
© H. Schlingloff, Fraunhofer FOKUS

Prof. Dr. Holger Schlingloff

Fraunhofer FOKUS & Humboldt Universität

holger.schlingloff@fokus.fraunhofer.de

Model-Based Testing of

Software Product Lines

© H. Schlingloff 2013 Seite 2 /36

Fraunhofer FOKUS

Fraunhofer Institute for

Open Communication Systems

• formed July 2012 by a merger of

three institutes (FOKUS, FIRST, ISST)

• located in the center of Berlin

• staff: approx. 500 computer scientists

• main topic: smart cities

Competence Centers:

• Embedded Systems Quality Management

• Modelling and Testing for Systems and Service Solutions

• Next Generation Network Infrastructures

• Electronic Safety and Security Systems for the Public and Industries

• Future Applications and Media

•

© H. Schlingloff 2013 Seite 3 /36

Structure of this Talk

1. Software product lines, feature modeling

2. Testing software product lines

3. A testing theory based on CSP-CASL

4. Implementation and applications

25. Feb. 2013

© H. Schlingloff 2013 Seite 4 /36

I. Software Product Lines (SPL)

Concept emerged from CMU SEI in the 1990s

Goal: Managing variability in software

Sources of variability

• planned diversity (“basic/professional/ultimate edition”)

• user alternatives (“for MAC/Win/Linux”)

• evolution (“version 8”)

• re-use (different histories)

CMU SEI: „ A software product line (SPL) is a set of

software-intensive systems that share a common,

managed set of features satisfying the specific needs of

a particular market segment or mission and that are

developed from a common set of core assets in a

prescribed way“

© H. Schlingloff 2013 Seite 5 /36

A Car Configurator

© H. Schlingloff 2013 Seite 6 /36

© H. Schlingloff 2013 Seite 7 /36

Examples for Software Product Lines

Schindler elevator controls division

· mergers, different devices, new user concepts

· >20 different controllers reduced to 3 product lines

Thales ETCS RBC

· one product (line), highly diverse market

· 700 features, >10100 variants

AUTOSAR ECUs

· 1000s of configuration parameters

· feature model for automated configuration

© H. Schlingloff 2013 Seite 8 /36

Features of Product Lines

A feature is the description of a designated functionality

– a special added value for the customer

– a characteristics of the product which is interesting

 for a stakeholder

– e.g., a requirement, a function or function group,

or a quality criterion

Typically, products are evolved by adding new features

e.g., Galaxy S4 phone with new IR-emitter diode

to work as a remote control for your home TV

© H. Schlingloff 2013 Seite 9 /36

Feature Modelling

 For multi-variant systems (e.g., product lines), features are

 represented in a feature model

– usually in a tree-like manner (and / or – tree)

– additional constraints (mandatory, optional, includes, excludes)

– nothing more than the graphical representation of a Boolean formula

© H. Schlingloff 2013 Seite 10 /36

pinKm

pin
Date

pinDoService

CbsWd
MotorOil
Adaptive

pinSensorsMo

Cbs
ComputeServiceDate

Cbs
Display

CbsWdSparkPlugs

pin
SensorsSp

pinDoService

CbsReset

pin
Sensors

Mo

pin
Sensors

Sp

p
o
u
t
D
i
s
p
l
a
y

B
a
s
i
c

pinKm

pinDate

pinKm

pinDate

CbsWd
ParticleFilter
Adaptive

pinDoService

pinKm

pinDate

pinSensorsPf pin
Sensors

Pf p
i
n

D
o
S
e
r
v
i
c
e

pout
Availability

p
o
u
t

A
v
a
i
l
a
b
i
l
i
t
y

p
o
u
t

A
v
a
i
l
a
b
i
l
i
t
y

CbsWd
SparkPlugs
Linear

CbsWd
SparkPlugs
Adaptive

p
o
u
t
S
e
r
v
P
f

p
o
u
t
S
e
r
v
S
p

p
o
u
t
S
e
r
v
M
o

pinAvailabilityPf

pinAvailabilitySp

pinAvailabilityMo

pout
ServiceDate

pin
ServiceDate

pout
Reset

pinReset

CarTime

Car
Mileage

Sensors
MotorOil

Sensors
SparkPlugs

Sensors
Particle
Filter

Car
Service

Car
Display

Cbs

pinKm

pin
Date

pinDoService

CbsWd
MotorOil
Adaptive

pinSensorsMo

Cbs
ComputeServiceDate

Cbs
Display

CbsWdSparkPlugs

pin
SensorsSp

pinDoService

CbsReset

pin
Sensors

Mo

pin
Sensors

Sp

p
o
u
t
D
i
s
p
l
a
y

B
a
s
i
c

pinKm

pinDate

pinKm

pinDate

p
i
n

D
o
S
e
r
v
i
c
e

pout
Availability

p
o
u
t

A
v
a
i
l
a
b
i
l
i
t
y

CbsWd
SparkPlugs
Linear

CbsWd
SparkPlugs
Adaptive

p
o
u
t
S
e
r
v
S
p

p
o
u
t
S
e
r
v
M
o

pinAvailabilitySp
pinAvailabilityMo

pout
ServiceDate
pin
ServiceDate

pout
Reset

pinReset

CarTime

Car
Mileage

Sensors
MotorOil

Car
Service

Car
Display

Cbs

Instantiation („Materialization“)

Vehicle

Engine
Vehicle

Maintenance

Diesel Otto

Wd
MotorOil
Adaptive

Wd
ParticleFilter

Adaptive

Wd
SparkPlugs

Wd
SparkPlugs
Adaptive

Wd
SparkPlugs
Linear

Cbs

<<needs>>

<<needs>>

Vehicle

Engine
Vehicle

Maintenance

Diesel Otto

Wd
MotorOil
Adaptive

Wd
ParticleFilter

Adaptive

Wd
SparkPlugs

Wd
SparkPlugs
Adaptive

Wd
SparkPlugs
Linear

Cbs

<<needs>>

<<needs>>

Feature-

model

 Implementation

 model

Variant-

model

150%

model

© H. Schlingloff 2013 Seite 11 /36

Model-Based SPL Testing Strategies

Main problem: which variants to choose? (n features  2n instances)

 The feature model represents a Boolean condition on the set of features

 The set of satisfying interpretations forms a partial order

Reasonable choices for variant selection (feature coverage):

• All possible product variants

• All features

• Pairwise

• Minimal and maximal elements

• Selected and unselected

• ...

FFF

FFT FTF TFF

FTT TFT TTF

TTT

© H. Schlingloff 2013 Seite 12 /36

Structure of this Talk

1. Software product lines, feature modeling

2. Testing software product lines

3. A testing theory based on CSP-CASL

4. Implementation and applications

25. Feb. 2013

© H. Schlingloff 2013 Seite 13 /36

Application Scenario

Test cases are first-class artefacts

(manually created, engineered, ...)

Furthermore, systems are not

designed “from scratch”

Often, both product and test cases pre-exist

and make good money

Then, the product is enhanced by new features

And the regression tests fail

Q.: Is this due to a bug in the product (line) or due to a bad test case?

The validation triangle

© H. Schlingloff 2013 Seite 14 /36

Vertical and Horizontal Systems Development

There are many systems development models.

Refinement: means vertical development (top-down)

Product lines are almost never conceived in one go.

Enhancement means horizontal development (left-right)

 Enhancement

Refinement

...

...

© H. Schlingloff 2013 Seite 15 /36

Abstraction and Nondeterminism

Task: Given a (150%-) model and a test suite,

characterize those test cases which should pass.

What does “should pass” mean?

(Model used as a test oracle)

In contrast to concrete implementations,

models are abstract

and, therefore, in general nondeterministic

Test outcome may not be decided yet

 Test result “undecided” at this stage

m:=getSensorValue (x);

calibrate(m);

if (m>17) signal(0)

else signal(1)

getSensorValue

calibrate

signal(0) signal(1)

© H. Schlingloff 2013 Seite 16 /36

Three-Valued Test Oracles

Task: Given a (150%-) model and a test suite,

characterize those test cases which should pass.

What does “should pass” mean?

(Model used as a test oracle)

Usual test generation algorithms only

produce tests that “should pass”

How to test that “it must not happen”?

Test case may check for unwanted behavior

 Test result “expected fail”

m:=getSensorValue (x);

calibrate(m);

if (m>17) signal(0)

else signal(1)

getSensorValue

calibrate

signal(0) signal(1)

© H. Schlingloff 2013 Seite 17 /36

Defining Expected Results

A test case T is a sequence or tree of i/o-events, potentially with variables

We define the colour of a test with respect to a specification

A test case T is green if

– all of its traces are possible system

runs according to the specification,

– whose execution can’t be refused

T is red, if

– not all of its traces are possible system runs

T is yellow, otherwise

© H. Schlingloff 2013 Seite 18 /36

Structure of this Talk

1. Software product lines, feature modeling

2. Testing software product lines

3. A testing theory based on CSP-CASL

4. Implementation and applications

25. Feb. 2013

© H. Schlingloff 2013 Seite 19 /36

Example: A Product Line of Remote Control Units

© H. Schlingloff 2013 Seite 20 /36

An Abstract RCU

© H. Schlingloff 2013 Seite 21 /36

A Concretization of AbsRCU (Refinement)

© H. Schlingloff 2013 Seite 22 /36

Extending the Abstract RCU (Data Enhancement)

NOT a refinement:

Signature is extended by supersort EButton;

operation codeOf is extended by overloading

Are the test verdicts still valid for this

 modified specification?

© H. Schlingloff 2013 Seite 23 /36

Modifier Button (Behavioural Enhancement)

If arbitrary changes to data and process specification are allowed in the

enhancement process, preservation of features cannot be guaranteed.

What are “sensible” restrictions on the evolution of software?

© H. Schlingloff 2013 Seite 24 /36

Enhancement in CSP-CASL

Principle:

• Add “more data symbols”

• add “more behaviours”

• however, keep the “old” system

Data enhancement:

Process enhancement:

© H. Schlingloff 2013 Seite 25 /36

Data Enhancement

Data enhancement can be characterized in terms of a supersort.

© H. Schlingloff 2013 Seite 26 /36

Behavioral Enhancement

A possible pattern for behavioral enhancement is in terms of external choice

© H. Schlingloff 2013 Seite 27 /36

Re-Use of Test Cases

That is, if the enhancement is done in a “controlled” way,

then test cases can be reused in the product line development.

© H. Schlingloff 2013 Seite 28 /36

Extending Test Suites

© H. Schlingloff 2013 Seite 29 /36

Structure of this Talk

1. Software product lines, feature modeling

2. Testing software product lines

3. A testing theory based on CSP-CASL

4. Implementation and applications

25. Feb. 2013

© H. Schlingloff 2013 Seite 30 /36

Workflow and Tool

© H. Schlingloff 2013 Seite 31 /36

Outside the Ivory Tower

© H. Schlingloff 2013 Seite 32 /36

Bringing It Onto a Test Rig

Simulation and verification of the model (FDR)

Manual test case definition, automated coloring

Automated execution and evaluation

© H. Schlingloff 2013 Seite 33 /36

UML CVL (Common Variability Language)

© H. Schlingloff 2013 Seite 34 /36

Variability in CVL

CVL defines different kinds of variation points

– Object existence

 i.e., some model element is deleted or inserted

– Value assignment

 i.e., a variable is assigned a value

– Substitution

 i.e., one model fragment is replaced by another one

– Opaque variation point

 i.e., an arbitrary model transformation is applied

Even uncontrolled object existence can cause problems

Needed: rules (profile) for variation points

© H. Schlingloff 2013 Seite 35 /36

Structure of this Talk

1. Software product lines, feature modeling

2. Testing software product lines

3. A testing theory based on CSP-CASL

4. Implementation and applications

25. Feb. 2013

© H. Schlingloff 2013 Seite 36 /36

Summary, Remarks and Open Issues

• Software product lines, feature modeling,

• Theory of test case rating based on process algebraic specifications

• Preservation of test ratings under certain refinements and enhancements

• Work in progress (with interruptions)

• Semantical theory, some syntactic results

• Currently working on UML as a modeling language

Thank you for your attention!

© H. Schlingloff 2013 Seite 37 /36

Backup Slides

© H. Schlingloff 2013 Seite 38 /36

Refinement and Testing

© H. Schlingloff 2013 Seite 40 /36

Mode Buttton

Re-use of specification modules can be handled by CC’s and- and let-concepts

