficulty: quantum phenomena as resources

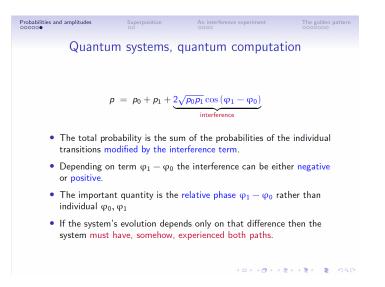
Probabilities and amplitudes 000000	Superposition 00	An interference experiment	The golden pattern
Probabilis	tic systems,	probabilistic com	outation
In any case,	omputation is all	vays a physical process	
			at's our <i>motto</i> !
actual physical ev • Physics iden	olution of a syste	structure and assigns nu	
	al consistency and	olmogorov axioms, ensur I helps in calculating pro	
		< • > < • >	12>12> 2 000

Step 2: Foundations


Extracts from the course slides

Step 2: Foundations

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @


Extracts from the course slides

Step 2: Foundations

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

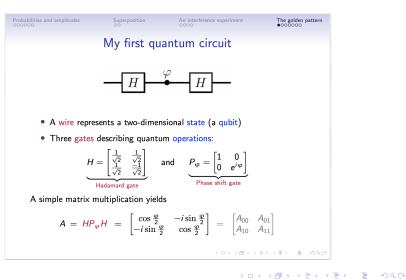
Extracts from the course slides

Step 2: Foundations

Difficulty: algorithmic patterns

The whole course builds on two simple patterns, revisiting them along algorithmic development

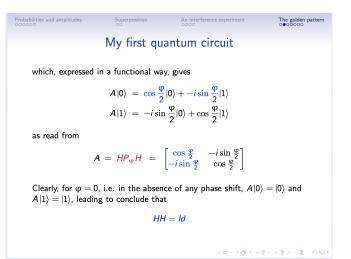
• The interference pattern


$$H \xrightarrow{\varphi} H$$

• and its combination with entanglement as introduced through controlled (spy) operators

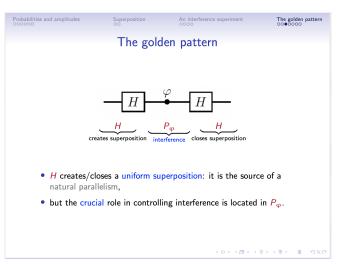
... maybe instructive to look again at the course slides as this is the cornerstone of the whole approach:

Extracts from the course slides


Superposition & interference

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

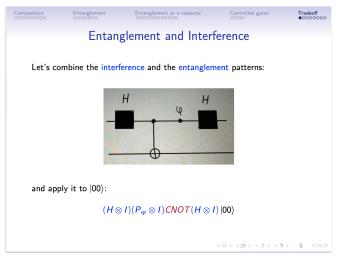
Extracts from the course slides


Superposition & interference

Step 2: Foundations

Extracts from the course slides

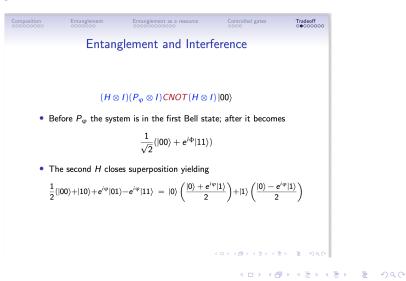
Superposition & interference



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

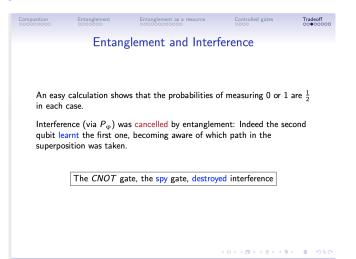
Step 2: Foundations

Extracts from the course slides


Entanglement comes in

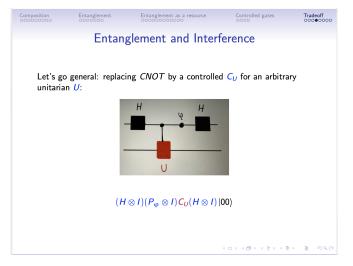
◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Extracts from the course slides

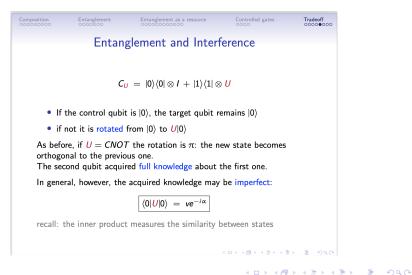

Entanglement comes in

Step 2: Foundations

Extracts from the course slides


Entanglement comes in

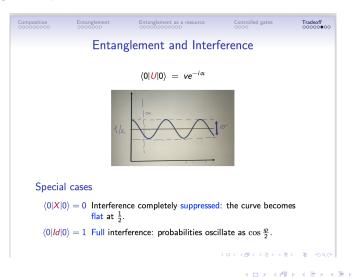
◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで


Extracts from the course slides

The general pattern

Extracts from the course slides

The general pattern



Step 2: Foundations

э

Extracts from the course slides

The general pattern

Step 2: Foundations

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The Quantum Logic course

Syllabus

- Module 1: A brief introduction to category theory.
 - What is a category and why we care.
 - Functors and natural transformations.
 - Basic constructions in a category: duality and universality.
 - Monads and adjunctions.
- Module 2: A diagrammatical approach to quantum processes
 - Monoidal categories and string diagrams.
 - Computational interpretation of quantum mechanics. Associated categorical structures: monoidal (composition), compact closed (entanglement), adjunctions (internal product), biproduts (non deterministic branching).
 - Linear and quantum processes.
 - A hands-on introduction to the ZX-calculus and PyZX.
 - Examples and case studies.

Step 2: Foundations 0000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

The Quantum Logic course

Remarks

- Focus: In spite of stressing foundational stuff, what catches students is ZX and PyZX
- Consolidation project: Analysis in ZX of hybrid algorithms from the Quantum ML twin course
- References: [Coecke & Kissinger, 17], [Heunen & Vicary, 19], [Kissinger & Wetering, 24]
- Failed alternative syllabus:
 - revisiting the Curry-Howard-Lambek correspondence
 - and (some variants of the) quantum λ -calculus

Step 2: Foundations

Questions

Current methods and tools are still highly fragmentary and fundamentally 'low-level'.

- Reasoning directly with quantum gates sweeps under the carpet all key ingredients of a mature software engineering discipline: compositionality, abstraction, refinement, high-order and property-enforcing type schemes.
- Could we reframe C1 with the diagrammatic language of C2?
- Or, more conventionally, define a programming language, its operational semantics and an associated dynamic logic?
- How to extend whatever approach to (the increasingly relevant) hybrid programs?
- How to incorporate classical, macroscopic noise into the picture, in an effective, not implicit way.?

Step 2: Foundations

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The conceptualisation of quantum computing predated its technological realisation as, in the 1930's, Turing machines anticipated digital computers.

It seems history is repeating itself. Differently, however, from what happened before, we may have the chance to get theory in place before technologies emerge and popularise.

... and teach the subject accordingly