
A Journey in Technology Transfer &
Developing a Verification Tool

for Railway Interlockings

Markus Roggenbach
Swansea Railway Verification Group, UK

IFIP WG 1.3 – 2/24

UK’s Research Excellence Framework (REF)

In the UK, every ∼ 7 years, reserach excellence is evaluated.
Computer Science is one of the units of assessment.
 determines amount of reasearch funding
Next round: 2029.

Part of this is on ‘impact’, defined as
“an effect on, change or benefit to the economy, society,
culture, public policy or services, health, the environment
or quality of life, beyond academia.”

My Impact Case Studies (mostly “benefit to the economy”):

I 2014: Improving processes and policies in the UK railway
industry (**)

I 2021: Improving performance, safety and software
development of railway signalling (***)

The Object Under Discussion: Interlocking Computer

Each installation is unique:

I unique software

I unique hardware configuration
(built from standard hardware components)

Realised as a Progammable Logic Controller (PLC)

What Are Interlocking Used For?

Interlocking = safety layer between controller and trains & track

Example of a safety property: “the operator is not allowed to let
two different trains use the same route”

Hypothesis: Formal Method Could Be Of Help

SW Development “gets started by a hypothesis that a particular
operational mission (or set of missions) could be improved by a
software effort.” B Boehm, 1988.

There appears to be room for improvement:

I There are many develop-test cycles: 4–6

I Testing takes long – in the order of several weeks

I Formal Methods might be more ‘thorough’ than testing

Begin of the Journey:

What Does Theory Say

On PLC Verification?

Some Examples of PLC Applications

Nuclear Power Plant

Wasching Machine

Car

Water Park Slides

Railway Interlocking Computers

PLC Operation

226 M. Roggenbach, L. O’Reilly

These two sequences are synchronised:

Pelican crossings are safety critical systems: A malfunction, such as show-
ing green on both traffic and pedestrian lights simultaneously, may result in
death or serious injury to people. In the following, we demonstrate how to
verify in Casl the control program of a pelican crossing for a safety condition.

Example 44.1: Safety Conditions

We consider two safety conditions, one for the pedestrian facing set of
lights and one for the traffic facing set of lights: In each set of lights,
there is exactly one light active (i.e., lit or flashing) at any time.

It is clear that whilst the above are necessary safety conditions they are by
no means sufficient. In verification practice, finding the ‘right’ safety condi-
tions is an art. Risk analysis techniques can support the process of identifying
which safety conditions are most important.

4.3.1 Programmable Logic Controllers (PLCs)

A Programmable Logic Controller (PLC), see, e.g., [Bol06], would be a nat-
ural choice of how to implement the light sequences of a Pelican Crossing.
The operation of a PLC is best described in terms of an imperative program:

Algorithm 5: PLC Operation
input : Sequence of values
output: Sequence of values

initialisation
while (true) do

read (Input) %% read
(*) State’ ← ControlProgram(Input, State) %% process

write (Output’) & State ← State’ %% update

A PLC Control Program in Ladder Logic

Ladder Logic: Graphical Programming Language
Standardized by the International Electrotechnical Commission in document IEC 61131-3 “Programmable
controllers – Part 3: Programming languages”

Note: In our version of Ladder Logic, everything is of type Boolean.

Finite transition system defined by propositional logic

Let x̄ = (x1, . . . , xn), x̄ ′ = (x ′1, . . . , x
′
n), and ī = (i1, . . . , im) be

vectors of Boolean variables, for some m, n ≥ 0.
Given propositional formulae

I I (x̄) – the initialisation condition – and

I T (x̄ , ī , x̄ ′) – the transition condition) –

we define a labelled transition system S = (S ,−→, Init) as follows:

• The set of all Boolean vectors S = {0, 1}n is the set of states;

• −→ ⊆ S × {0, 1}m × S is the transition relation given by

s
i−→ s ′ :⇐⇒ T (s, i , s ′) evaluates to 1;

• Init = {s ∈ S | I (s) evaluates to 1}.

Example: Ladder Logic Defines a Finite Transition System

Variables:

I Two Boolean state variables: b, s

I One Boolean input variable: i

Characterization of initial states: ¬b ∧ s

A Ladder Logic program (written as two Boolean Formulae):

b′ ⇐⇒ i ∨ (¬s ∧ b)
s ′ ⇐⇒ s

Resulting Transition System (state: first b, then s; i label)

Model Checking Problem

Definition

Given a safety property P,
compute if P holds
in all reachable states of the transition system.

Example: ¬b ∨ s

Model checking can realised, e.g., via ‘Inductive Verification’:
Provided

• I (x̄) −→ P(x̄) and

• P(x̄) ∧ T (x̄ , ī , x̄ ′) −→ P(x̄ ′)

hold, then S has safety property P.
Requires 2 calls to a SAT-Solver (e.g., Z3).

The problem is decidable as the state space is finite,
though possibly large.

Theoretical Framework Defined

Recipe:

I Model check the transition system

I Powerful off-the-shelf SAT solvers are available

Comparison to established practice:

I Testing: considers some of the (reachable) states

I Model checking: considers all (reachable) states

 This all is text book knowledge these days

Unclear:

I Does it scale to, say, 12,000 rungs, i.e., 212,000 states?

I Can we express the properties we are interested in?

1st Implementation

It’s all clear,

isn’t it?

Software Architecture

3 Technology prototype

Having developed a sound formal basis, our work moved towards developing a
verification process for Siemens Mobility. The main goal here was to provide an
academically built, prototypical tool chain that allowed for experimental proof of
concept (TRL3) and a technology that was validated in the controlled setting of
an academic environment (TRL4). Many groups have worked on similar projects.
As an example, we mention here Groote et al. who, as early as 1995, applied
software verification to a real world interlocking [9].

3.1 Automatising translations

The first aspect of our tooling concerns transformation between data formats.
For our setting, the following data translations were required:

• Ladder Logic Programs L represented in Siemens Westrace format needed
parsing and automatic translations to our defined transition system (L) (in
a suitable formal format).

• Our first order logic safety principles needed translating into propositional
logic instances specific to the given track plan T .

• A process for translating counterexamples from failed model checking at-
tempts into a insightful format was needed.

We briefly explore initial tools that were developed, to overcome these challenges.
For detailed reading we refer to [10,11,12,13].

The verification tool created by Kanso [12] and James [10] consisted of two
underlying programs, one concerned with verification and the other concerned
with safety properties. The general outline of these tools is shown in Fig. 3
and Fig. 4. The verification component of the tool was predominantly pro-

Ladder Logic Parser

Verification Process

Formulae Generator

SAT Solver

Formal safety
Condition

Ladder Logic
Program

Verification
Result

Scripts
Pictorial Counter

Example

Fig. 3. Architecture of the verification tool.

grammed using Haskell. As input, it takes a Ladder Logic program and a formal
safety condition obtained from the safety condition generator. This programRealised in two MRes Projects (research degree, duration 1 year).

Added Features

Optimisation:

I Reading off the Ladder Logic Program using the
‘Tseitin transformation’

I Reducing size of the program through ‘slicing’

Adding ‘Bounded Model Checking’ to generate counter example
traces

Evaluation of the 1st Prototype

Positive Outcome:

I Fully automatical verification of Ladder Logic programs

Scalability challenge:

I With slicing, can effectively handle small interlocking
programs (300 rungs)

 Off by two orders of magnitude: need 12, 000 rungs

Usability:

I Only ‘academic’ users, running several parametrised scripts
from a terminal

I No ‘pre-modelled’ safety properties

Interoperability:

I ‘Wild-West’ of interfaces

2nd Implementation

Now we will get everything right,

won’t we?

Safety Requirements – informal

Before a movement authority can be given, the following
conditions are required:

9. Safety Properties

With consideration of the case studies that Siemens were providing, it was decided to select
a subset of the safety properties in this document for use in our verification approaches. This
subset was arrived at by discussion with Siemens engineers after analysis of the track plans that
were available, with importance placed on the aspects of safety in the system which would be
relevant to Siemens. This subset totals 6 references from the source table for which verification
focuses on the ‘Main’ class of route. The subset of selected safety properties is displayed in
Figure 9.1.

Each reference is given as a statement in plain English about the conditions that must hold
before a movement authority can be granted. The meanings of the terms used in these state-
ments are detailed in the main body of the “Interlocking Principles” document. In addition to
the condition, each reference is assigned to at least one class of route in which the condition
should hold. Unless stated here, the condition not holding in other classes of route would not
compromise the safety of the system.

Figure 9.1: Aspect level controls required before a movement authority can be given. A subset
of Interlocking Principles, Appendix 2.

Due to the generic nature of the safety properties in this table, and the fact that they are
descriptions in plain English, it was then required to interpret these safety properties for the
format of the case studies available to us. While the elements of each property are detailed in
the body of the “Interlocking Principles” document, the safety behaviour that is being examined
by each reference is open to interpretation. Because of this, further discussion with Siemens
engineers was required in order to translate these English language conditions into observable
state transitions within the format of their ladder logic programs.

In Chapter 8, the various variable names that are used in the ladder logic programs were
described. With the understanding gained from our discussions with Siemens, it was possible to
describe the English safety properties in terms of ladder logic variables. Since these properties

34

Excerpt from “Interlocking Principles”, Railway Group Standard,
2003.

Variable Naming Scheme in Ladder Logic Programs

Element Property 822 Prefix 822 Suffix

Track Occupied T<SEGMENT> .OCC(IL)
Track Clear T<SEGMENT> .CLR
Track Locked NUSR .T<SEGMENT>
Point Reverse (Signal Level) P<POINT> .RL
Point Normal (Signal Level) P<POINT> .NL
Point Detected Reverse P<POINT> .RWK
Point Detected Normal P<POINT> .NWK
Point Locked (Reverse) NUSR .(R)P<POINT>
Point Locked (Normal) NUSR .(N)P<POINT>
Route Set (Signal) S<SIGNAL> .RU
Route Set (Route) S<SIGNAL(ROUTE)> .U
Route Released S<SIGNAL(ROUTE)> .ALS
Signal Approach Locking S<SIGNAL> .APPR
Signal Shows Proceed S<SIGNAL> .G
Signal Proved Alight S<SIGNAL> .EC
Signal Signal Group Replacement Controls MSDP6 .SGRC

Figure 8.1: The variable naming scheme for Siemens ladder logic programs.

The set of variable classes in the table in Figure 8.1 were chosen by analysis of the English
safety properties in Appendix 2 of “Interlocking Principles”. For each chosen property, the
generic elements that were involved in that property were extracted and included in one or more
property classes, such that the complete set of variable classes would cover all generic elements
described. Since appendix 2 gives required conditions before a movement authority can be
granted, those variables influenced by a successful movement authority were also needed.

For example, the English safety property “Route set and locked to exit signal” describes
the generic concepts of ‘route set’ and ‘route locked’. For a particular signal, ‘route set’ is
covered by a single boolean variable within the ladder logic. Route set was therefore taken
as a variable class, and the structure of this boolean variable was encoded within Figure 8.1
in generic form. The structure for this variable will always following the naming scheme
‘S<SIGNAL(ROUTE)>’, for all valid route and signal combinations from any of the track
plans that were provided. However, for a particular signal there is no ‘route locked’ variable that
can be encoded in this way. As described in Chapter 4, route locking is a concept involving all
track segments and points along a route, and therefore refers to multiple variable classes which
must all be encoded within the table in order to cover this property. Finally, in order to encode
the variables for a granted movement authority on a particular signal, it was required to observe
the variable indicating whether that signal was showing a proceed aspect. A signal showing pro-
ceed appears as a boolean variable within the ladder logic, and so this also appears as a variable
class.

31

Modelling of Safety Properties at Siemens

Restricted © Siemens Mobility 2023
05.10.2023Page 31

Verification

Safety requirement:
Proceed Aspect with Exit Signal
A signal shall only display a ‘proceed’ aspect if the exit signal of the signalled path from the signal is proved alight.

!106.34/_1 ∨ !106. .4/_1 ⇒ !110. /+_0

Complete Rewrite of the Verification Engine

Change of implementation language:

I Was: Haskell

I Now: C] – adhering to industrial software standards

Main add-on: Encoding of ∼ 300 safety principles

I Optimised for efficient verification, e.g.,

∀x . ϕ(x)→
(
∀y . ψ(x , y)→ ξ(x , y)

)
leads to faster verification than a property of the form

∀x , y .
(
ϕ(x) ∧ ψ(x , y))→ ξ(x , y)

)
(experimental evidence)

Realised in about 3 years: 1 MRes project, then team of 2 industry
SE and 2 seconded academics.

Evaluation of the 2nd Prototype

Positive Outcomes:

I Fully integrated in the Siemens Mobility ecosystem

I User interface ‘managable’ for rail engineers
I Scalability successfully challenge addressed:

I 300 properties in 2 hrs for large interlocking programs

Challange to the verification methods:

I 35–40% of safety properties cannot be decided

The Journey continues –

but hopefully not

ad infinitum :-)

Where We Are Now

Use of Ladder Logic Verifier has the potential
to reduce time and cost,

whilst increasing software quality.

Identified potential:

I Faster turn-around of railway signalling projects

I New work practices during design cycles
(‘trial and error-problem-solving’)

I Experts in quality assurance are less disturbed by ‘noise’

I Shorten the critical path in signalling software development

Lessons Learnt

Once more confirmed:

I The journey is longer than expected, to be measured in years

I Challenges are hard to predict – comprehendable only when
they appear

Some lessons learnt:

I There appears to be a systematic, that can’t be ignored:
foundations – academic trial – industrial trial – business case
– in production

I Methods from Empirical Software Engineering and
Management are inevitable in the later phases

Current Challenges as of Today – Mostly Empirical

I Safety properties that the 2nd prototype can’t deal with
 Positive results with ‘IC3’ algorithm
(1 MRes project completed, 4 months postgrad time)

I How ‘good’ are the 300 safety properties in uncovering
mistakes?
 Verification with error injection
(1 ongoing MRes project; 1 PhD project to start 10/24)

I Are Formal Methods at least as ‘thorough’ as testing?
 Systematic comparative study on historic developments
(3 months postgrad time)

I Cost/Benefit analysis
 Modelling with management methods
(3 months postgrad time)

I Shadowing a live development
(6 months project applied for)

Teaching Resources

https://sefm-book.github.io/lab-classes.html

https://sefm-book.github.io/lab-classes.html

