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Fraunhofer FOKUS 

Fraunhofer Institute for  

Open Communication Systems 

• formed July 2012 by a merger of  

three institutes (FOKUS, FIRST, ISST) 

• located in the center of Berlin 

• staff: approx. 500 computer scientists 

• main topic: smart cities 

 

Competence Centers: 

• Embedded Systems Quality Management 

• Modelling and Testing for Systems and Service Solutions 

• Next Generation Network Infrastructures 

• Electronic Safety and Security Systems for the Public and Industries 

• Future Applications and Media 

• .... 
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Structure of this Talk 

 

1. Software product lines, feature modeling 

2. Testing software product lines 

3. A testing theory based on CSP-CASL  

4. Implementation and applications 

25. Feb. 2013 
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I. Software Product Lines (SPL) 

 
Concept emerged from CMU SEI in the 1990s 

Goal: Managing variability in software 

 

Sources of variability 

• planned diversity (“basic/professional/ultimate edition”) 

• user alternatives (“for MAC/Win/Linux”) 

• evolution (“version 8”) 

• re-use (different histories) 

CMU SEI: „ A software product line (SPL) is a set of 

software-intensive systems that share a common, 

managed set of features satisfying the specific needs of 

a particular market segment or mission and that are 

developed from a common set of core assets in a 

prescribed way“ 
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A Car Configurator 
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Examples for Software Product Lines 

Schindler elevator controls division 

· mergers, different devices, new user concepts 

· >20 different controllers reduced to 3 product lines 

 

Thales ETCS RBC 

· one product (line), highly diverse market 

· 700 features, >10100 variants 

 

AUTOSAR ECUs 

· 1000s of configuration parameters 

· feature model for automated configuration 



© H. Schlingloff 2013 Seite 8 /36 

Features of Product Lines 

A feature is the description of  a designated functionality 

– a special added value for the customer 

– a characteristics of the product which is interesting 

 for a stakeholder 

– e.g., a requirement, a function or function group,  

or a quality criterion 

 

 

Typically, products are evolved by adding new features 

 

e.g., Galaxy S4 phone with new IR-emitter diode  

to work as a remote control for your home TV 
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Feature Modelling 

 For multi-variant systems (e.g., product lines), features are 

   represented in a feature model 

– usually in a tree-like manner (and / or – tree) 

– additional constraints (mandatory, optional, includes, excludes) 

– nothing more than the graphical representation of a Boolean formula 
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Model-Based SPL Testing Strategies 

Main problem: which variants to choose? (n features  2n instances) 

 The feature model represents a Boolean condition on the set of features 

 The set of satisfying interpretations forms a partial order 

 

Reasonable choices for variant selection (feature coverage): 

• All possible product variants 

• All features 

• Pairwise 

• Minimal and maximal elements 

• Selected and unselected 

• ... 

FFF 

FFT FTF TFF 

FTT TFT TTF 

TTT 
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Structure of this Talk 

 

1. Software product lines, feature modeling 

2. Testing software product lines 

3. A testing theory based on CSP-CASL  

4. Implementation and applications 

25. Feb. 2013 
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Application Scenario 

Test cases are first-class artefacts 

(manually created, engineered, ...) 

 

Furthermore, systems are not 

designed “from scratch” 

Often, both product and test cases pre-exist 

and make good money 

 

Then, the product is enhanced by new features 

 

And the regression tests fail 

 

Q.: Is this due to a bug in the product (line) or due to a bad test case? 

 

The validation triangle 
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Vertical and Horizontal Systems Development 

There are many systems development models. 

Refinement: means vertical development (top-down) 

 

Product lines are almost never conceived in one go. 

Enhancement means horizontal development (left-right) 

 

 Enhancement 

Refinement 

... 

... 
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Abstraction and Nondeterminism 

Task: Given a (150%-) model and a test suite,  

characterize those test cases which should pass. 

 

What does “should pass” mean? 

(Model used as a test oracle) 

 

In contrast to concrete implementations,  

models are abstract 

and, therefore, in general nondeterministic 

 

Test outcome may not be decided yet 

 Test result “undecided” at this stage 

 

 

m:=getSensorValue (x); 

calibrate(m); 

if (m>17) signal(0) 

else signal(1) 

getSensorValue 

calibrate 

signal(0) signal(1) 
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Three-Valued Test Oracles 

Task: Given a (150%-) model and a test suite,  

characterize those test cases which should pass. 

 

What does “should pass” mean? 

(Model used as a test oracle) 

 

Usual test generation algorithms only 

produce tests that “should pass” 

How to test that “it must not happen”? 

 

Test case may check for unwanted behavior 

 Test result “expected fail”  

 

m:=getSensorValue (x); 

calibrate(m); 

if (m>17) signal(0) 

else signal(1) 

getSensorValue 

calibrate 

signal(0) signal(1) 
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Defining Expected Results 

A test case T is a sequence or tree of i/o-events, potentially with variables 

 

We define the colour of a test with respect to a specification 

 

 

 

A test case T is green if 

– all of its traces are possible system 

runs according to the specification, 

– whose execution can’t be refused 

 

T is red, if 

– not all of its traces are possible system runs 

 

T is yellow, otherwise 
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Structure of this Talk 

 

1. Software product lines, feature modeling 

2. Testing software product lines 

3. A testing theory based on CSP-CASL  

4. Implementation and applications 

25. Feb. 2013 
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Example: A Product Line of Remote Control Units 
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An Abstract RCU 
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A Concretization of AbsRCU (Refinement) 
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Extending the Abstract RCU (Data Enhancement) 

NOT a refinement: 

Signature is extended by supersort EButton; 

operation codeOf is extended by overloading 

 

Are the test verdicts still valid for this 

 modified specification? 
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Modifier Button (Behavioural Enhancement) 

If arbitrary changes to data and process specification are allowed in the 

enhancement process, preservation of features cannot be guaranteed.  

 

What are “sensible” restrictions on the evolution of software? 
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Enhancement in CSP-CASL 

Principle: 

• Add “more data symbols” 

• add “more behaviours” 

• however, keep the “old” system 

 

Data enhancement: 

 

 

 

Process enhancement: 
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Data Enhancement 

Data enhancement can be characterized in terms of a supersort. 
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Behavioral Enhancement 

A possible pattern for behavioral enhancement is in terms of external choice 
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Re-Use of Test Cases 

 

That is, if the enhancement is done in a “controlled” way, 

then test cases can be reused in the product line development. 
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Extending Test Suites 
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Structure of this Talk 

 

1. Software product lines, feature modeling 

2. Testing software product lines 

3. A testing theory based on CSP-CASL  

4. Implementation and applications 

25. Feb. 2013 
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Workflow and Tool 
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Outside the Ivory Tower 
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Bringing It Onto a Test Rig 

Simulation and verification of the model (FDR) 

Manual test case definition, automated coloring 

Automated execution and evaluation 
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UML CVL (Common Variability Language) 
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Variability in CVL 

CVL defines different kinds of variation points  

– Object existence 

 i.e., some model element is deleted or inserted   

– Value assignment 

 i.e., a variable is assigned a value  

– Substitution 

 i.e., one model fragment is replaced by another one 

– Opaque variation point 

 i.e., an arbitrary model transformation is applied 

 

Even uncontrolled object existence can cause problems 

Needed: rules (profile) for variation points 
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Summary, Remarks and Open Issues 

• Software product lines, feature modeling,  

 

• Theory of test case rating based on process algebraic specifications 

• Preservation of test ratings under certain refinements and enhancements 

 

• Work in progress (with interruptions) 

• Semantical theory, some syntactic results 

 

• Currently working on UML as a modeling language 

Thank you for your attention! 
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Backup Slides 
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Refinement and Testing 
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Mode Buttton 

Re-use of specification modules can be handled by CC’s and- and let-concepts 


