Markus Roggenbach
Swansea Railway Verification Group, UK

IFIP WG 1.3 - 2/24

UK's Research Excellence Framework (REF)

In the UK, every ~ 7 years, reserach excellence is evaluated.
Computer Science is one of the units of assessment.

~» determines amount of reasearch funding

Next round: 2029.

Part of this is on ‘impact’, defined as
“an effect on, change or benefit to the economy, society,
culture, public policy or services, health, the environment
or quality of life, beyond academia.”

My Impact Case Studies (mostly “benefit to the economy”):

» 2014: Improving processes and policies in the UK railway
industry (**)

» 2021: Improving performance, safety and software
development of railway signalling (***)

Each installation is unique:

» unique software

» unique hardware configuration
(built from standard hardware components)

Realised as a Progammable Logic Controller (PLC)

I Controller I
Route request, Request response,
Route release Release response
I Interlocking l
Signal and)
point settings Track occupation
Track equipment
Signal aspect Current movement

I Trains |

Interlocking = safety layer between controller and trains & track

Example of a safety property: “the operator is not allowed to let
two different trains use the same route”

Hypothesis: Formal Method Could Be Of Help

SW Development “gets started by a hypothesis that a particular
operational mission (or set of missions) could be improved by a
software effort.” B Boehm, 1988.

There appears to be room for improvement:
» There are many develop-test cycles: 4-6
» Testing takes long — in the order of several weeks

» Formal Methods might be more ‘thorough’ than testing

Begin of the Journey:

What Does Theory Say
On PLC Verification?

Some Examples of PLC Applications

Nuclear Power Plant

Wasching Machine

Water Park Slldes

PLC Operation

Algorithm 5: PLC Operation

input : Sequence of values
output: Sequence of values
initialisation
while (true) do
read (Input)
(*) State’ < ControlProgram(Input, State)
write (Output’) & State < State’

PB1 CR1

EIX001 BC1
— —————(our)
PB2 CR2
EIX002 EC2
— ——————(our)
CR1 CcR3
BC1 EC3
out)
CcR2
BC2
—
CcR3 L1

BC3 BY001
—f— (our)

CR1 CR2 W1
BEC1 BC2 Y

Ladder Logic: Graphical Programming Language

Standardized by the International Electrotechnical Commission in document IEC 61131-3 “Programmable
controllers — Part 3: Programming languages”

Note: In our version of Ladder Logic, everything is of type Boolean.

Finite transition system defined by propositional logic

_ =/ / / - . .
Let X = (x1,...,xn), X = (x{,...,%p,), and i = (i1,...,im) be
vectors of Boolean variables, for some m, n > 0.
Given propositional formulae

» /(X) — the initialisation condition — and
» T(X,i,X') — the transition condition) —

we define a labelled transition system S = (S, —, Init) as follows:

e The set of all Boolean vectors S = {0,1}" is the set of states;
e — C S x{0,1}™ x S is the transition relation given by
s —+ 5 == T(s,i,s') evaluates to 1;

e Init = {s € S|I(s) evaluates to 1}.

Example: Ladder Logic Defines a Finite Transition System

Variables:
» Two Boolean state variables: b, s
» One Boolean input variable: /

Characterization of initial states: =b A s
A Ladder Logic program (written as two Boolean Formulae):

b < iV (-sADb)

s = s

Resulting Transition System (state: first b, then s; i label)

B

Model Checking Problem

Definition

Given a safety property P,

compute if P holds

in all reachable states of the transition system.

Example: =bV's
Model checking can realised, e.g., via ‘Inductive Verification':
Provided
e /(x) — P(x) and
e P(X) N T(%,i,X') — P(X)
hold, then S has safety property P.
Requires 2 calls to a SAT-Solver (e.g., Z3).

The problem is decidable as the state space is finite,
though possibly large.

Theoretical Framework Defined

Recipe:
» Model check the transition system

» Powerful off-the-shelf SAT solvers are available

Comparison to established practice:
» Testing: considers some of the (reachable) states

» Model checking: considers all (reachable) states

~> This all is text book knowledge these days

Unclear:

12,000

» Does it scale to, say, 12,000 rungs, i.e., states?

» Can we express the properties we are interested in?

1st Implementation

It's all clear,
isn't it?

Ladder Logic
Program
Formal safety
Condition

Ladder Logic Parser
Verification Process

Formulae Generator
SAT Solver

Verification
Result
Pictorial Counter
Example

Realised in two MRes Projects (research degree, duration 1 year).

Optimisation:

» Reading off the Ladder Logic Program using the
‘Tseitin transformation’

» Reducing size of the program through 'slicing’

Adding ‘Bounded Model Checking' to generate counter example
traces

Evaluation of the 1st Prototype

Positive Outcome:

» Fully automatical verification of Ladder Logic programs

Scalability challenge:

» With slicing, can effectively handle small interlocking
programs (300 rungs)

~ Off by two orders of magnitude: need 12,000 rungs
Usability:

» Only ‘academic’ users, running several parametrised scripts
from a terminal

» No ‘pre-modelled’ safety properties

Interoperability:
> ‘Wild-West’ of interfaces

2nd Implementation

Now we will get everything right,

won't we?

Safety Requirements — informal

Before a movement authority can be given, the following
conditions are required:

Route Class

Ref Control Main Shunt

1 Route set and locked to exit signal YES YES

6 Points in route are in the correct YES YES

position, locked, and detected.
12 | All train detection devices in the route YES Where specified by
indicate the line is clear. infrastructure controller
22 |Junction and route indicators required to YES YES
be proved are alight (see section C7.3).
32 'All-signals-on' or signal group YES YES
replacement controls not operated.
35 Approach and route locking has been YES YES
applied.

Excerpt from “Interlocking Principles”, Railway Group Standard,
2003.

Variable Naming Scheme in Ladder Logic Programs

Element Property 822 Prefix 822 Suffix
Track Occupied T<SEGMENT> .OCC (IL)
Track Clear T<SEGMENT> .CLR
Track Locked NUSR . T<SEGMENT>
Point Reverse (Signal Level) P<POINT> .RL
Point Normal (Signal Level) P<POINT> .NL
Point Detected Reverse P<POINT> .RWK
Point Detected Normal P<POINT> . NWK
Point Locked (Reverse) NUSR . (R)P<POINT>
Point Locked (Normal) NUSR . (N) P<POINT>
Route Set (Signal) S<SIGNAL> .RU
Route Set (Route) S<SIGNAL (ROUTE) > .U
Route Released S<SIGNAL (ROUTE) > .ALS
Signal Approach Locking S<SIGNAL> .APPR
Signal Shows Proceed S<SIGNAL> .G
Signal Proved Alight S<SIGNAL> .EC
Signal | Signal Group Replacement Controls MSDP6 .SGRC

Verification SIEMENS
Ingesuiy for life

Safety requirement:
Proceed Aspect with Exit Signal
A signal shall only display a ‘proceed’ aspect if the exit signal of the signalled path from the signal is proved alight.

S$106.HGE_1 v S106.DGE_1 = S§110.EC_0

EA

1604 ¥ =430
PLATFORM 4
106 ® 110
cp
PLATFORM 5 "
a 9 2 1620 —— A 9
AB ;5 AC %1602 ap AF ¢ AG

Restricted © Siemens Mobility 2023
Page 31 05.10.2023

ote

ote
-
3
z
N

Complete Rewrite of the Verification Engine

Change of implementation language:

» Was: Haskell

» Now: Cf — adhering to industrial software standards
Main add-on: Encoding of ~ 300 safety principles

» Optimised for efficient verification, e.g.,

Vx. p(x) = (Vy . v(x,y) = &(x,y))

leads to faster verification than a property of the form

Vx,y . (p(x) A(x,) = &(x, ¥))

(experimental evidence)

Realised in about 3 years: 1 MRes project, then team of 2 industry
SE and 2 seconded academics.

Evaluation of the 2nd Prototype

Positive Outcomes:
» Fully integrated in the Siemens Mobility ecosystem

» User interface ‘managable’ for rail engineers
» Scalability successfully challenge addressed:
» 300 properties in 2 hrs for large interlocking programs

Challange to the verification methods:

» 35-40% of safety properties cannot be decided

The Journey continues —

but hopefully not

ad infinitum :-)

Where We Are Now

Use of Ladder Logic Verifier has the potential
to reduce time and cost,
whilst increasing software quality.

Identified potential:
» Faster turn-around of railway signalling projects

» New work practices during design cycles
(‘trial and error-problem-solving’)

> Experts in quality assurance are less disturbed by ‘noise’

» Shorten the critical path in signalling software development

Lessons Learnt

Once more confirmed:
» The journey is longer than expected, to be measured in years

» Challenges are hard to predict — comprehendable only when
they appear

Some lessons learnt:

» There appears to be a systematic, that can't be ignored:
foundations — academic trial — industrial trial — business case
— in production

» Methods from Empirical Software Engineering and
Management are inevitable in the later phases

Current Challenges as of Today — Mostly Empirical

>

Safety properties that the 2nd prototype can't deal with
~ Positive results with ‘IC3" algorithm
(1 MRes project completed, 4 months postgrad time)

How ‘good’ are the 300 safety properties in uncovering
mistakes?

~ Verification with error injection

(1 ongoing MRes project; 1 PhD project to start 10/24)

Are Formal Methods at least as ‘thorough’ as testing?
~» Systematic comparative study on historic developments
(3 months postgrad time)

Cost/Benefit analysis
~> Modelling with management methods
(3 months postgrad time)

Shadowing a live development
(6 months project applied for)

https://sefm-book.github.io/lab-classes.html

https://sefm-book.github.io/lab-classes.html

