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3 As proving techniques have proof calculi as formal
foundations (in the context of General Logics),
semantics-based techniques also require formal
foundations

3 Software analysis methodologies, understood as
combinations of different verification techniques, also
require formal foundations
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84 - Goguen and Burstall formalize the model
theory of a logic in category theory by introducing
the concept of institution

% *89 - Meseguer extends this model theoretical view
of a logic to cope with the proof theoretical aspects
introducing the concepts of proof calculus, proof
sub-calculus and effective proof sub-
calculus
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Institution

Definition . An institution is a structure of the form (Sign. Sen, Mod, { =~
} seisign|) Satisfying the following conditions:

— Sign s a category of signatures,

— Sen : Sign — Set s a functor. Let X € |Sign|, then Sen(X) returns the set
of X-sentences,

— Mod : Sign® — Cat is a functor. Let X € |Sign , then Mod (X} returns the
category of X -models,

— {="}r¢c|5in|, where =*C Mod(X) x Sen(X), is a family of binary rela-
trons,

and for any signature morphism o : X — X', Y.sentence ¢ € Sen(X) and
Y'-model M' € Mod(X), the following =-invariance condition holds:

M’ ¥ Sen(o)(¢) iff Mod(e®®)(M') =* ¢ .
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Entailment system

Definition . An entailment system is a structure of the form (Sign, Sen, {-*
} 3¢ |sign|) Satisfying the following conditions:

— Sign s a category of signatures,
— Sen : Sign — Set s a functor. Let X € |Sign|; then Sen(X) returns the set
of X-sentences, and
— {F*}sei5ign|» where FXC 28en(%) x Sen(X), is a family of binary relations
such that for any X, X' € |Sign|, {0} U{9:}iez € Sen(X), I'T" C Sen(X),
the following conditions are satisfied:
1. reflexivity: {0} H* ¢,
2. monotonicity: if P+ ¢ and I’ C I'", then I'" =% o,
3. transitivity: if I' =~ ¢; for alli € T and {¢;}ic7r % @, then I' =% 9,
and
4. F-translation: if I' =* ¢, then for any morphism o : ¥ — X' in Sign,

Sen(o)(I") - Sen(o)(a).
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Definition . A logic is a structure of the form (Sign,Sen, Mod, {F*
} e isignls 1E™ e |sign)) Satisfying the following conditions:

— (Sign, Sen, {~* }erSi§n|> is an entailment system,
— (Sign, Sen, Mod. { %“'}géls;snl} s an institution, and
— the follounng soundness condition is satisfied: for any X € |Sign, ¢ €

Sen(X), I'C Sen{X): I'=* ¢ implies I' =" o .

A logic 15 complete if, in addifion, the follounng condition s also satisfied: for
any X € |Sign|, 6 € Sen(X), I' C Sen(X): I' =* ¢ wmples I'H*- 0.
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General Logics

A reasonable objection to the above definition of logic® is that it abstracts
away the structure of proofs, since we know only that a set I' of senfences
entails another sentence @, but no information is given about the infernal
structure of such a I' - ¢ entailment. This observation, while entirely
correct, may be a virtue rather than a defect, because the entaiment
relation is precisely what remains invariant under many equivalent proof

calculi that can be used for a logic.




General Logics
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away the structure of proofs, since we know only that a set I' of senfences
entails another sentence @, but no mnformation is given about the infernal
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This observation is entirely correct and the result was the formalization of the notion of proof

calculus, proof sub-calculus and effective proof sub-calculus as an “implementation”
or operational view of the entailment relation.
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Proof calculus

Definition . A proof calculus is a structure of the form (Sign, Sen, {H*
} s¢15ign|s P, Pr, o) satisfying the following conditions:

— (Sign, Sen, {-*}s:¢|sign|) is an entailment system,

— P : Tho — Structpc is a functor. Let T € |Thg|, then P(T) € |Structec| is
the proof-theoretical structure of T,

— Pr : Structpe: — Set is a functor. Let T € |Thy|, then Pr(P(T)) is the set
of proofs of T'; the composite functor Pro P : Thy — Set will be denoted by

proofs. and
— @ : proofs = Sen is a natural transformation such that for each T =

(X.I') € |Thy the tmage of wy : proofs(T’) — Sen(T') is the set I'*. The
map 7y s called the projection from proofs to theorems for the theory T'.
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A reasonable objection to the above definition of logic® is that it abstracts
away the structure of proofs, since we know only that a set I' of sentences
entails another sentence @, but no information s given about the infernal
structure of such a I' - ¢ entaiment. This observation, while entirely
correct, may be a virtue rather than a defect, because the entaiment
relation is precisely what remains invariant under many equivalent proof
calculi that can be used for a logic.
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This observation is entirely correct and the result was the formalization of the notion of proof
calculus, proof sub-calculus and effective proof sub-calculus as an “implementation”
or operational view of the entailment relation.

What about the formal aspects of the satisfiability relation?
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3 Many techniques for software verification are based
in the semantics of the specification language: tableau
techniques, sat-based techniques and many model
checking approaches

3 In this case what remains invariant is the satisfaction
relation

3 Thus, Meseguer’s argument apply in exactly the same
way to satisfiability relations
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¥ A satisfiability calculus provides an operational
views of the satisfiability relation of an institution

> A satisfiability calculus can be understood as the
semantic counterpart of a proof calculus

3 As such, a satisfiability calculus, concentrates on
the “mechanics” behind the model theoretical aspects
of a logic
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Satisfiability calculus

Definition . [Satisfiability Calculus] A satisfiability calculus is a structure
of the form {Sign, Sen, Mod. { =" } s:c signl . M, Mods, i) satisfying the following
conditions:
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— (Sign, Sen, Mod. { ="} s:c|sign|} s an institution,

— M : Thy — Structge: is a functor. Let T € Thy , then M(T) € |Structge:| is
the model structure of T,

— Mods : Structge — Cat is a functor. Let T € Thy , then Mods(M(T')) is
the category of canonical models of T; the composite functor Mods o M
Thy — Cat will be denoted by models, and

— u : models® — Mod is a natural transformation such that, for each T =
(X, I') € | Thg, the image of pr : models™ (T} — Mod(T) is the category
of models Mod(T). The map pr is called the projection of the category of
models of the theory T'.




Satisfiability calculus

(Example: Tableau for First Order Predicate Logic)

1. the nodes are labeled with sets of formulae (over X') and the root node is
labeled with S,

2. if u and v are two connected nodes in the tree {u being an ancestor of v),
then the label of v is obtained from the label of u by applying one of the
following rules:

XU{AAB} . XU{AvB) .
A Vv
XU{AANB,AB} " XU{AvB A} XUu{AvB,B} "~

XU {d4) Xu{A} . . Xu{A-a)
XU {~A, A} [2] XU{A,~-A} * & Sen(X) |false]

XU{~(AAB)} DM XUu{~(AvB)}
XU{~(AAB),~AvV~-B} ° M| XU{~(AVvB),-AA-
X U {(v2)P(z)) X U {(32)P(=)}
X U{(v)P@), PO) ) X U{E0)P@), PE)

Vo]
) [DM32]

where, in the last rules, ¢ is a new constant and £ is a ground term.
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Satisfiability calculus

(Example: Tableau for First Order Predicate Logic)

Definition . M : Thy — Structye: is defined as M((X, ")) = (Str*-1, U, )
and M(o : (X, ) = (X' ")) =& : (Str=-F, U, 0) — (Str*-" U, ), the homo-
morphic extension of o to the structures in (Str™7" U, ().

Definition 14. Mods : Structe, — Cat is defined as:

Mods((Str*", U, 0)) = {{£,Cn(A)} | (3a: A - b e ||Str™")))
(A= Pean(Va': A" = Ae||StrT|) (A = A}

and for all o : X — X' € |Sign| {and & : (Str*7,U,0) — (Str¥" 07, 0,0) €
| Structge: | ), the following holds:

Mods(5)((X,Cn(A))) = (X', Cn(Sen(a){Cn(A)))).
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Definition 15. Let (X.I') € |Thy|, then we define py: : models™((X.I'})) —
Modyor{(X, 1)) as ux((X, 4}) = Mod((X, 4}).




Software analysis

Proposition .

Let (Sign, Sen, {+* } .2 g4 . P, Pr, ) be a proof caleulus, (Sign, Sen, Mod, {+*
} e sign s {E" e s » M. Mods, 7} be a satisfiability calewlus, T = (X, I") €
Tho| and a € Sen(X):

[Soundness] If there exists T € |proof(T)| such that =¢(7) = «, then for all
M € |models™(T)|, ur(M) Fx a.

[Completeness| If for all M € |models®™(T)|, ur(M) =5 a, then there exists
7 € |proof(T)| such that (1) = a.
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7 € |proof(T)| such that mr(7) = a.

Corollary .
Let {Sign, Sen, {F*} xc sign , P. Pr, ) be a proof caleulus, (Sign, Sen, Mod, {=*
} s sign : M, Mods, m) be a satisfiability caleulus, T = (£, I'} € |Thy| and a €
Sen(X), then

If there exists M € |models® (T')| such that pr(M) 5 «, then there is no




3 A satisfiability sub-calculus is a restriction of a
satisfiability calculus

3 Provides the mechanisms for determining a sub-

language (i.e. sub-category of signatures, subset of
formulae and sub-category of theories) on which a
particular semantics-based method can be applied
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Satisfiability sub-calculus

Definition . [Satisfiability subcalculus] A satisfiability subecalculus is a
structure of the form (Sign, Sen, Mod, Signy, az, {=* } 5¢ sign s M, Mods, u) sat-
sfying the following conditions:

~ (Sign, Sen, Mod, { ="} s:¢ siyn ) 15 an institution,

~ Signg, 13 a subcategory of Sign called the subcategory of admissible signatures;
the restriction of the functor Sen to Signg will be denoted by Seny,
ax : Sign, — Set is a subfunctor of the funcior oblained by composing

Sen, with the powerset functor, i.e., there is a natural inclusion ax(X) C
P(Sen(X)) for each X € Sign,. Each I' € ax(X) is called a set of admissible
arioms specified by Q. This defines a subcategory Th,,. of Thy whose objects
are theories T = (X, I') with ¥ € Sign, and I' € ax(X), and whose mor-
phisms are ariom-preserving theory morphisms H such that H is in Sign,.
M : Th,. — Structse is a functor. Let T € |Th,.|, then M(T) € |Structse
is the model structure of T,

Mods : Structge — Cat is a functor. Let T € |Th,.|, then Mods(M(T)) is
the set of canonical models of T'; the composile functor ModsoM : Th,, —
Cat wnll be denoted by models, and

~ u: models®” = Mod is a natural transformation such that, for each T =
(X.I) € |Thy,|, the image of pr : models™(T) — Mod(T) is the category
of models Mod(T). The map ur is called the projection of the category of
models of the theory T
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Effective Satisfiability sub-calculus

¥ A satisfiability sub-calculus is a restriction of a
satisfiability calculus

¥ Provides the mechanisms for determining a sub-
language (i.e. sub-category of sighatures, subset of
formulae and sub-category of theories) on which a
particular semantics-based method can be applied

3 The sub-language determined must be organized in
Spaces
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Effective Satisfiability sub-calculus

Definition . [Effective satisfiability sub-calculus] An effective satisfia-
bility subcalculus is a structure of the form {Sign, Sen, Mod, Sign,, Seng, az, { =~
} e sign » M, Mods, ) satisfying the following conditions:

~ {Sign, Sen, Mod, {="} ¢ Sign ) 18 an institution,

~ Sign, s a subcategory of Sign called the subcalegory of admissible signatures;
the restriction of the functor Sen to Signg will be denoted by Seny,
Seny, : Space — Space is a functor such that U o Seny = Senc J
ax : Sign, — Space is a sub-functor of the functor oblained by compos-
ing Seng with the functor Pg, : Space — Space, that sends each space
to the space of ils finile subsets. This defines a subcategory Th,. of Thy
whose objects are theories T = (X, I') with X' € Sign, and I' € ax(X), and
whose morphisms are ariom-preserving theory morphisms H such that H is
in Sign,,.
M : Th,,. — Structse is a functor. Let T € |Th,.|, then M(T') € |Structsc|
is the model structure of T,
Mods : Structge — Space is a functor. Let T € |Th,.|, then Mods(M(T'))

is the setl of canonical models of T'; the composite functor ModsoM : Th,, —
Space will be denoted by models, and

u : models®™ = Mod is a natural transformation such that, for each T =
(X.I) € |Thy,l|, the image of pr : models®™(T) — Mod(T) is the category
of models Mod(T). The map py is called the projection of the category of
models of the theory T'.

Denoting also by ax,Pr,P and p the results of composing with U each of
the above, the structure is a satisfiability subcalculus.
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3 Software verification techniques are usually divided into two
categories, lightweight (related to model construction or
counterexample searching and usually unassisted) and
heavyweight (related to theorem proving, usually assisted)

3 Software analysis has departed long ago from having to choose
one among all the tools available, specially, one of these two
categories of tools

3 Thus, the key is how to relate them through a methodology,
with formal foundations, for software analysis
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¥ A well known method for software analysis based on the time
consumption and expertise required for the technique involved is:

3 a lightweight technique for model searching is used in order to
construct a counterexample of the property:

3 if it exists then the specification and the property are refined,

> if not we gained confidence in the specification and the property
and then,

*BK" a heavvyweight technique is applied in order to prove the
Y g g PP P
property
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Institution representation

Definition . [Institution representation]

Let (Sign, Sen, Mod, {5} sc sign ) and (Sign", Sen’, Mod', {5} . sign ) be in-
stitutions I and I', respectively. Then, (359" 45" 4Medy . T 5 I is a repre-
sentation map of institutions if and only if:

~ 5t ; Sign — Sign’ is a functor,

~ 4% Sen = 479" o Sen’, is a natural {ransformation,
Mod . (

- 45tam)ee o Mod’ = Mod, is a natural iransformation,
such that for any X € |Sign|, the function v3°" : Sen(X) — Sen'(y7'9" (X))
and the functor vy7°% : Mod'(v*'9"(X)) — Mod(X) preserves the following

satisfaction condition: for any a € Sen(X) and M' € |[Mod(~°'9"( %))/,

M sin iy 15 @) iff 13 M) Exa.
Definition . [Map of Institution] Let (Sign,Sen, Mod, {5} sc g ) and
(Sign’,Sen’, Mod’, { = } 52 sign’ ) be institutions I and I', respectively, and v =
(ytam ySen AMedy o T — I' an institution representation. Then, if a functor
vTh 1 The — Thy is v5'9" -sensible (see [2, pp. 21]), then {yTh 4Sen 4Mody
I = I' is said o be a map of institutions.
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Software analysis

Theorem . Let (Sign,Sen, {+*}sc giwn, P.Pr,p} be a proof caleulus for the
logic (Sign,Sen, Mod, {l““:}f;eg.;;g,,:,{|== }26 558")? 1T = (Z,F) € |Th0| and o €
Sen(X). Let (Sign',Sen’,Mod', Sign[, Sen;,, az’, {='* } s.c 514 » M', Mods', i}
be an effective satisfiability sub-caleulus, p™ : Thy — Th!, a functor and
(p™, p7en, p™Medy 4 map of institutions from (Sign,Sen, Mod, {=*} s¢ sign ) 1o
(Sign’,Sen’, Mod', { ='" } 5 Sign ), then

If there exists M € |models®*(T)|, and M € |, ) (M)| such that M Egipno, 1)
pT(a), then there is no T € |proof(T)| such that 7r(7) = .
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Software analysis

Definition = . [Negation] An institution (Sign,Sen,Mod, {=x} sz sign} 5
said to have negation if for all ¥ € |Sign|, ¢ € Sen(X), M € Mod(X')| there
exists a formula ¢ € Sen(X) (usually denoted as —¢) such that M =5 ¢ if and
only if it 13 not true that M =5 ¢.
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Corollary . Let (Sign,Sen, {+*} 5. 50, P.Pr,pu) be a proof caleulus for the
logic (S'gna Sena Mod, {}-E}XEZSign]’ “= }EG Signﬁ)} T = (ZQF) € IThOI and « €
Sen(X). Let (Sign’, Sen’, Mod', Sign),, Sen},, az’, {='" } 5c sign , M, Mods', 1’}
be an effective satisfiability sub-caleulus, p*™ : Thy — Thl., e functor and
(p™, p7", pMo%} @ map of institutions from (Sign, Sen, Mod, {=*} x-c gign ) 10

(Sign’, Sen’, Mod', {='" } s-c sign ), then

If there exists M € \models®™(T U —a)|, then there is no v € |proof(71)|
such that =p(7) = a.




Software analysis

(Example: First Order Predicate Logic - Propositional Logic)

Definition 14. +°'9" : Sign ..,; — 2V is defined as the functor such that: for all
X € |Signporl, ¥79(Z) = {vy|p is a ground atomic formula in Sengor(X)}.

Definition 15. Let n € IN and £ = ({P;}c7.{fi}rex) € |Signpoy|. Then
v s Senpor(X) = 779" o Senp(X) is defined as:

vt (a) = Trip (T (), where:

Tr™((Zz)A) = Vi, Tr'(Al3),

Tr"(AV B) = Tr"(A) v Tr"(B),

Tr*(-A) = ~Tr"(A), and

Tr(P(ty, ... t)) = (fit(P(t1,...,tk))), for all P € {P;};c

- . "'9tk)
where fiz(A) = ux cJorall f(ty,... ;) € X such thal (A).
tla---etke {Cla"'9crl}-

f}l’L('P(tl,- . °atk)) - v“P(tl’ L 9tk) ”y

:f:’L(t‘ = t’) = v“t n= f, ”, ;
PL(AV B) = Trip (A) V Trp (B), and

pr(nA) = = Trp (A).
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Software analysis

(Example: First Order Predicate Logic - Propositional Logic)

Definition . Leine N, 454 Signpor — 2Y be the functor of Def. 14 and
~v5en : Senpor, — v 9" o Senp;, be the natural family of functions of Def. 15.

Then, we define v : Thporo = Thpro as:

yZ, D) = (YD), (rE T (@)la € T}

Remark . The functor v™ : Throrg = Thpr, is v7'9"-sensible.

Definition . Letn € IN and £ = ({P;}jc7. {fi}rex) € |Signpar|. Then
we define v o4 : 459" o Modpr (L) = Modror(X) as follows: for all val :

I (8) = {0,1} € [Modpr (754" (E))|, vifod(val) = (S,C, P, F) such that:

- 8= {C_le--'acn};
~ P ={P|P € {P;};cr}, where
P = {(Cl,. .o ,ck)|c1,. e € S, val (vp(c,,wck}) = 1}, and
~ F={fIf € {filrex}, where
f={ler,....ex) m eler, o en,c € S val (Ve—pie, ey) = 1}
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> We provided formal foundations for semantics-based methods
for software verification like tableau techniques, sat-based
methods and many model-checkers for logical languages

¥ We provided formal foundations for a well-known methodology
for software analysis based on the concept of proof calculus and
effective satisfiability sub-calculus
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¥ Explore conditions under which map of institutions reducing the
expressive power still allow modular analysis (requires not to
loose morphisms)

3 Study relations between structures representing proofs and
canonical models in proof calculi and satisfiability calculi,
respectively.
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dedicated to the memory of Comandante Hugo Chavez Frias
iHasta la victoria siempre, patria o muerte!
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