Predicate Functor Logic (Quine 1971)

"Logic in his adolescent phase was algebraic. There was Boole's algebra of classes and Peirce's algebra of relations. But in 1879 logic come of age, with Frege's quantification theory. Here the bound variables, so characteristic of analysis rather than of algebra, became central to logic."

Predicate Functor Logic (Quine 1971)

"Logic in his adolescent phase was algebraic. There was Boole's algebra of classes and Peirce's algebra of relations. But in 1879 logic come of age, with Frege's quantification theory. Here the bound variables, so characteristic of analysis rather than of algebra, became central to logic."

Adjointness in Foundations (Lawvere 1969)

Boole's algebra of classes 1847

Boole's algebra of classes 1847

Operations: (V, $0, \wedge, 1, \neg$)

Boole's algebra of classes 1847

Operations: (V, $0, \wedge, 1, \neg$)

Laws: $p \lor q = q \lor p$ $p \lor p \land q = p$

 $p \land (p \lor q) = p$ $p \wedge q = q \wedge p$ $(p \lor q) \lor r = p \lor (q \lor r)$ $0 \lor p = p$ $0 \wedge p = 0$ $(p \land q) \land r = p \land (q \land r)$ $1 \lor p = 1$ $p \land (q \lor r) = p \land q \lor p \land r$ $p \lor (q \land r) = (p \lor q) \land (p \lor r) \ 1 \land p = p$ $\neg (p \lor q) = \neg p \land \neg q$ $p \lor p = p$ $\neg (p \land q) = \neg p \lor \neg q$ $p \wedge p = p$

FREGE V. S. PEIRCE 1879 1870

Motivated by the pursuit of foundations of mathematics; Inspired by real analisys

Brings the concepts of variables and functions into the logical realm

Inspired by the work of De Morgan on relational reasoning

Introduces a calculus in which operations allow to combine relations and satisfy a set of algebraic laws

The Calculus of Relations

Beyond the bookan operators, it has

 $R \circ S \stackrel{\text{def}}{=} \{ (x, z) \mid \exists y \in Y . (x, y) \in R \land (y, z) \in S \} \subseteq X \times Z$ $R \circ S \stackrel{\text{def}}{=} \{ (x, z) \mid \forall y \in Y . (x, y) \in R \lor (y, z) \in S \} \subseteq X \times Z$

 $id_X^{\circ} \stackrel{\text{def}}{=} \{(x, y) \mid x = y\} \subseteq X \times X$ $id_X^{\bullet} \stackrel{\text{def}}{=} \{(x, y) \mid x \neq y\} \subseteq X \times X$

 $R^{\dagger} \stackrel{\text{\tiny det}}{=} \{(y, x) \mid (x, y) \in R\}$

for all nets X, Y and Z and relations REXXY and SEXXZ

The Calculus of RelationsR $\in \mathbb{Z}$ Syntax $E ::= (R) \mid id^{\circ} \mid E \circ E \mid E \mid E \cup E \mid E$

The Calculus of RelationsSyntax $R \in \mathbb{Z}$ Syntax $E ::= (R) \mid id^{\circ} \mid E \circ E \mid E$ Semantics $\mathcal{I} = (X, \mathbb{C})$ where X is a set and $\mathbb{C} : \mathbb{Z} \rightarrow \mathbb{O}(X \times X)$

The Calculus of RelationsSyntax
$$R \in \mathbb{Z}$$
 $E ::= R | id^{\circ} | E \circ E | id^{\circ} | E \circ E | id^{\circ} | E \circ E |$ $R \in \mathbb{Z}$ Semantics $Qiren \mathcal{I} = (X, Q)$ where X is a set and $Q:X \in \mathbb{Z}$ $(R)_{I} \stackrel{\text{def}}{=} \rho(R) \quad \langle id^{\circ} \rangle_{I} \stackrel{\text{def}}{=} id^{\circ}_{X}$ $(E^{\dagger})_{I} \stackrel{\text{def}}{=} \langle E \rangle_{I}^{\dagger} \quad \langle id^{\circ} \rangle_{I} \stackrel{\text{def}}{=} id^{\circ}_{X}$ $(E^{\dagger})_{I} \stackrel{\text{def}}{=} \langle E \rangle_{I}^{\dagger} \quad \langle id^{\circ} \rangle_{I} \stackrel{\text{def}}{=} id^{\circ}_{X}$ $(E^{\dagger})_{I} \stackrel{\text{def}}{=} \langle E \rangle_{I}^{\dagger} \quad \langle id^{\circ} \rangle_{I} \stackrel{\text{def}}{=} id^{\circ}_{X}$ $(E_{1} \circ E_{2})_{I} \stackrel{\text{def}}{=} \langle E_{1} \rangle_{I} \circ \langle E_{2} \rangle_{I}$ $(E^{\dagger})_{I} \stackrel{\text{def}}{=} \langle E \rangle_{I} \quad \langle id^{\circ} \rangle_{I} \stackrel{\text{def}}{=} id^{\circ}_{X}$ $(E_{1} \circ E_{2})_{I} \stackrel{\text{def}}{=} \langle E_{1} \rangle_{I} \circ \langle E_{2} \rangle_{I}$ $(E_{1} \circ E_{2})_{I} \stackrel{\text{def}}{=} \langle E_{1} \rangle_{I} \stackrel{\text{def}}{=} \langle E_{1} \rangle_{I} \circ \langle E_{2} \rangle_{I}$ $(E_{1} \circ E_{2})_{I} \stackrel{\text{def}}{=} \langle E_{1} \rangle_{I} \stackrel{\text{def}}{=} \langle E_{1} \rangle_{I} \circ \langle E_{2} \rangle_{I}$

 $id_Y^{\circ} \leq_{\operatorname{CR}} \overline{R^{\dagger}} \ , R \qquad R \ , \overline{R^{\dagger}} \leq_{\operatorname{CR}} id_X^{\bullet}$

LINEAR ADJUNCTION The calculus was shown to be strictly less expressive than First Order Logic (Lowenheim 1915)

.

The calculus was shown to be strictly less expressive than First Order Logic (Lowenheim 1915)

It was forgotten until in 1941 Tarski fall in love with it

TARSKI'S QUESTION

The calculus was shown to be strictly less expressive than First Order Logic (Lowenheim 1915)

Does a complete axiomatisation for the calculus of relations exist?

TARSKI'S QUESTION

The calculus was shown to be strictly less expressive than First Order Logic (Lowenheim 1915)

Does a complete axiomatisation for the calculus of relations exist?

The question has a negative answer (Monk 1961)

The Calculus of Relations Rewriting (e.g. Gavazzo 2023) SCIENCE

Relational databases (Codd 1970)

Proof Assistants (e.g. Pous 2013) ⇐ Lack of variable and quantifies

Foundations of program logics (Prat 1976) (Hoare, He, 1986)

The Calculus of Relations Rewriting (e.g. Gavazzo 2023) SCIENCE

Relational databases (Codd 1970)

Proof Assistants (e.g. Pous 2013) \leftarrow Lack of variable and quantifies

Foundations of program logics (Prat 1976) (Hoare, He, 1986)

The Calculus of Relations Rewriting (e.g. Gavazzo 2023) The Calculus of Relations IN COMPUTER SCIENCE

Relational databases (Codd 1970)

Proof Assistants (e.g. Pous 2013) \leftarrow Lack of variable and quantifies

Foundations of program logics (Prat 1976) (Hoare, He, 1986)

⁽¹ The calculus of relations has an intrinsic charm and beauty which makes it a source of intellectual delight to all who become acquainted with it.¹⁾ (Tarski 1941) (Hoare, He, 1986)

OVERCOMES THE MAIN LIMITATIONS OF THE CALCULUS OF RELATIONS

 \rightarrow IT HAS THE SAME EXPRESSIVITY OF FIRST ORDER LOGIC \rightarrow IT COMES WITH A COMPLETE SYSTEM OF AXIOMS

WHILE MANTAINING ITS USUAL BENEFITS:

 \rightarrow POINT FREE REASONING: NO VARIABLES, NO QUANTIFIERS \rightarrow PURELY EQUATIONAL REASONING

THIS IS OBTAINED BY MOVING

SYNTACTICALLY

FROM TRADITIONAL (CARTESIAN) SYNTAX

TO RESOURCE-AWARE (MONOIDAL) SYNTAX

THIS IS OBTAINED BY MOVING

SYNTACTICALLY

FROM TRADITIONAL (CARTESIAN) SYNTAX

TO RESOURCE-AWARE (MONOIDAL) SYNTAX

SEMANTICALLY

FROM BINARY RELATIONS REXXX TO "MONDIDAL" RELATIONS REX^M XX^M for nome mimel

WITH THIS MOVE, ONE IMMEDIATELY IDENTIFIES NOVEL CONSTANTS

COPIER : FOR ALL SETS X, $\mathbf{A}_{x}^{o} = \langle id_{x}, id_{x} \rangle : X \longrightarrow X \times X$

$$\blacktriangleleft_X^\circ \stackrel{\text{def}}{=} \{ (x, (y, z)) \mid x = y \land x = z \}$$

WITH THIS MOVE, ONE IMMEDIATELY IDENTIFIES NOVEL CONSTANTS

COPIER : FOR ALL SETS X, $\mathbf{A}_{x}^{\circ} = \langle \mathrm{id}_{x}, \mathrm{id}_{x} \rangle : X \longrightarrow X \times X$

WITH THIS MOVE, ONE IMMEDIATELY IDENTIFIES NOVEL CONSTANTS

D

COPIER : FOR ALL SETS X, $\mathbf{A}_{x}^{\circ} = \langle \mathrm{Id}_{x}, \mathrm{Id}_{x} \rangle : X \longrightarrow X \times X$

BY COMBINING THESE WITH OPPOSITE AND COMPLEMENT, ONE OBTAINS

WITH THIS MOVE, ONE IMMEDIATELY IDENTIFIES NOVEL OPERATIONS

MONOIDAL PRODUCTS

$$R \otimes S \stackrel{\text{def}}{=} \{((x,v), (y,w)) \mid (x,y) \in R \land (v,w) \in S\}$$

 $R \otimes S \stackrel{\text{def}}{=} \{((x,v),(y,w)) \mid (x,y) \in R \lor (v,w) \in S\}$

BOOLEAN OPERATIONS AS WELL AS OPPOSITE CAN BE DERIVED BY COPIERS, DISCARDS AND PRODUCTS

SYNTAX

$$R \in \mathbb{Z} : A \text{ HONOIDAL} \quad \text{SIGNATURG}, \text{ NATELY } R: m \longrightarrow n$$

$$c ::= \P_{1}^{\circ} | !_{1}^{\circ} | R_{1}^{\circ} | i_{1}^{\circ} | \bullet_{1}^{\circ} | id_{0}^{\circ} | id_{1}^{\circ} | \sigma_{1,1}^{\circ} | c \circ c | c \otimes c |$$

$$\P_{1}^{\circ} | !_{1}^{\circ} | R_{1}^{\circ} | I_{1}^{\circ} | \bullet_{1}^{\circ} | id_{0}^{\circ} | id_{1}^{\circ} | \sigma_{1,1}^{\circ} | c \circ c | c \otimes c |$$

$$\P_{1}^{\circ} | !_{1}^{\circ} | R_{1}^{\circ} | I_{1}^{\circ} | \bullet_{1}^{\circ} | Id_{0}^{\circ} | id_{1}^{\circ} | \sigma_{1,1}^{\circ} | c \circ c | c \otimes c |$$

$$SEMANTICS \quad \text{GIVEN} \quad \mathcal{X} = \langle \mathcal{X}, \varrho \rangle \quad \mathcal{X} \quad \text{is } \theta \quad \text{set}, \ \varrho : \mathcal{Z}_{m,m} \longrightarrow \mathcal{O}(\mathcal{X}^{m} \times \mathcal{X}^{m})$$

$$I^{\sharp}(\P_{1}^{\circ}) \stackrel{\text{def}}{=} \P_{X}^{\circ} \quad I^{\sharp}(!_{1}^{\circ}) \stackrel{\text{def}}{=} !_{X}^{\circ} \quad I^{\sharp}(\bullet_{1,1}^{\circ}) \stackrel{\text{def}}{=} \bullet_{X}^{\circ} \quad I^{\sharp}(\mathfrak{i}_{1}^{\circ}) \stackrel{\text{def}}{=} \mathfrak{i}_{X}^{\circ}$$

$$I^{\sharp}(\mathfrak{a}_{0}^{\circ}) \stackrel{\text{def}}{=} \mathfrak{i}_{1}^{\circ} \quad I^{\sharp}(\mathfrak{i}_{1}^{\circ}) \stackrel{\text{def}}{=} \mathfrak{i}_{X}^{\circ} \quad I^{\sharp}(\mathfrak{a}_{0}^{\circ}) \stackrel{\text{def}}{=} \rho(R)$$

$$I^{\sharp}(c,d) \stackrel{\text{def}}{=} I^{\sharp}(c) \circ I^{\sharp}(d) \quad I^{\sharp}(c \otimes d) \stackrel{\text{def}}{=} I^{\sharp}(c) \otimes I^{\sharp}(d) \quad I^{\sharp}(R^{\bullet}) \stackrel{\text{def}}{=} \rho(R)^{\dagger}$$

• STANDS FOR EITHER O OR •

- COTHETE AVIC	NATICATION
CONTECTC FIAIC	
Axioms of strict symmetric r	nonoidal categories
$\begin{array}{l} a \circ (b \circ c) = (a \circ b) \circ c id_n^\circ \circ c = c = c \circ id_m^\circ (a \otimes b) \\ (a \otimes b) \circ (c \otimes d) = (a \circ c) \otimes (b \circ d) \sigma_{1,1}^\circ \circ \sigma_{1,1}^\circ = \end{array}$	$ \begin{array}{l} b) \otimes c = a \otimes (b \otimes c) & id_0^\circ \otimes c = c = id_0^\circ \otimes c \\ s : id_2^\circ & (c \otimes id_o^\circ) \circ \sigma_{m,o}^\circ = \sigma_{n,o}^\circ \circ (id_o^\circ \otimes c) \end{array} $
Axioms of cartesian	bicategories
	$(id_n^\circ \otimes \triangleright_n^\circ)$ $\stackrel{\circ}{\mapsto} \stackrel{\circ}{\stackrel{\circ}{=}} \stackrel{(\triangleright_n^\circ - as)}{=} (\triangleright_n^\circ \otimes id_n^\circ)$ $\stackrel{\circ}{\mapsto} \stackrel{\circ}{\mapsto}$
$\blacktriangleleft_n^\circ; (id_n^\circ \otimes !_n^\circ) \stackrel{(\blacktriangleleft^\circ \text{-un})}{=} id_n^\circ$	$(id_n^{\circ} \otimes i_n^{\circ})^{\circ} \models_n^{\circ} \stackrel{(\blacktriangleright^{\circ}-un)}{=} id_n^{\circ}$
$\blacktriangleleft_n^\circ \circ \sigma_{n,n}^\circ \stackrel{(\blacktriangleleft^\circ \text{-co})}{=} \blacktriangleleft_n^\circ$	$\sigma_{n,n}^{\circ,\circ}, \blacktriangleright_{n}^{\circ} \stackrel{(\blacktriangleright^{\circ}-co)}{=} \blacktriangleright_{n}^{\circ}$
$(\blacktriangleleft_n^\circ \otimes \operatorname{id}_n^\circ) \circ (\operatorname{id}_n^\circ \otimes \blacktriangleright_n^\circ) \stackrel{(\mathbb{F}^\circ)}{=} (\operatorname{id}_n^\circ \otimes \blacktriangleleft_n^\circ) \circ (\blacktriangleright_n^\circ \otimes \operatorname{id}_n^\circ)$	$\blacktriangleleft_n^\circ \circ \blacktriangleright_n^\circ \stackrel{(S^\circ)}{=} id_n^\circ$
$\mathbf{i}_{n}^{\circ} \circ \mathbf{i}_{n}^{\circ} \stackrel{\mathbf{i}_{n}^{\circ}}{\leq} id_{0}^{\circ} \qquad \qquad \mathbf{P}_{n}^{\circ} \circ \mathbf{A}_{n}^{\circ} \stackrel{(\epsilon \bullet)}{\leq} (id_{n}^{\circ} \otimes id_{n}^{\circ})$	d_n°) $c_n^{\circ} \blacktriangleleft_m^{\circ} \stackrel{(\blacktriangleleft^{\circ} \text{-nat})}{\leq} \blacktriangleleft_n^{\circ} \circ(c \otimes c)$
$id_n^{\circ} \stackrel{(\eta^{\circ})}{\leq} !_n^{\circ} \circ i_n^{\circ} \qquad id_n^{\circ} \stackrel{(\eta \not e^{\circ})}{\leq} \blacktriangleleft_n^{\circ} \circ \succ_n^{\circ}$	$c \circ !_m^{\circ} \leq !_n^{\circ}$
Axioms of cocartesian bicategories	
$\blacktriangleleft_n^\bullet \stackrel{\bullet}{,} (id_n^\bullet \otimes \blacktriangleleft_n^\bullet) \stackrel{(\blacktriangleleft^\bullet \text{-as})}{=} \blacktriangleleft_n^\bullet \stackrel{\bullet}{,} (\blacktriangleleft_n^\bullet \otimes id_n^\bullet)$	$(id_n^{\bullet} \otimes \triangleright_n^{\bullet})^{\bullet} \triangleright_n^{\bullet} \stackrel{(\bullet^{\bullet} \text{-as})}{=} (\triangleright_n^{\bullet} \otimes id_n^{\bullet})^{\bullet} \triangleright_n^{\bullet}$
$\blacktriangleleft_n^{\bullet}, (id_n^{\bullet} \otimes !_n^{\bullet}) \stackrel{(\blacktriangleleft - un)}{=} id_n^{\bullet}$	$(id_n^{\bullet} \otimes i_n^{\bullet})$, $\blacktriangleright_n^{\bullet} \stackrel{(\blacktriangleright \bullet - \mathrm{un})}{=} id_n^{\bullet}$
$\blacktriangleleft_n^\bullet, \circ \sigma_{n,n}^\bullet \stackrel{(\blacktriangleleft \text{-co})}{=} \blacktriangleleft_n^\bullet$	$\sigma_{n,n}^{\bullet,\bullet,\bullet} \models_n^{\bullet} \stackrel{(\bullet^{\bullet}\text{-co})}{=} \models_n^{\bullet}$
$(\blacktriangleleft_n^\bullet \otimes id_n^\bullet) \ ; \ (id_n^\bullet \otimes \blacktriangleright_n^\bullet) \ \stackrel{({\mathbb F}^\bullet)}{=} \ (id_n^\bullet \otimes \blacktriangleleft_n^\bullet) \ ; \ (\trianglerighteq_n^\bullet \otimes id_n^\bullet)$	$\blacktriangleleft_n^{\bullet} \stackrel{\bullet}{,} \blacktriangleright_n^{\bullet} \stackrel{(S^{\bullet})}{=} id_n^{\bullet}$
(ci*) (c **)	
$ \bullet \bullet i = i d = 4 \bullet \bullet i d = $	
$ \begin{array}{c} !_{n}^{\bullet} ; i_{n}^{\bullet} \leq i d_{n}^{\bullet} \qquad \P_{n}^{\bullet} ; \models_{n}^{\bullet} \leq i d_{n}^{\bullet} \\ i d_{n}^{\bullet} \leq i \bullet \circ !_{n}^{\bullet} \qquad \models_{n}^{\bullet} \circ \P_{n}^{\bullet} \leq (i d_{n}^{\bullet} \circ i d_{n}^{\bullet} \end{array} $	
$\begin{array}{c c} !_{n}^{\bullet} : \mathbf{i}_{n}^{\bullet} \stackrel{\leq}{\leq} : id_{n}^{\bullet} & \blacktriangleleft_{n}^{\bullet} : \blacktriangleright_{n}^{\bullet} \stackrel{\leq}{\leq} : id_{n}^{\bullet} \\ \hline \\ id_{0}^{(\eta)^{\bullet}} : \mathbf{i}_{n}^{\bullet} : \mathbf{i}_{n}^{\bullet} & \blacktriangleright_{n}^{\bullet} : \blacktriangleleft_{n}^{\bullet} \stackrel{\leq}{\leq} : (id_{n}^{\bullet} \bullet ia \\ \hline \\ A \operatorname{vioms} of closed symmetric mon$	
$\begin{array}{c} \underset{n}{\overset{!}{\underset{n}}} \stackrel{*}{\underset{n}} {\underset{n}} }{\underset{n}} {\underset{n}} }{\underset{n}} \underset{n}}{\underset{n}} }{\underset{n}} \underset{n}}{\underset{n}} \underset{n}}{\underset{n}} \underset{n}}{$	$ \begin{array}{c} \P_{n}^{\bullet} : (c \mathrel{ \circ } c) \stackrel{(\P^{\bullet} : \operatorname{rad})}{\leq} c \mathrel{,} \P_{n}^{\bullet} \\ (\stackrel{(!)}{n}) \qquad : \stackrel{(!)}{n} \stackrel{(!)}{\leq} c \mathrel{,} \stackrel{(!)}{n} \\ \operatorname{ooidal linear bicategories} \\ \hline (\delta_{r}) \qquad : \end{array} $
$\begin{array}{c} \underset{n}{\overset{n}{\overset{n}}} \ast \overset{n}{\overset{n}{\overset{n}}} \overset{n}{\overset{n}} \overset{n}{\overset{n}} \ast \overset{n}{\overset{n}{\overset{n}}} \ast \overset{n}{\overset{n}} \overset{n}{\overset{n}} \ast \overset{n}{\overset{n}} {\overset{n}} \overset{n}{\overset{n}} \overset{n}$	$\begin{array}{c} \bullet_{n} \circ (c \circ c) \stackrel{(4^{\circ} - \operatorname{rank})}{=} c \circ \bullet_{m} \\ \bullet_{n} \circ (c \circ c) \stackrel{(4^{\circ} - \operatorname{rank})}{=} c \circ \bullet_{m} \\ \bullet_{n} \circ (c \circ c) \stackrel{(\delta_{n})}{=} c \circ \bullet_{m} \\ \circ (c \circ c) \circ (c \circ c) \stackrel{(\delta_{n})}{=} c \circ (c \circ c) \\ \bullet_{n} \circ (c \circ c) \circ (c \circ c) \\ \circ_{n} \circ (c \circ c) \circ (c \circ c) \\ \circ_{n} \circ (c \circ c) \circ (c \circ c) \\ \circ_{n} \circ (c \circ c) \circ (c \circ c) \\ \circ_{n} \circ (c \circ c) \circ (c \circ c) \\ \circ_{n} \circ (c \circ c) \circ (c \circ c) \\ \circ_{n} \circ (c \circ c) \circ (c \circ c) \\ \circ_{n} \circ (c \circ c) \circ (c \circ c) \\ \circ_{n} \circ (c \circ c) \circ (c \circ c) \\ \circ_{n} \circ (c \circ c) \circ (c \circ c) \\ \circ_{n} \circ (c \circ c) \circ (c \circ c) \\ \circ_{n} \circ (c \circ c) \circ (c \circ c) \\ \circ_{n} \circ (c \circ c) \circ (c \circ c)$
$\begin{array}{c} \underset{n}{\overset{n}{\underset{n}}} \ast \underset{n}{\overset{n}{\underset{n}}} \overset{n}{\underset{n}} \ast \underset{n}{\overset{n}{\underset{n}}} \ast \underset{n}{\overset{n}}} \ast \underset{n}{\overset{n}{\underset{n}}} \ast \underset{n}{\underset{n}}} \ast \underset{n}{\overset{n}{\underset{n}}} \ast \underset{n}{\overset{n}{\underset{n}}} \ast \underset{n}{\underset{n}}} \ast \underset{n}{\underset{n}}} \ast \underset{n}{\underset{n}}} $ }	$ \begin{array}{c} \mathbf{A}_{n}^{*}:(c \otimes c) \stackrel{(\mathbf{a}^{*} - \operatorname{rank})}{\stackrel{(\mathbf{a}^{*} - \operatorname{rank})}{\stackrel$
$\begin{array}{c} \underset{n}{\overset{!}{\underset{n}}},\underset{n}{\overset{n}}{\underset{n}}},\underset{n}{\overset{!}{\underset{n}}},\underset{n}{\overset{n}}{\underset{n}}},\underset{n}{\overset{n}}{\underset{n}}},\underset{n}{\overset{n}}{\underset{n}}},\underset{n}{\overset{n}}{\underset{n}},\underset{n}{\overset{n}}{\underset{n}}},\underset{n}{\overset{n}}{\underset{n}}},\underset{n}{\overset{n}}{\overset{n}}},\underset{n}{\overset{n}}{\overset{n}},\underset{n}{\overset{n}}},\underset{n}{\overset{n}}{\overset{n}}},\underset{n}{\overset{n}}{\overset{n}}{\overset{n}}},\underset{n}{\overset{n}}{\overset{n}}},\underset{n}{\overset{n}}{\overset{n}}},\underset{n}{\overset{n}}{\overset{n}}},\underset{n}{\overset{n}}{\overset{n}}{\overset{n}}},\underset{n}{\overset{n}}{\overset{n}}{\overset{n}},\underset{n}}{\overset{n}}{\overset{n}}},\underset{n}{\overset{n}}{\overset{n}}{\overset{n}}},\underset{n}{\overset{n}}{\overset{n}}},\underset{n}{\overset{n}}{\overset{n}}},\underset{n}{\overset{n}}{\overset{n}}},\underset{n}{\overset{n}}{\overset{n}}},\underset{n}{\overset{n}}{\overset{n}}},\underset{n}{\overset{n}}},\underset{n}{\overset{n}}{\overset{n}}},\underset{n}{\overset{n}}{\overset{n}}},\underset{n}{\overset{n}}{\overset{n}}},\underset{n}{\overset{n}}{\overset{n}}},\underset{n}{\overset{n}}{\overset{n}}},\underset{n}{\overset{n}}{\overset{n}}{\overset{n}}},\underset{n}{}}{\overset{n}}{\overset{n}}{\overset{n}}},\underset{n}{}},\underset{n}{}},\underset{n}{}},n$	$ \begin{array}{c} \bullet_{n}^{\bullet}:(c \mathrel{\diamond} c) \stackrel{(e^{-}, \operatorname{rad})}{=} c \mathrel{\bullet} \bullet_{m}^{\bullet} \\ \bullet_{n}^{\bullet}) \stackrel{\bullet_{n}^{\bullet}}{=} \stackrel{(e^{-}, \operatorname{rad})}{=} c \mathrel{\bullet} \mathrel{\bullet} \mathrel{\bullet} \\ \bullet_{n}^{\bullet} \stackrel{(e^{-}, \operatorname{rad})}{=} c \mathrel{\bullet} \mathrel{\bullet} \mathrel{\bullet} \\ \bullet_{n}^{\bullet} \stackrel{(e^{-}, \operatorname{rad})}{=} c \mathrel{\bullet} \mathrel{\bullet} \\ \hline id_{n}^{\circ} \stackrel{(e^{-}, \operatorname{rad})}{=} \stackrel{(e^{-}, \operatorname{rad})}{=} c \mathrel{\bullet} \stackrel{(e^{-}, \operatorname{rad})}{=} c \mathrel{\bullet} \\ id_{n}^{\circ} \stackrel{(e^{-}, \operatorname{rad})}{=} c \mathrel{\bullet} \\ \bullet_{n}^{\circ} \mathrel{\bullet} \\ \bullet_{n}^{\circ} \stackrel{(e^{-}, \operatorname{rad})}{=} c \mathrel{\bullet} \\ \bullet_{n}^{\circ} \mathrel$
$\begin{array}{c} \overset{!}{\underset{n}{\ast}} \overset{!}{\underset{n}{\overset{n}{}}} \overset{!}{\underset{n}{\sim}} \overset{!}{\underset{n}{}}}}{\underset{n}{}}} }{\overset{!}{\underset{n}{}}}\overset$	$\begin{array}{c} \bullet_{n}^{\bullet}:(c \mathrel{\otimes} c) \stackrel{(e^{-r_{nal}})}{\leq} c_{1}^{\bullet} \bullet_{m}^{\bullet} \\ \bullet_{n}^{\bullet}) \stackrel{(e^{-r_{nal}})}{\leq} c_{1}^{\bullet}:m \\ \bullet_{n}^{\bullet} \stackrel{(e^{-r_{nal}})}{\leq} c_{1}^{\bullet}:m \\ \bullet_{n}^{\bullet} \stackrel{(e^{-r_{nal}})}{\leq} c_{1}^{\bullet}:m \\ \hline id_{n}^{\circ}:c \stackrel{(e^{-r_{nal}})}{\leq} c_{1}^{\bullet}:m \\ \bullet_{n}^{\bullet} \stackrel{(e^{-r_{nal}})}{\leq} c_{1}^{\bullet}:c \\ \hline id_{n}^{\circ} \stackrel{(e^{-r_{nal}})}{\leq} c_{1}^{\bullet}:c \\ \hline id_{m}^{\circ} \stackrel{(e^{-r_{nal}})}{\leq} c_{1}^{\bullet}:c \\ \hline id_{m}^{\circ} \stackrel{(e^{-r_{nal}})}{\leq} c_{1}^{\bullet}:c \\ \hline id_{m}^{\circ} \stackrel{(e^{-r_{nal}})}{\leq} c_{1}^{\bullet}:c \\ \hline id_{n+m}^{\circ} \stackrel{(e^{-r_{n-l}})}{\leq} c_{1}^{\bullet}:c \\ \hline $
$\begin{array}{c} \overset{!}{\underset{n}{\ast}} \overset{!}{\underset{n}{\sim}} \overset{!}{\underset{n}{\sim}}}{\overset{!}{\underset{n}{\sim}}} \overset{!}{\underset{n}{\ast}} \overset{!}{\underset{n}{\ast}} \overset{!}{$	$\begin{array}{c} \bullet_{n}^{\bullet}:(c \otimes c) \stackrel{(\bullet^{-} \operatorname{rad})}{\Longrightarrow} c : \bullet_{m}^{\bullet} \\ \bullet_{n}^{\bullet}) \stackrel{(\bullet^{-} \operatorname{rad})}{\Longrightarrow} c : \bullet_{m}^{\bullet} \\ \text{solidal linear bicategories} \\ \hline \\ $
$\begin{array}{c} \overset{!}{\underset{n}{n}} \ast \overset{!}{\underset{n}{n}} \overset{!}{\underset{n}{n}} \overset{!}{\underset{n}{n}} \ast \overset{!}{\underset{n}{n}{n}} \ast \overset{!}{\underset{n}{n}} \overset{!}{n$	$\begin{array}{c} \bullet_{n}^{\bullet}:(c \mathrel{\diamond} c) \mathrel{\overset{(\bullet^{\bullet})}{\overset{(\bullet^{\bullet}}}{\overset{(\bullet^{\bullet})}{\overset{(\bullet^{\bullet})}{\overset{(\bullet^{\bullet}}}{\overset{(\bullet^{\bullet})}{\overset{(\bullet^{\bullet})}}{\overset{(\bullet^{\bullet})}{\overset{(\bullet^{\bullet})}}{\overset{(\bullet^{\bullet})}{\overset{(\bullet^{\bullet})}}{\overset{(\bullet^{\bullet})}}{\overset{(\bullet^{\bullet})}}{\overset{(\bullet^{\bullet})}{\overset{(\bullet^{\bullet})}}{\overset{(\bullet^{\bullet})}}{\overset{(\bullet^{\bullet})}}{\overset{(\bullet^{\bullet})}}{\overset{(\bullet^{\bullet})}}{\overset{(\bullet^{\bullet})}}{\overset{(\bullet^{\bullet})}}{\overset{(\bullet^{\bullet})}}{\overset{(\bullet^{\bullet})}}}}}}}}}}}}}}}}}}}}}$
$\begin{array}{c} \overset{\mathfrak{l}}{\overset{\mathfrak{h}}{\operatorname{r}}} \overset{\mathfrak{l}}{\overset{\mathfrak{h}}{\operatorname{r}}}_{n} \overset{\mathfrak{l}}{\overset{\mathfrak{h}}{\operatorname{r}}} \overset{\mathfrak{h}}{\overset{\mathfrak{h}}{\operatorname{r}}} \overset{\mathfrak{h}}{\overset{\mathfrak{h}}}} \overset{\mathfrak{h}}{\overset{\mathfrak{h}}{\operatorname{r}}} \overset{\mathfrak{h}}{\overset{\mathfrak{h}}} \overset{\mathfrak{h}}{\overset{\mathfrak{h}}} \overset{\mathfrak{h}}{\overset{\mathfrak{h}}}} \overset{\mathfrak{h}}{\overset{\mathfrak{h}}}} \overset{\mathfrak{h}}{\overset{\mathfrak{h}}} \overset{\mathfrak{h}}{\overset{\mathfrak{h}}}} \overset{\mathfrak{h}}{\overset{\mathfrak{h}}}} \overset{\mathfrak{h}}{\overset{\mathfrak{h}}}} \overset{\mathfrak{h}}{\overset{\mathfrak{h}}}} \overset{\mathfrak{h}}{\overset{\mathfrak{h}}}} \overset{\mathfrak{h}}{\overset{\mathfrak{h}}}} \overset{\mathfrak{h}}{\overset{\mathfrak{h}}}} \overset{\mathfrak{h}}{\overset{\mathfrak{h}}}} \overset{\mathfrak{h}}{\overset{\mathfrak{h}}}} \overset{\mathfrak{h}}{}} \overset{\mathfrak{h}}{}} \overset{\mathfrak{h}}{}} \overset{\mathfrak{h}}{}} \overset{\mathfrak{h}}{}} \overset{\mathfrak{h}}}{} \overset{\mathfrak{h}}} \overset{\mathfrak{h}}{}} \overset{\mathfrak{h}}}{\overset{\mathfrak{h}}} \overset{\mathfrak{h}}{}} \overset{\mathfrak{h}}} \overset{\mathfrak{h}}}{} \overset{\mathfrak{h}}} \overset{\mathfrak{h}}{}} \overset{\mathfrak{h}}}{} \overset{\mathfrak{h}}} \overset{\mathfrak{h}}{}} \overset{\mathfrak{h}}{}} \overset{\mathfrak{h}}}{} \overset{\mathfrak{h}}}{} \overset{\mathfrak{h}}}} \overset{\mathfrak{h}}}{} \overset{\mathfrak{h}}}{} \overset{\mathfrak{h}}}} \overset{\mathfrak{h}}}{} \overset{\mathfrak{h}}} \overset{\mathfrak{h}}}{}} \overset{\mathfrak{h}}}{} \overset{\mathfrak{h}}}{}} \overset{\mathfrak{h}}}{} \overset{\mathfrak{h}}}{}} \overset{\mathfrak{h}}}{}} \overset{\mathfrak{h}}}{}} \overset{\mathfrak{h}}}{}} \overset{\mathfrak{h}}}{}} \overset{\mathfrak{h}}}{}} \overset{\mathfrak{h}}}{}} {\mathfrak{h}}}{}} \overset{\mathfrak{h}}}{}} {\mathfrak{h}}}{}} {}} {\mathfrak{h}}}{}} {}} {}} {}} {\mathfrak{h}}}{}} {}} {}} {}} {}}{} {}}{}} {}} {}$	$\begin{array}{c} \bullet_{n}^{\bullet}:(c \mathrel{\diamond} c) \mathrel{\overset{(\bullet^{\circ} - \operatorname{rad})}{\underset{n}{\overset{(\circ)}{\overset{(\circ}}{\overset{(\circ)}{\overset{(\circ)}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$
$\begin{array}{c} \overset{i}{} $	$ \begin{array}{c} \bullet_{n}^{\bullet} : (c \circ c) \stackrel{(e^{-nat})}{\longrightarrow} c^{\bullet} : \bullet_{m}^{\bullet} \\ \bullet_{n}^{(e^{-nat})} : \frac{(e^{-nat})}{n} : c^{\bullet} : \bullet_{m}^{\bullet} \\ \bullet_{n}^{(e^{-nat})} : \frac{(e^{-nat})}{n} : c^{\bullet} : \bullet_{m}^{(e^{-nat})} \\ \bullet_{n}^{(e^{-nat})} : c^{\bullet} : c^{\bullet} : e^{-nat} \\ \bullet_{n}^{(e^{-nat})} : c^{\bullet} : c^{\bullet} : e^{-nat} : e^{-nat} \\ \bullet_{n}^{(e^{-nat})} : c^{\bullet} : e^{-nat} : e^{-nat} : e^{-nat} \\ \bullet_{n}^{(e^{-nat})} : e^{-nat} : e^{-nat} : e^{-nat} : e^{-nat} \\ \bullet_{n}^{(e^{-nat})} : e^{-nat} : e^{-nat} : e^{-nat} \\ \bullet_{n}^{(e^{-nat})} : e^{-nat} : e^{-nat} : e^{-nat} \\ \bullet_{n}^{(e^{-nat})} : e^{-nat} : e^{-nat} : e^{-nat} : e^{-nat} \\ \bullet_{n}^{(e^{-nat})} : e^{-nat} : e^{-nat} : e^{-nat} : e^{-nat} \\ \bullet_{n}^{(e^{-nat})} : e^{-nat} : e^{-nat} : e^{-nat} \\ \bullet_{n}^{(e^{-nat})} : e^{-nat} : e^{-nat} \\ \bullet_{n}^{(e^{-nat})} : e^{-nat} : e^{-nat} : e^{-nat} \\ \bullet_{n}^{(e^{-nat})} : e^{-nat} : e^{-nat} \\ \bullet_{n}^{(e^{-nat})} : e^{-nat} : e^{-nat} : e^{-nat} \\ \bullet_{n}^{(e^{-nat})} : e^{-nat} : e^{-nat} \\ \bullet_{n}^{(e^{-nat})} : e^{-nat} : e^{-nat} : e^{-nat} : e^{-nat} \\ \bullet_{n}^{(e^{-nat})} : e^{-nat} : e^$
$\begin{array}{c} \underset{n}{\overset{n}{\overset{n}{\overset{n}{\overset{n}{\overset{n}{\overset{n}{\overset{n}{$	$ \begin{array}{c} \bullet_{n}^{*}: (c \otimes c) \stackrel{(\bullet^{-n})}{=} a_{n} \otimes c + \bullet_{n} \\ \bullet_{n}^{*}: (c \otimes c) \stackrel{(\bullet^{-n})}{=} a_{n} \otimes c + \bullet_{n} \\ \bullet_{n}^{*}: (c \otimes a) \otimes c + \bullet_{n} \\ \bullet_{n}^{*}: (c \otimes a) \otimes c + \bullet_{n} \\ \bullet_{n}^{*}: (c \otimes a) \otimes c + \bullet_{n} \otimes c \\ \bullet_{n}^{*}: (b \otimes c) \\ \bullet_{n}^{*}: (d_{n}^{*}) \otimes c & \bullet_{n} \otimes c \\ \bullet_{n}^{*}: (d_{n}^{*}) \otimes c & \bullet_{n} \otimes c \\ \bullet_{n}^{*}: (d_{n}^{*}) \otimes c & \bullet_{n} \otimes c \\ \bullet_{n}^{*}: (d_{n}^{*}) \otimes c & \bullet_{n} \otimes c \\ \bullet_{n}^{*}: (d_{n}^{*}) \otimes c & \bullet_{n} \otimes c \\ \bullet_{n}^{*}: (d_{n}^{*}) \otimes c & \bullet_{n} \otimes c \\ \bullet_{n}^{*}: (d_{n}^{*}) \otimes c & \bullet_{n} \otimes c \\ \bullet_{n}^{*}: (d_{n}^{*}) \otimes (d_{n}^{*}) \otimes (c \otimes c) \\ \bullet_{n}^{*}: (d_{n}^{*}) \otimes (d_{n}^{*}) \\ \bullet_{n}^{*}: (d_{n}^{*}) \otimes (d_{n}^{*}) \\ \bullet_{n}^{*}: (d_{n}^{*}) & \bullet_{n}^{*}: (d_{n}^{*})$
$\begin{array}{c} \overset{!}{\underset{n}}{\underset{n}}{\overset{!}{\underset{n}}{\underset{n}}{\overset{!}{\underset{n}}{\underset{n}}{\overset{!}{\underset{n}}{\overset{!}{\underset{n}}{\overset{!}{\underset{n}}{\underset{n}}{\overset{!}{\underset{n}}{\underset{n}}{\overset{!}{\underset{n}}{\overset{!}{\underset{n}}{\overset{!}{\underset{n}}{\underset{n}}{\overset{!}{\underset{n}}{\underset{n}}{\overset{!}{\underset{n}}{\underset{n}}{\overset{!}{\underset{n}}{\underset{n}}{\overset{!}{\underset{n}}{\underset{n}}{\overset{!}{\underset{n}}{\underset{n}}{\underset{n}}{\overset{!}{\underset{n}}{\underset{n}}{\underset{n}}{\overset{!}{\underset{n}}{\underset{n}}{\underset{n}}{\overset{!}{\underset{n}}{\underset{n}}{\underset{n}}{\overset{!}{\underset{n}}{\underset{n}}{\underset{n}}{\overset{n}{\underset{n}}{\underset{n}}{\underset{n}}{\underset{n}}{\overset{!}{\underset{n}}{\underset{n}}{\underset{n}}{\overset{!}{\underset{n}}{\underset{n}}{\underset{n}}{\overset{!}{\underset{n}}{\underset{n}}{\underset{n}}{\overset{n}{\underset{n}}{\underset{n}}{\underset{n}}{\underset{n}}{\underset{n}}{\underset{n}}{\overset{n}}{\underset{n}}{n}}$	$ \begin{array}{c} \bullet_{n}^{*}: (c \otimes c) \stackrel{(\bullet^{-r}) \cap ab}{\to} c + \bullet_{m}^{*} \\ \hline (c^{+r}) \circ (c^{+r}) \circ (c^{+r}) \circ (c^{+r}) \\ \hline (c^{+r}) \circ (c^{+r}) \circ (c^{+r}) \circ (c^{+r}) \\ \hline (a, b) \circ (c^{-r}) \circ (c^{+r}) \circ (c^{+r}) & \hline (a, b) \circ (c^{+r}) & \hline (a, b) \circ (c^{+r}) \\ \hline (a_{n}^{*}) \circ (a_{m}^{*}) \circ (c^{+r}) \circ (c^{+r}) \circ (c^{+r}) & \hline (a_{m}^{*}) \circ (c^{+r}) \circ (c^{+r}) \\ \hline (a_{m}^{*}) \circ (a_{m}^{*}) \circ (c^{+r}) \circ (c^{+r}) & \hline (a_{m}^{*}) \circ (c^{+r}) \circ (c^{+r}) \\ \hline (a \otimes c) \circ (b \otimes d) & \leq (a \circ b) \circ (c \circ d) \\ \hline (a \otimes c) \circ (b \otimes d) & \leq (a \circ b) \circ (c \circ d) \\ \hline (a \otimes c) \circ (b \circ c) & = (a \circ b) \circ (c \circ d) \\ \hline (a \otimes c) \circ (b \circ c) & = (a \circ b) \circ (c \circ d) \\ \hline (a \otimes c) \circ (b \circ c) & = (a \circ b) \circ (c \circ d) \\ \hline (a \otimes c) \circ (b \circ c) & = (a \circ b) \circ (c \circ d) \\ \hline (a \otimes c) \circ (b \circ c) & = (a \circ b) \circ (c \circ d) \\ \hline (a \otimes c) \circ (b \circ c) & = (a \circ b) \circ (c \circ d) \\ \hline (a \otimes c) \circ (b \circ c) & = (a \circ b) \circ (c \circ d) \\ \hline (a \otimes c) \circ (b \circ c) & = (a \circ b) \circ (c \circ d) \\ \hline (a \otimes c) \circ (b \circ c) & = (a \circ b) \circ (c \circ d) \\ \hline (a \otimes c) \circ (b \circ c) & = (a \circ b) \circ (c \circ d) \\ \hline (a \otimes c) \circ (b \circ c) & = (a \circ b) \circ (c \circ d) \\ \hline (a \otimes c) \circ (b \circ c) & = (a \circ b) \circ (c \circ d) \\ \hline (a \otimes c) \circ (b \circ c) & = (a \circ b) \circ (c \circ d) \\ \hline (a \otimes c) \circ (b \circ c) & = (a \circ b) \circ (c \circ d) \\ \hline (a \otimes c) \circ (b \circ c) & = (a \circ b) \circ (c \circ d) \\ \hline (a \otimes c) \circ (b \circ c) & = (a \circ b) \circ (c \circ d) \\ \hline (a \otimes c) \circ (b \circ c) & = (a \circ b) \circ (c \circ d) \\ \hline (a \otimes c) \circ (b \circ c) & = (a \circ b) \circ (c \circ d) \\ \hline (a \otimes c) \circ (b \circ c) & = (a \circ b) \circ (c \circ d) \\ \hline (a \otimes c) \circ (b \circ c) & = (a \circ b) \circ (c \circ d) \\ \hline (a \otimes c) \circ (b \circ c) & = (a \circ b) \circ (c \circ d) \\ \hline (a \otimes c) \circ (b \circ c) & = (a \circ b) \circ (c \circ d) \\ \hline (a \otimes c) \circ (b \circ c) & = (a \circ b) \circ (c \circ d) \\ \hline (a \otimes c) \circ (b \circ c) & = (a \circ b) \circ (c \circ d) \\ \hline (a \otimes c) \circ (b \circ c) & = (a \circ b) \circ (c \circ d) \\ \hline (a \otimes c) \circ (b \circ c) & = (a \circ b) \circ (c \circ d) \\ \hline (a \otimes c) \circ (b \circ c) & = (a \circ b) \circ (c \circ d) \\ \hline (a \otimes c) \circ (b \circ c) & = (a \circ b) \circ (c \circ d) \\ \hline (a \otimes c) \circ (b \circ c) & = (a \circ b) \circ (c \circ d) \\ \hline (a \otimes c) \circ (b \circ c) & = (a \circ b) \circ (c \circ d) \\ \hline (a \otimes c) \circ (b \circ c) & = (a \circ b) \circ (c \circ d) \\ \hline (a \otimes c) \circ (b \circ c) & = (a \circ b) \circ (c \circ d) \\ \hline (a \otimes c) \circ (b \circ c) & = (a \circ b) \circ (c \circ d) \\ \hline (a \otimes c) \circ (b \circ c) & = (a \circ b) \circ (c \circ d) \\ \hline (a \circ c) \circ (b \circ c) & = (a \circ$
$\begin{array}{c} \underset{n}{\overset{n}{\underset{n}}}{\overset{n}{\underset{n}}} \overset{n}{\underset{n}} \overset{n}{n$	$ \begin{array}{c} \bullet_{n}^{*}: (c \mathrel{\otimes} c) \stackrel{(\bullet_{n}^{*} - \operatorname{rad})}{(c^{*} - \operatorname{rad})} \mathrel{c} \circ \bullet_{m}^{*} \\ \bullet_{n}^{*}) \stackrel{(\bullet_{n}^{*} - \operatorname{rad})}{(c^{*} - \operatorname{rad})} \mathrel{c} \circ \circ \circ \circ_{m}^{*} \\ \bullet_{n}^{*}) \stackrel{(\bullet_{n}^{*} - \operatorname{rad})}{(c^{*} - \operatorname{rad})} \\ \hline \operatorname{idd}_{n}^{*} \mathrel{c} (c^{*} - \operatorname{rad}) \\ \hline \operatorname{idd}_{n}^{*} \mathrel{c} (c^{*} - \operatorname{rad}) \\ \circ \circ \circ \circ \\ \bullet \\ idd_{n}^{*} \mathrel{c} (c^{*} - \operatorname{rad}) \\ \circ \\ $
$\begin{array}{c} \left \begin{matrix} \mathbf{i}_{n}^{*} + \mathbf{i}_{n}^{*} & \leq i d_{n}^{*} & \mathbf{i}_{n}^{*} + \mathbf{i}_{n}^{*} & \leq i d_{n}^{*} \\ i d_{0}^{*} & \begin{matrix} (p_{1}^{*}) \\ i d_{0}^{*} & \begin{matrix} (p_{1}^{*}) \\ i d_{0}^{*} & \begin{matrix} (p_{1}^{*}) \\ i d_{0}^{*} & \end{matrix} \right \\ & \mathbf{Axioms of Cossed symmetric mon} \\ a \in (b, c) & \begin{matrix} (s) \\ (s$	$ \begin{array}{c} \bullet_{n}^{\bullet}: (c \circ c) \stackrel{(e^{-1})}{\underset{(e^{-1})}{\overset{(e^{-1})}{\underset{(e^{-1})}{\underset{(e^{-1})}{\overset{(e^{-1})}{\underset{(e^{-1})}{($

MAIN THEOREM Let E, F be two expressions. $E \le F$ iff $\forall I$, $I^{*}(E) \le I^{*}(F)$ GENERATED BY

Diagrammatic Syntax

TERMS

$$c ::= \blacktriangleleft_{1}^{\circ} | !_{1}^{\circ} | R^{\circ} | i_{1}^{\circ} | \blacktriangleright_{1}^{\circ} | id_{0}^{\circ} | id_{1}^{\circ} | \sigma_{1,1}^{\circ} | c \circ; c | c \otimes c$$
$$\blacktriangleleft_{1}^{\bullet} | !_{1}^{\bullet} | R^{\bullet} | i_{1}^{\bullet} | \blacktriangleright_{1}^{\bullet} | id_{0}^{\bullet} | id_{1}^{\bullet} | \sigma_{1,1}^{\bullet} | c \circ; c | c \otimes c$$

DIAGRAMS

THE TAO OF LOGIC

CARTESIAN BICATEGORIES (CARBONI, WALTERS 1987)

Tor make them interact one needs some categorical structures dealing with two compositions (9, 9)

FIRST ORDER BICATEGORIES main example Rel

FIRST ORDER BICATEGORIES main example Rel

SUCH THAT

WHITE COMONOID IS LINEAR ADJOINT TO BLACK MONOID BLACK COMONOID IS LINEAR ADJOINT TO WHITE MONOID

LINEAR FROBENIUS

DEFINITION

An arrow
$$c: X \rightarrow Y$$
 is paid to be a map if:
 $x - c - f = x$
 $T = D = 0$
 $T = D = 0$

EXAMPLE In Rel maps coincide with functions

DEFINITION

An orlow
$$c: X \rightarrow Y$$
 is paid to be a map if:
 $x - c - f = x$
 $y = x - c - f = x$

EXAMPLE In Rel maps coincide with functions

Proofs as diagram rewrites

Proofs as diagram rewrites

(IN THE PROPOSITIONAL CASE, THE AXIOMS OF FO-BICATEGORIES GIVE

RISE TO THE DEEP INFERENCE SYSTEM SKSg (Brunneler 2003))

Proofs as diagram rewrites

(IN THE PROPOSITIONAL CASE, THE AXIOMS OF FO-BICATEGORIES GIVE

RISE TO THE DEEP INFERENCE SYSTEM SKSg (Brunneler 2003))

Compositional encodings

Given a monoidal signature
$$\Sigma$$
, one can freely generate
a FO-bicategory FOBz
OBJECTS: are notwal numbers
ARROWS: are alieqnams
modulo the exioms
A morphism of FO-bicategories $M: FOB_2 \longrightarrow Rel$
gives rise to an interpretation (X, e) where
 $X = M(1)$
 $e(R) = M(R)$ for all $R \in \mathbb{Z}$

An interpretation
$$I = (X, e)$$
, give vixe to a
morphism of FO-bicategory $I^{\#}: FOB_{z} \longrightarrow Rel$
ole fineal as the remartics of NPR_z
 $I^{\#}(\bullet_{1}^{o}) \stackrel{\text{def}}{=} \bullet_{X}^{o} \quad I^{\#}(\bullet_{1}^{o}) \stackrel{\text{def}}{=} \bullet_{X}^{o} \quad I^{\#}(\bullet_{1}^{o}) \stackrel{\text{def}}{=} \bullet_{R}^{o}$
 $I^{\#}(\bullet_{0}^{o}) \stackrel{\text{def}}{=} id_{1}^{o} \quad I^{\#}(id_{1}^{o}) \stackrel{\text{def}}{=} id_{X}^{o} \quad I^{\#}(\sigma_{1,1}^{o}) \stackrel{\text{def}}{=} \sigma_{X,X}^{o} \quad I^{\#}(R^{o}) \stackrel{\text{def}}{=} \rho(R)$
 $I^{\#}(c, d) \stackrel{\text{def}}{=} I^{\#}(c) \circ I^{\#}(d) \quad I^{\#}(c \otimes d) \stackrel{\text{def}}{=} I^{\#}(c) \otimes I^{\#}(d) \quad I^{\#}(R^{o}) \stackrel{\text{def}}{=} \rho(R)^{\dagger}$
 A morphism of FO-bicategories $\mathcal{M}: FOB_{z} \longrightarrow Rel$
gives rise to an interpretation (X, e) when
 $X = \mathcal{M}(1)$
 $e(R) = \mathcal{M}(R)$ for all $R \in \mathbb{Z}$

An interpretation
$$I = (X, e)$$
, give vixe to a
morphism of FO-bicategory $I^{\#}: FOB_{Z} \longrightarrow Rel$
ole fined as the remembrics of NPR_Z
 $I^{\#}(\bullet_{1}^{o}) \stackrel{def}{=} \bullet_{X}^{o} I^{\#}(\bullet_{1}^{o}) \stackrel{def}{=} \bullet_{X}^{o} I^{\#}(\bullet_{X}^{o}) \stackrel{def}$

Similarly, given a "first order theory"
$$(Z,E)$$
, one can freely generate
a FO -bicategory $FOB_{Z,E}$
OBJECTS: are metural numbers
ARROWS: are objequants modulo the exists and the equations in E

Similarly, given a "first order theory" (
$$\Sigma, E$$
), one can freely generate
a FO-bicategory FOB_{Z,E}
OBJECTS: are metural numbers
ARROWS: are objequants modulo the exists and the equations in E

EXAMPLE

$$\sum \{ \{ (-, R), (R, R$$

EXAMPLE

$$\sum_{n=1}^{\infty} E = \{(-\leq_{n}), (-\leq_{n}), (-\leq_{n})$$

EXAMPLE

$$\sum \{ \{ R; 1 \rightarrow 1 \} \quad E = \{ (- \leq R), (R \in R), (R \in R), (- \epsilon \in R) \} \}$$

An interpretation of Z consists of a set X and a relation $R \in X \times X$ A model of (Z, E) is a "total" order

An interpretation of Z consists of a set X and a relation $R_{Z} \times X$ A model of (Z, E) is a "total" order

A FOX THEOREM OF CLASSICAL LOGIC

BOTH THE ADJUNCTIONS BECOME EQUIVALENCES WHEN RESTRICTING TO DOCTRINES

WITH COMPREHENSIVE DIAGONALS AND RULE OF UNIQUE CHOICHE

INTRODUCED IN (Maietti, Pasquali, Rosolini 2017)

A FOX THEOREM OF CLASSICAL LOGIC

BOTH THE ADJUNCTIONS BECOME EQUIVALENCES WHEN RESTRICTING TO DOCTRINES

WITH COMPREHENSIVE DIAGONALS AND RULE OF UNIQUE CHOICHE

INTRODUCED IN (Maietti, Pasquali, Rosolini 2017)

PEIRCEAN BICATEGORIES

THEOREN FOD $\cong PB$

Conclusion

· Point-free reasoning: no variables no quantifiers. · Turely equational reasoning: replace equals by equals · Complete axiomation: (co) Cartesian Es Linear bicategories • Proofs as diagram rewrites (link to deep inference) · tunctorial semantics: models are structure preserving mops • tox - theorem : equational characterisation of hyperdoctrines • tunction symbols are not separate syntactic entities . The empty model does not require a special treatment

Future Work

BEYOND FOL: HIGHER ORDER? INTUITIONISTIC? LINEAR?

CORRESPONDING ALLEGORICAL NOTIONS?

INTUDONISTIC LINGAR GOLIC '92

MULTICIANO

COMBINATORIAL CHARACTERISATION BY MEANS OF HYPERGRAPHS?

DEVELOP A PROOF THEORY AND INVESTIGATE THE LINK WITH DEEP INFERENCE