
Embedded

SafeSec

Joint Specification and Testing of

Safety and Security Requirements

Prof. Holger Schlingloff (ZeSys e.V.)
Dr. Mirko Conrad / Harald Schülzke (samoconsult GmbH)

Dr. Sadegh Sadeghipour (ITPower Solutions GmbH)

IFIP-WG1.3 meeting, Salzburg, 5.2.2024

Embedded

SafeSec

▪ Safety and Security Co-Engineering

▪ Controlled Natural Languages

▪ The Domain-Specific Language LESS

▪ Refinement and Testing Methods based on LESS

▪ Outlook onto LLMs

Contents of this talk

Embedded

SafeSec

Acknowledgement

Results from the EmbeddedSafeSec Project

▪ A “small”, local
project

▪ Oct 2020 - Sep 2023

▪ Industry-driven

▪ Goal:
Support consulting in
safety- and security-
engineering

Embedded

SafeSecCo-Engineering Functional Safety and Cybersecurity

▪ Separate standards for functional safety (e.g., ISO 26262)
and Cybersecurity (e.g., ISO/SAE 21434)

▪ Acknowledgement of interdependencies, but high-level guidance only

▪ How to combine life cycle of safety and security requirements?

▪ How to even formulate requirements for safety and security?

Motivation
Embedded

SafeSec

The organization shall institute and maintain effective
communication channels between functional safety, cybersecurity,
and other disciplines that are related to the achievement of
functional safety.

[ISO 26262-2:2018]

Embedded

SafeSec

Safety and Security Co-Engineering

Embedded

SafeSec

Embedded

SafeSecIdeal World (Project Proposal)

Mapping of Safety and Security Activities

START

END

Security Lifecycle

START

END

Safety Lifecycle

Embedded

SafeSecIdeal World (Project Proposal)

Mapping of Safety and Security Activities

START

END

Security Lifecycle

START

END

Safety Lifecycle

START

END

Safety & Security
Co-Engineering Lifecycle

Embedded

SafeSecReal World – ISO 26262 and ISO/SAE 21434

Mapping of Safety and Security Activities

START

END

Security Lifecycle (ISO/SAE 21434)

START

END

Safety Lifecycle (ISO 26262)

START

END

Safety & Security
Co-Engineering Lifecycle

Embedded

SafeSecDevelopment Phases – Activity Mapping

Mapping of Safety and Security Activities

Development Phases

Concept Phase

System Development II

Software DevelopmentHardware Development

System Development I

Combined
Activities 91,67%

Exclusive
Cybersecurity

Activities 0,00%

Exclusive Safety
Activities 8,33%

Embedded

SafeSec

Controlled Natural Languages

Embedded

SafeSec

Embedded

SafeSec

▪ We looked at various specification method

▪ Formal Languages, e.g., B, Z, LTL, …

▪ Controlled Natural Languages (CNLs)

▪ None supports the co-development of safety and security

▪ Developed a new DSL for this purpose

Specifying Safety and Security

CNL by Chris Rupp

Controlled Natural Languages

Embedded

SafeSecThree Definitions

Controlled Natural Languages

Embedded

SafeSecCharacterization

Controlled Natural Languages

Embedded

SafeSec

According to design goals

• C: Communication among humans (comprehensibility)

• T: Translation into formal objects (translatability)

• F: Formal notation representation

„human-oriented“ vs. „computer-oriented“

• A: academic, I: industrial, G: governmental

• D: domain-specific

• W: written, S: spoken

expressiveness vs. complexity

sources:
 T. Kuhn, A Survey and Classification of Controlled Natural Languages,
https://arxiv.org/abs/1507.01701
A. Wyner et al., On Controlled Natural Languages: Properties and Prospects,
https://link.springer.com/chapter/10.1007/978-3-642-14418-9_17
Fuchs & Schwitter, Attempto Controlled Natural Language for Requirements Specifications

Classification Scheme for CNLs

Controlled Natural Languages

https://arxiv.org/abs/1507.01701
https://link.springer.com/chapter/10.1007/978-3-642-14418-9_17

Embedded

SafeSec

Scale of 1 to 5 points:

• Precision (semantic non-ambiguity, predictability, formality)

• Expressiveness (quantification, negation, if-then, etc.)

• Naturality (understandability, look-and-feel, brackets, etc.)

• Simplicity (in syntax & semantics of language description)

• English: P1 E5 N5 S1

• Propositional logic: P5 E1 N1 S5

Dimensions of CNLs

Controlled Natural Languages

Embedded

SafeSec

• Syllogisms: Every A is a B. … Some A is not a B.

• Basic English / Simple English: only 850 words allowed

• Caterpillar: „language recommendations“ do this – avoid that

− used for instruction manuals etc.

• Air Traffic Control Phraseology: ~300 fixed phrases

• Simplified Technical English: NL with restrictions

• SLANG: machine-readable instructions

• OMG SBVR Structured English / RuleSpeak: extensible
sentence constituents, formal semantics

• Attempto Controlled English: DRT semantics

• …

Some CNLs

Controlled Natural Languages

Embedded

SafeSec

• Timeline 1930-2010

• PENS classification

• Evaluation of comprehensibility,
translatability and formality

Hundred CNLs

Controlled Natural Languages

Embedded

SafeSec

• Is the language easy to describe, teach, and learn?

• Is it easy to read and scan? easy to write? to understand?

• Is the semantics predictable and unambiguous?

• Is the syntax defined formally or informally?

• How are semantic restrictions handled?

• Are statements translatable into a logic?

• Are discourses translated into a logic?

• What are the formal properties of the language?

• How is the language evaluated?

• Is the language easily and systematically extensible?

• …

Design Criteria

Controlled Natural Languages

Embedded

SafeSec

• sentences of the form subject – verb – object

• if-then sentences, references, …

• Translation to PROLOG

• yes/no queries, wh-queries

Attempto for Requirements

Controlled Natural Languages

Embedded

SafeSec

• yes/no queries, wh-queries

Executing Attempto

Controlled Natural Languages

Embedded

SafeSec

The Domain-Specific Language LESS

Embedded

SafeSec

Embedded

SafeSec

▪ In any state, the system must prevent unintended acceleration.

▪ Upon login attempt, the server must ensure authorized login.

▪ If the temperature is too low, the error alarm must be triggered.

▪ If there is a failed login attempt, a log entry recording must be made.

▪ The charging approval shall be given if the connection with the charging station is
active.

▪ Setting of control variables is possible only if the user is authorized.

LESS

Typical Safety / Security Requirements

Embedded

SafeSec

▪ Developing a DSL for this purpose

▪ First approach

LESS

A DSL for Specifying Safety and Security

<logical condition>

<system>

shall<state condition>

<temporal
condition>

<component
>

<process verb>

provide <x> with
the ability to

<process verb>

be able to
 <process verb>

from <y>

to <z>

<object>

<object with
condition>

Embedded

SafeSec

<system>

shall<state condition>

<temporal condition>
<component>

<process verb>

provide <x> with the
ability to <process

verb>

be able to
 <process verb>

from <y>

to <z>

<object>

<object with
condition>

<logical condition>

<system>

shall<state condition>

<temporal condition>
<component>

<process verb>

provide <x> with the
ability to <process

verb>

be able to
 <process verb>

from <y>

to <z>

<object>

<object with
condition>

Embedded

SafeSec

▪ Standardized E-Gas Monitoring Concept for Gasoline and Diesel Engine Control Units’
(E-Gas concept).

▪ a variety of functional and safety requirements for engine control units at
different levels of abstraction

▪ Example: [SReq-01*] ‘Sensors shall be plausibility checked’ (Component: Drive pedal)

▪ NL specification must be reworded to
‘The Drive_Pedal SHALL check the sensor_ signals of the Drive_Pedal for plausibility’.

LESS

E-Gas Case Study

Embedded

SafeSec

▪ [SReq-06*] ‘A safety concept shall be implemented in the engine control unit which
detects and confirms undesired states of a high driving torque or an unintended
acceleration. In case of a fault the engine control unit shall switch to a safe state.’

LESS

E-Gas Case Study

Embedded

SafeSecThe LESS Template

LESS

Embedded

SafeSec

▪ [SReq-04*] ‘Torques affecting requirements of other ECUs shall be protected in a
signal compound of the engine control unit.’
‘The engine control shall protect torques affecting requirements of other ECUs in a signal compound.’

▪ ‘Torques affecting requirements of other ECUs in a signal compound’ does not match
the available pattern

▪ Quoting mechanism (not interpreted by the language analysis tool)

▪ This allows to formulate 99% of the requirements given in the case study

LESS

E-Gas Case Study

Embedded

SafeSec

▪ Ventricular Assist Device, which pumps blood to support a human heart

▪ Alternative domain, many security requirements

▪ [Req_BH40] ‘The clinical user interface shall be able to switch from manual to auto
mode, if and only if the user is logged in.’

▪ Also for this case study, most requirements could be formulated without problems

LESS

VAD Case Study

Embedded

SafeSec

Refinement and Testing Methods based on LESS

Embedded

SafeSec

Embedded

SafeSecThree Steps to Analyze and Refine LESS Requirements

1. Analysis of the syntactical structure of the safety and security requirements

expressed in a LESS specification document.

2. Designing controlled conversations with the user in order to achieve further

semantic information needed for the analysis, refinement and derivation activities

mentioned above.

3. Processing of the user's response and generating the result, which can be a

consistency or completeness verdict, a refined requirement, or a test case.

Refinement and Testing Methods based on LESS

Embedded

SafeSecDetailing and Refining S&S Requirements

▪ “Interaction wizard”

▪ Based on an interactive process, where the machine
supports the human by asking relevant questions

▪ Responsibility at any moment rests with the
safety/security engineers

▪ No need of formal tool qualification

▪ Possibility of extensions by more use cases

▪ Machine has parsed LESS requirements and
asks questions about them

Refinement and Testing Methods based on LESS

Embedded

SafeSecExample: Dealing with Vagueness

▪ Rule: “In case of a vaguely formulated condition, ask for a more detailed
condition”

▪ Dialogue:

Refinement and Testing Methods based on LESS

Embedded

SafeSecExample: Dealing with Missing Definitions

▪ Rule: “In case a requirement mentions a safe state, ask for detailed definition of it”

▪ Dialogue:

Refinement and Testing Methods based on LESS

Embedded

SafeSecChecking Consistency and Completeness

▪ Currently: identification of missing steps in a chain of actions

▪ Ex.: [SReq-06a.2] ‘The Engine_Control_Unit SHALL confirm undesired states of
High_Driving_Torque. (Functional Safety Requirement, ASIL B)

▪ Here, we find a requirement with the verb 'confirm’

▪ New requirement is added to the data base

Refinement and Testing Methods based on LESS

Embedded

SafeSecTest Case Generation

▪ Semi-automatic generation of test cases

▪ If a requirement mentions actions which are to be performed in certain states, the user is asked how
to reach that state and how to confirm that the intended action has been performed

▪ Example:

Refinement and Testing Methods based on LESS

Embedded

SafeSecTest Case Generation Tool Support

Refinement and Testing Methods based on LESS

Embedded

SafeSecTest Case Generation Tool Support

Refinement and Testing Methods based on LESS

Embedded

SafeSecSQ Magazin June 2023

More Details

VDA Conference 2023

Embedded

SafeSecNext Steps

Me:
Can you re-formulate the following as a Chris-
Rupp-Sentence? "Let us assume that the signal is
set to on. Then the intended system must be
programmed such that it offers students a
possibility to hand in their work for evaluation as
a thesis."

ChatGPT
Certainly! Here is the re-formulated sentence in
the Chris-Rupp-Sentence format:
"If the signal is set to on, the system shall be
programmed to offer students the ability to hand
in their work for evaluation as a thesis."

Embedded

SafeSecITEA Genius

▪ A new project to be submitted in 2 weeks

▪ >5 European countries, ~35 partners

▪ 3 main focus points:

▪ Generation of (formal) requirements from natural language

▪ Generation of code artifacts from natural language

▪ Generation of test cases from natural language

▪ More to come!

Embedded

SafeSec

▪ An easy-to-learn and easy-to-understand domain-specific language: LESS

▪ Refining and analyzing requirements as well as generating test cases

▪ Embedded into a joint safety / security life cycle

▪ Two case studies (E-Gas and VAD) successfully completed

▪ Used in first consultancy projects for automotive customers

▪ Work in progress: extraction of state diagrams for test case generation

▪ AI-based natural language dialogues

▪ Advancing tool support from prototype to product

Summary and Conclusion

Thank you for your attention!

	Introduction
	Folie 1: Joint Specification and Testing of Safety and Security Requirements
	Folie 2: Contents of this talk
	Folie 3: Results from the EmbeddedSafeSec Project
	Folie 4: Co-Engineering Functional Safety and Cybersecurity

	Co-Engineering
	Folie 5: Safety and Security Co-Engineering
	Folie 6: Ideal World (Project Proposal)
	Folie 7: Ideal World (Project Proposal)
	Folie 8: Real World – ISO 26262 and ISO/SAE 21434
	Folie 9: Development Phases – Activity Mapping

	CNLs
	Folie 10: Controlled Natural Languages
	Folie 11: Specifying Safety and Security
	Folie 12: Three Definitions
	Folie 13: Characterization
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20

	LESS
	Folie 21: The Domain-Specific Language LESS
	Folie 22: Typical Safety / Security Requirements
	Folie 23: A DSL for Specifying Safety and Security
	Folie 24
	Folie 25: E-Gas Case Study
	Folie 26: E-Gas Case Study
	Folie 27: The LESS Template
	Folie 28: E-Gas Case Study
	Folie 29: VAD Case Study

	Fefinement and Testing Methods
	Folie 30: Refinement and Testing Methods based on LESS
	Folie 31: Three Steps to Analyze and Refine LESS Requirements
	Folie 32: Detailing and Refining S&S Requirements
	Folie 33: Example: Dealing with Vagueness
	Folie 34: Example: Dealing with Missing Definitions
	Folie 35: Checking Consistency and Completeness
	Folie 36: Test Case Generation
	Folie 37: Test Case Generation Tool Support
	Folie 38: Test Case Generation Tool Support
	Folie 39: SQ Magazin June 2023

	Summary and Conclusion
	Folie 40: Next Steps
	Folie 41: ITEA Genius
	Folie 42: Summary and Conclusion

