A Novel Initial Algebra Construction Formalized in Agda

Thorsten Wissmann thorsten-wissmann.de

Stefan Milius stefan-milius.eu

FAU Erlangen-Nürnberg, Germany

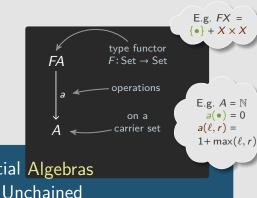
November 2024

A Novel Initial Algebra Construction Formalized in Agda

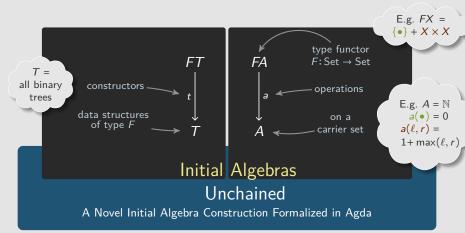
Thorsten Wissmann thorsten-wissmann.de

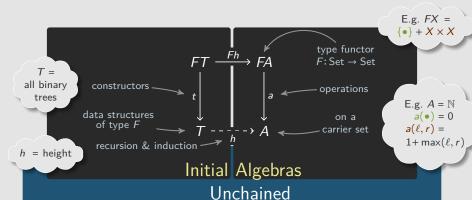
Stefan Milius stefan-milius.eu

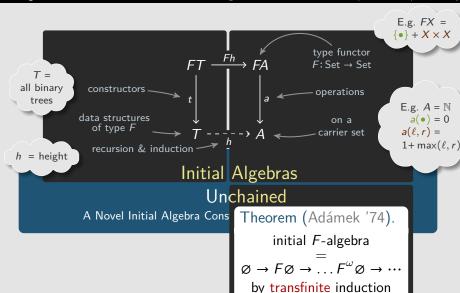
FALL Erlangen-Nürnberg Germany

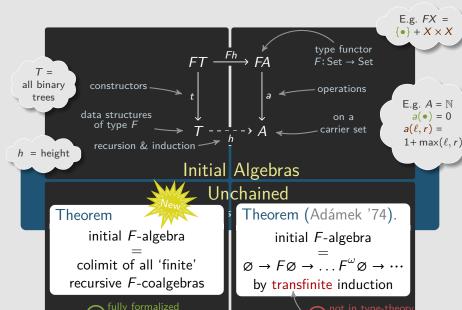


Initial Algebras







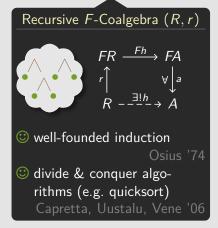


Theorem. For an accessible $F:\mathscr{C}\to\mathscr{C}$ on an accessible category \mathscr{C} having binary coproducts of presentable objects,

initial colimit of all recursive *F*-coalgebras *F*-algebra with presentable ('finite') carrier

3/8

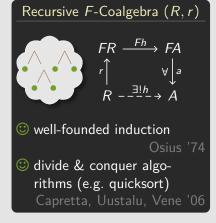
initial colimit of all recursive *F*-coalgebras *F*-algebra with presentable ('finite') carrier



3/8

Theorem. For an accessible $F:\mathscr{C}\to\mathscr{C}$ on an accessible category \mathscr{C} having binary coproducts of presentable objects,

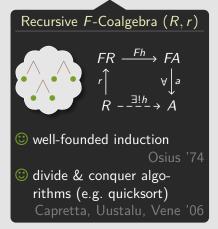
initial colimit of all recursive *F*-coalgebras *F*-algebra with presentable ('finite') carrier



Finiteness in a category \mathscr{C}

Theorem. For an accessible $F:\mathscr{C}\to\mathscr{C}$ on an accessible category \mathscr{C} having binary coproducts of presentable objects,

initial colimit of all recursive *F*-coalgebras *F*-algebra with presentable ('finite') carrier



Finiteness in a category \mathscr{C} ardina

initial colimit of all recursive *F*-coalgebras *F*-algebra with presentable ('finite') carrier

Osius '74

Recursive F-Coalgebra (R, r)

- 😊 well-founded induction
- divide & conquer algorithms (e.g. quicksort) Capretta, Uustalu, Vene '06

Finiteness in a category \mathscr{C}

Fix a class Fil of filtered diagrams

X (Fil-)presentable : \Leftrightarrow $\mathscr{C}(X, -)$ preserves colimits of diagrams in Fil

 \mathscr{C} (Fil-)accessible : \Leftrightarrow build all objects from a set \mathscr{C}_{p} of presentables

initial colimit of all recursive *F*-coalgebras *F*-algebra with presentable ('finite') carrier

(:) Instances: λ -presentable, finite

Recursive F-Coalgebra (R, r)

- 😊 well-founded induction Osius '74
- divide & conquer algorithms (e.g. quicksort) Capretta, Uustalu, Vene '06

Finiteness in a category \mathscr{C}

Conclusions

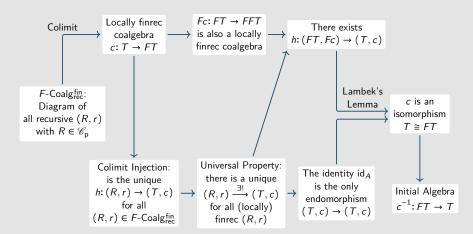
Fix a class Fil of filtered diagrams

X (Fil-)presentable : \Leftrightarrow $\mathscr{C}(X, -)$ preserves colimits of diagrams in Fil

 \mathscr{C} (Fil-)accessible : \Leftrightarrow build all objects from

a set \mathscr{C}_{p} of presentables

Proof Structure



arxiv.org/src/2405.09504/anc/index.html >5000 lines (29 files) using agda-categories 0.2.0

arxiv.org/src/2405.09504/anc/index.html >5000 lines (29 files) using agda-categories 0.2.0

Why does the colimit of all presentable ('finite') recursive coalgebras exist?

arxiv.org/src/2405.09504/anc/index.html >5000 lines (29 files) using agda-categories 0.2.0

Why does the colimit of all presentable ('finite') recursive coalgebras exist?

Set Theory presentable/finite coalgebras: (up to iso) just a set finite recursive coalgebras: a smaller set less elements

arxiv.org/src/2405.09504/anc/index.html >5000 lines (29 files) using agda-categories 0.2.0

Why does the colimit of all presentable ('finite') recursive coalgebras exist?

Set Theory presentable/finite coalgebras: (up to iso) just a set finite recursive coalgebras: a smaller set less elements

Agda's Type Theory finite coalgebras: on the set level ℓ finite recursive coalgebras: one level higher $\ell+1$ (for all algebras . . .) more properties

arxiv.org/src/2405.09504/anc/index.html >5000 lines (29 files) using agda-categories 0.2.0

Why does the colimit of all presentable ('finite') recursive coalgebras exist?

Set Theory presentable/finite coalgebras: (up to iso) just a set finite recursive coalgebras: a smaller set

less elements

Agda's Type Theory finite coalgebras: on the set level ℓ finite recursive coalgebras: one level higher $\ell+1$ (for all algebras . . .)

LEM to the rescue a finite coalgebra is recursive or not recursive

Agda: Choice of Representatives

Given $x \in C$ for a colimit $C = \text{colim}(\mathcal{D} \xrightarrow{D} \text{Set})$, ... injection can we choose $i \in \mathcal{D}$ and $x_0 \in Di$ such that $x = \inf_{j \in \mathcal{D}} (x_0)$?

Agda: Choice of Representatives

Given
$$x \in C$$
 for a colimit $C = \text{colim}(\mathcal{D} \xrightarrow{D} \text{Set})$, ... injection can we choose $i \in \mathcal{D}$ and $x_0 \in Di$ such that $x = \inf_{j} (x_0)$? $\inf_{j:Di \to C} (x_0)$

In agda-categories . . .

YES, because categories are enriched over

Setoids = sets + equivalence relation \approx

and forming quotients (e.g. in colimits) just makes \approx coarser.

Open Question:

What if proper type quotients are used instead of Setoids? (e.g. cubical agda ...)

Three Fixed Points

Three fixed points of F characterized and constructed by colimits:

	F-algebra	F-coalgebra	colimit of
ration fixed po		terminal recursive	all recursive <i>F</i> -coalgebras with presentable ('finite') carrier
	initial iterative	terminal locally fp	all <i>F</i> -coalgebras with presentable ('finite') carrier
	initial cia	terminal	all <i>F</i> -coalgebras

Theorem. For $F:\mathscr{C}\to\mathscr{C}$ accessible on an accessible category \mathscr{C} having binary coproducts of presentable objects,

initial F-Algebra colimit of all recursive *F*-coalgebras with presentable carrier

(1) Instances: λ -presentable, finite

Theorem. For $F:\mathscr{C}\to\mathscr{C}$ accessible on an accessible category \mathscr{C} having binary coproducts of presentable objects,

initial colimit of all recursive *F*-coalgebras F-Algebra with presentable carrier

(1) Instances: λ -presentable, finite

Conclusions & Future Work

- Agda formalization is challenging
- Decision procedure for recursiveness of 'finite' coalgebra? (its type: $\forall (C, c) : C \text{ finite } \rightarrow \text{recursive}(c) \lor \neg \text{recursive}(c)$)
- Similar theorem for well-founded coalgebras?
- Concrete example for a non-finitary functor in Agda

long chain!

- Adámek, Jiří. "Free algebras and automata realizations in the language of categories". eng. Commentationes Mathematicae Universitatis Carolinae 015.4 (1974), pp. 589-602. URL: http://eudml.org/doc/16649.
- Capretta, Venanzio, Tarmo Uustalu, Varmo Vene. "Recursive coalgebras from comonads". Inf. Comput. 204.4 (2006), pp. 437-468. DOI: 10.1016/j.ic.2005.08.005. URL: https://doi.org/10.1016/j.ic.2005.08.005.
- Osius, Gerhard. "Categorical set theory: A characterization of the category of sets". Journal of Pure and Applied Algebra 4.1 (1974), pp. 79–119. ISSN: 0022-4049. DOI:

https://doi.org/10.1016/0022-4049(74)90032-2. URL: https://www.sciencedirect.com/science/article/pii/ 0022404974900322.

Initial Algebras

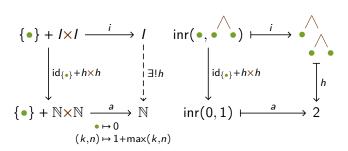
For $F:\mathscr{C}\to\mathscr{C}$

F-Algebra: $A \in \mathcal{C}$ with $a: FA \to A$.

Initial F-Algebra: unique homomorphism to every F-algebra.

Initial Algebra for $FX = \{\bullet\} + X \times X$

Initial F-algebra is carried by I = all binary trees



For $F:\mathscr{C}\to\mathscr{C}$

F-Coalgebra: $C \in \mathscr{C}$ with $c: C \to FC$.

Coalgebra-to-Algebra morphism: $s:(D,d) \rightarrow (A,a)$

$$\begin{array}{cccc} C & \xrightarrow{g} & D & \xrightarrow{s} & A & \xrightarrow{h} & B \\ \downarrow c & \downarrow & \downarrow & \uparrow a & \uparrow b \\ FC & \xrightarrow{Fg} & FD & \xrightarrow{Fs} & FA & \xrightarrow{Fh} & FB \end{array}$$

Coalgebra (D, d) is recursive if

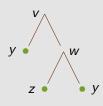
for all $a: FA \rightarrow A$, there is a unique

Coalgebra-to-Algebra morphism $s:(D,d) \to (A,a)$.

Under mild conditions ...

Recursive = Well-Founded = 'no infinite path'

∞ / 8



For every $b: FB \rightarrow B$:

 $h: R \longrightarrow B$

$$h(x) := h(y) := h(z) := b(\mathsf{inl}(\bullet))$$

$$h(u) := b(\operatorname{inr}(h(x), h(x)))$$

$$h(w) := b(\inf(h(z), h(y)))$$

$$h(v) := b(\inf(h(y), h(w)))$$

Definition: A category \mathscr{D} is filtered if ...

- for every $X, Y \in \mathcal{D}$, there is an upper bound $Z \in \mathcal{D}$, that is, there are morphisms $X \to Z$ and $Y \to Z$.
- for every $f, g: X \to Y$, there is some $Z \in \mathcal{D}$ and some $h: Y \to Z$ such that $h \circ g = h \circ f$.

Finitary functor = functor preserving colimits of filtered diagrams

Definition: An object $X \in \mathcal{C}$ is finitely presentable if ...

 $\mathscr{C}(X,-)$: $\mathscr{C} \to \mathsf{Set}$ preserves filtered colimits.

Examples

Sets/Graphs/Posets: finite sets/graphs/posets

Nom: orbit-finite nominal sets

Vector-spaces: finite dimensional vector spaces.

Monoids: defined by finitely many generators + equations.

- objects (S, f) for $S \in \mathcal{S}$ and $f: S \to X$ (in \mathcal{C}), and
- morphisms $h: (S, f) \to (T, g)$ for $h: S \to T$ with $g \circ h = f$

Canonical Diagram

$$U_{S/X} \colon S/X \to \mathcal{C} \qquad (P \to X) \mapsto P$$

Category $\mathscr C$ is locally finitely presentable, if ... it is cocomplete and has a set S of finitely presentable objects such that $X = \operatorname{colim} U_{S/X}$ for all $X \in \mathscr{C}$.

(realized as a predicate in Agda)

Definition

- **1** An object $X \in \mathcal{C}$ is (Fil-)presentable if its hom functor $\mathscr{C}(X,-)$ preserves colimits of diagrams $D:\mathscr{D}\to\mathscr{C}$ with $\mathscr{D} \in \mathsf{Fil}$
- **2** A category \mathscr{C} is Fil-accessible provided that
 - there is a set \(\mathscr{C}_p \subseteq \mathscr{C}\) of (Fil-)presentable objects,
 - for all $X \in \mathcal{C}$, the coslice category (\mathcal{C}_p/X) lies in Fil,
 - for all $X \in \mathcal{C}$, the object X is the colimit of

$$U_{\mathcal{C}_p/X}: \mathcal{C}_p/X \to \mathcal{C} \qquad (P \to X) \mapsto P.$$