Embedded
SafeSec

Joint Specification and Testing of
Safety and Security Requirements

Prof. Holger Schlingloff (ZeSys e.V.)
Dr. Mirko Conrad / Harald Schiilzke (samoconsult GmbH)
Dr. Sadegh Sadeghipour (ITPower Solutions GmbH)

IFIP-WG1.3 meeting, Salzburg, 5.2.2024

Embedded
Contents of this talk SafeSec

= Safety and Security Co-Engineering

= Controlled Natural Languages

" The Domain-Specific Language LESS

= Refinement and Testing Methods based on LESS
= Qutlook onto LLMs

VDA QMC

Verband der Automobilindustrie
Qualitats-Management-Center

o0 AUTOMOTIVE Bk

Acknowledgement

Results from the EmbeddedSafeSec Project

= A “small”, local
project

" Oct 2020 - Sep 2023

" Industry-driven

" Goal:
Support consulting in
safety- and security-
engineering

*
% Europaischer Fonds fiir
regionale Entwicklung

S5O0LUTIONS

= £|ZESY5 ‘l:l ITPOWER

Motivation

Embedded
Co-Engineering Functional Safety and Cybersecurity SafeSec

= Separate standards for functional safety (e.g., ISO 26262)
and Cybersecurity (e.g., ISO/SAE 21434)

= Acknowledgement of interdependencies, but high-level guidance only

! ! The organization shall institute and maintain effective
communication channels between functional safety, cybersecurity,
and other disciplines that are related to the achievement of

functional safety. , ,
[ISO 26262-2:2018]

" How to combine life cycle of safety and security requirements?

" How to even formulate requirements for safety and security?

Embedded
SafeSec

- Safety and Security Co-Engineering

Mapping of Safety and Security Activities
Ideal World (Project Proposal)

Safety Lifecycle

:

Embedded
SafeSec

Security Lifecycle

%
z
,

Mapping of Safety and Security Activities
] Embedded
Ideal World (Project Proposal) SafeSec

Safety & Security

Co-Engineering Lifecycle Security Lifecycle

Safety Lifecycle

Mapping of Safety and Security Activities
Embedded
Real World - 1SO 26262 and ISO/SAE 21434 # SafeSec

Safety & Security

Safety Lifecycle (ISO 26262) Co-Engineering Lifecycle

Security Lifecycle (ISO/SAE 21434)

Mapping of Safety and Security Activities

Embedded
Development Phases — Activity Mapping SafeSec

Exclusive
Concept Phase Cybersecurity

Activities 0,00%

Exclusive Safety
Activities 8,33%

Development Phases

System Development |

Hardware Development | | Software Development

System Development |l

Combined
Activities 91,67%

Embedded
SafeSec

- Controlled Natural Languages

Controlled Natural Languages

Embedded
SafeSec

Specifying Safety and Security

= We looked at various specification method

" Formal Languages, e.g., B, Z, LTL, ...

= Controlled Natural Languages (CNLs)
=" None supports the co-development of safety and security
" Developed a new DSL for this purpose

T S
, | <process> }\
| SHALL /! ;
=N \
= X / | provibE | \[e
|«When?> ‘ whom?> THE \l thmg to be
Under what iTHE SYSTFM‘K LSHOUI D \‘ < ABILITY TO ‘ processed>
fonditions?>) / X ’ SrOCeE> | <process detail>
— \ / l - — —

: f
\ WlLL‘y \ /
- — \' BE ABLETO [/

CNL by Chris Rupp <process> |

Controlled Natural Languages
Embedded

Three Definitions SafeSec

A controlled language (CL) is a restricted version of a natural language which has
been engineered to meet a special purpose, most often that of writing technical
documentation for non-native speakers of the document language. A typical CL
uses a well-defined subset of a language’s grammar and lexicon, but adds the
terminology needed in a technical domain. (Kittredge 2003, page 441)

Controlled natural language is a subset of natural language that can be accurately and
efficiently processed by a computer, but is expressive enough to allow natural usage by
non-specialists. (Fuchs and Schwitter 1995, page 1)

A controlled natural language is a constructed language that is based on a certain
natural language, being more restrictive concerning lexicon, syntax, and/or semantics,
while preserving most of its natural properties.

Controlled Natural Languages
Embedded

Characterization SafeSec

A language is called a controlled natural language if and only if it has all of the
following four properties:

1. Itis based on exactly one natural language (its “base language”).

2. The most important difference between it and its base language (but not
necessarily the only one) is that it is more restrictive concerning lexicon,
syntax, and /or semantics.

3. It preserves most of the natural properties of its base language, so that
speakers of the base language can intuitively and correctly understand
texts in the controlled natural language, at least to a substantial degree.

4. Itis a constructed language, which means that it is explicitly and
consciously defined, and is not the product of an implicit and natural
process (even though it is based on a natural language that is the product
of an implicit and natural process).

Controlled Natural Languages

Classification Scheme for CNLs

According to design goals

e (C: Communication among humans (comprehensibility)
e T: Translation into formal objects (translatability)

e F: Formal notation representation

yshuman-oriented" vs. ,computer-oriented"
e A: academic, I: industrial, G: governmental
e D: domain-specific

e \W: written, S: spoken

expressiveness vs. complexity

Embedded
SafeSec

sources:

T. Kuhn, A Survey and Classification of Controlled Natural Languages,
https://arxiv.org/abs/1507.01701

A. Wyner et al., On Controlled Natural Languages: Properties and Prospects,
https://link.springer.com/chapter/10.1007/978-3-642-14418-9 17

Fuchs & Schwitter, Attempto Controlled Natural Language for Requirements Specifications

https://arxiv.org/abs/1507.01701
https://link.springer.com/chapter/10.1007/978-3-642-14418-9_17

Controlled Natural Languages
Embedded

Dimensions of CNLs SafeSec

Scale of 1 to 5 points:

® Precision (semantic non-ambiguity, predictability, formality)
e Expressiveness (quantification, negation, if-then, etc.)

¢ Naturality (understandability, look-and-feel, brackets, etc.)
e Simplicity (in syntax & semantics of language description)

e English: P1 E> N> St

® Propositional logic: P> E! N! S°

negative correlation: More expressive languages tend to be more complex (p = —0.82).
In addition, naturalness/expressiveness are strongly positively (p = 0.77) and natural-
ness/simplicity strongly negatively correlated (p = —0.76). At a slightly lesser degree,
negative correlation values are obtained for the pairs precision/naturalness (p = —0.67)

and precision/expressiveness (p = —0.66). These observations seem to be in line with
what one would intuitively expect.

Controlled Natural Languages
Embedded
Some CNLs SafeSec

e Syllogisms: Every Aisa B. ... Some A is not a B.

e Basic English / Simple English: only 850 words allowed
Caterpillar: ,language recommendations” do this — avoid that
— used for instruction manuals etc.

Air Traffic Control Phraseology: ~300 fixed phrases
Simplified Technical English: NL with restrictions

SLANG: machine-readable instructions

OMG SBVR Structured English / RuleSpeak: extensible
sentence constituents, formal semantics

Attempto Controlled English: DRT semantics

ontrolled Natural Languages

undred CNLs

Embedded
SafeSec

PelkcaSpank
SEASFEAK [1
1A Phiaseakay [

=" == e Timeline 1930-2010

WociK Inlarmationd Service Language (KISL) LI
Claar And Simpie Englsh (€A3E) T}

Catorpillar Fundamareal Englsh (CFE] [—— 7} - - -
Caturpilar Tocheical Englsh (CTE) |
Diobak Conroiied Englsh (DCE] (o Sl
Kant Conataa Englan <c<) (N -
eraea Engtsn ar clark ([}

Easy Languags Program HEL®) [

Basic Englsh spos

1 Ergiin {

Bul Glabal English (I
Narfol Shadasa Engien INSE) {

R R e Evaluation of comprehensibility,

AECMA Simpirion Engicn (AECMA-SE} >
Tl -
Intaenatiena Language of Sarwee and Maksenanc

Boang Tocnnea
sy {1 [N} -
Caniiod pgish 2¢ 5 (]
18 EasyEnghsh
Ericason Engish (E8) [
Mauttinanenal Customizad Engian (<) AN

Furking Agproved Cloar Englsh (PACE) [
WCR Funaamenai Engian [}

coaRam
aLcocrau T
Controlied Autamativs Sarvics Language |CASL)
Gangrat Motors Gleaal Englsh
©oa Conmotod Englen (R
Sun Proot (SR

uay alsh [l
Canirolled Langaage fr Grsis Management (CLCM) ()
Haip Conirolied Englsh (C£) ()
Autius Warning Languags)
Siandar Language (SLANG)
Massachusats Lag

CloarTak
PROSFER Corvralied English

c
Commen Logic Cantrallod Englich {OLCE|
ITA Cantraliea
5iriciod Engih for ConcauCing OIDloges (R
Resirictod Natural Language Statement {ANL

Ouary Languay

—
i
e
Language
s —
.8 Languaga
unt
i

Life spans:
@ reriod when language was studied or used
NI uncertain when language was first studied or used

uncertain whether or when language was discontinued

Influences:
reparted influence
probabie influsnce DL Engizn
UAL
OWL Smpinad Engizn (0561 S
Goals: SCNL
| comprehensibilty (c)

Bl trarsiation 1)

Bl iormal representation (F)

Haproche
Gantreiled Language of Mathematics (CLY) [
Lasiic Corrolod Englan I

OWLFans Guiod Engish

Gnorke, (R

1530 1540 550 560 570 1550 1550 2000 2010

Controlled Natural Languages
Embedded
Design Criteria # SafeSec
Is the language easy to describe, teach, and learn?
Is it easy to read and scan? easy to write? to understand?
Is the semantics predictable and unambiguous?
Is the syntax defined formally or informally?
How are semantic restrictions handled?
Are statements translatable into a logic?
Are discourses translated into a logic?
What are the formal properties of the language?

How is the language evaluated?
Is the language easily and systematically extensible?

Controlled Natural Languages
Embedded

SafeSec

Attempto for Requirements

The customer enters a card and a numeric personal code.
If 1t is not valid then SM rejects the card.

e sentences of the form subject — verb — object

¢ if-then sentences, references, ... ‘A, B, C, D]
e Translation to PROLOG covatm
® ves/no queries, wh-queries e

personal code (C)

fact (customer (0)) .
enter (A, C)
fact(card(1)) . named (D, simplemat)
fact (enter (0, 1)). IF:
fact (numeric(2)) . []
fact (personal code(2)) . NOT :
fact (enter (0, 2)). []
fact (named (3, simplemat)). valid (C)
fact ((reject (3, 1) :—-neg(valid(2)))). THEN:

[]
reject (D, B)

Controlled Natural Languages

Embedded
SafeSec

Executing Attempto

® yes/no queries, wh-queries

Does the customer enter a card?

yes
Is the personal code numeric?
yes
Who enters a card?
Result: who = a customer EI=——— Info: Execution ———M1-
=
Answer: a customer enters a card. vser: customerl is a customer
user: cardl iz a card
event: customerl enters cardl
EFf— Example Specification B EE user: codel is a numeric personal_code
ii- event: ocustomerl enters codel
The customer enters a card and a numeric personal code
that SimpleMat checks. user: sl is a simplemat
event: =1 checks codel
If the personal code is valid then 5™ accepts the card.
nser: codel is not walid
If the personal code is not valid then $M re jects the card. E event: sl rejects cardl]
&]

Embedded
SafeSec

- The Domain-Specific Language LESS

LESS
Embedded
Typical Safety / Security Requirements # SafeSec

" |[n any state, the system must prevent unintended acceleration.
= Upon login attempt, the server must ensure authorized login.

" |f the temperature is too low, the error alarm must be triggered.
= |f there is a failed login attempt, a log entry recording must be made.

* The charging approval shall be given if the connection with the charging station is
active.

= Setting of control variables is possible only if the user is authorized.

LESS

Embedded
SafeSec

A DSL for Specifying Safety and Security

= Developing a DSL for this purpose
" First approach

<logical condition> | > <process verb>
> <system> N <object>
<state condition> | shall —| | provide <x> with
_,| <component :I - the ability to
<temporal > <process verb> _» <object with
condition> B condition>

from <y> —
N be able to _ Y
<process verb>
_.

+ to <z>

When Vehicle in any state, prevent unintended acceleration

A

<state condition>

<temporal condition>

When Server in login_ attempt state, ensure |lauthorized login

<Iogica%)ndition>

/

<state condition>

<temporal condition>

<system>

>

<component>

<system>

>

<component>

>

<process verb>

shall

provide <x> with the

<object>

H» ability to <process
verb>
N be able to

<process verb>

from <y>

—»

to <z>

<object with
condition>

<process verb>

shall

}

provide <x> with the
> ability to <process
verb>
from <y> |
N be able to

<process verb>

to <z>

<object>

<object with
condition>

Embedded
SafeSec

LESS
E-Gas Case Study

Embedded
SafeSec

= Standardized E-Gas Monitoring Concept for Gasoline and Diesel Engine Control Units’
(E-Gas concept).
" 3 variety of functional and safety requirements for engine control units at
different levels of abstraction

= Example: [SReq-01*] ‘Sensors shall be plausibility checked’ (Component: Drive pedal)

= NL specification must be reworded to
‘The Drive_Pedal SHALL check the sensor_ signals of the Drive _Pedal for plausibility’.

ID 5 6 7 10 11

[SReq-01] The SHALL check the for plausibility.
Drive_Pedal sensor_signals
of the
Drive_Pedal

LESS
E-Gas Case Study

Embedded
SafeSec

= [SReq-06*] ‘A safety concept shall be implemented in the engine control unit which
detects and confirms undesired states of a high driving torque or an unintended
acceleration. In case of a fault the engine control unit shall switch to a safe state.”

ID 1 5 6 7 10 11
[SReq- The SHALL detect undesired of
06a.1] Engine_Control_Unit states High Driving_Torque.
[SReq- The SHALL confirm undesired of
06a.2] Engine_Control_Unit states High Driving_Torque.
[SReq- The SHALL detect an
06a.3] Engine_Control_Unit Unintended _
Aacceleration.
[SReq- The SHALL confirm an
06a.4] Engine_Control_Unit Unintended
Aacceleration.
[SReq- In The SHALL switch to a safe state.
06b] case Engine Control Unit
of a
fault

Embedded

LESS
SafeSec

The LESS Template

1 2 3 4
“aw < - ..n> "
<condition 0..n> att"b‘:'te 0..n <object> i
F(NOT)IN STATE THEN <object> OF / A AN TR
|WHILE | DURING | AFTER | BEFORE| [P A AN | THE | —evusing —% °) EACH
AS SOON AS | IN CASE OF ALL THE | EACH L J METHE] A .
5 6 7 8
mandatory <process verb 0..n>
—> ENSURE | DETECT | ALLOW | | S
PREVENT | CHECK | PROVIDE |
BE | SWITC=
<system> —; 4 SHALL —
e PROVIDE <x> WITH e
y I | THE ABILITY TO —_—t v < ese ®
. s SHALL <process verb> L
po NOT
BE ABLETO
<process verb>
9 10 11 12 13
OF /BY USING / IN /FROM
% | /FOR /AGAINST /TO /WITH
<attnbt.xte 0..n> JEXCEPT FOR
ves »l TO<> L <object> > <attribute 0..n> , <external condition> <relaxes>
b "‘fc' <object> IF AND ONLY IF UNTIL | WITHIN
i ory Al AN | THE |

ALL THE | EACH

LESS
E-Gas Case Study

Embedded
SafeSec

= [SReq-04*] ‘Torques affecting requirements of other ECUs shall be protected in a

signal compound of the engine control unit.’
‘The engine control shall protect torques affecting requirements of other ECUs in a signal compound.’

= “Torques dffecting requirements of other ECUs in a signal compound’ does not match
the available pattern

* Quoting mechanism (not interpreted by the language analysis tool)

1D 5 6 7 String
[SReq-04] The SHALL protect “torques affecting requirements of others ECUs in a signal
Engine Control Unit compound”

" This allows to formulate 99% of the requirements given in the case study

LESS
Embedded
VAD Case Study SafeSec

= Ventricular Assist Device, which pumps blood to support a human heart

= Alternative domain, many security requirements

» [Req_BHA40] “The clinical user interface shall be able to switch from manual to auto
mode, if and only if the user is logged in.”

ID 5 6 7 8 9 12
[Req BH40] THE clinical Ul | SHALL BE ABLE FROM TO IF AND ONLY IF
TO switch manual_mode | auto_mode THE user IN
logged in

= Also for this case study, most requirements could be formulated without problems

Embedded
SafeSec

- Refinement and Testing Methods based on LESS

Refinement and Testing Methods based on LESS
Embedded
Three Steps to Analyze and Refine LESS Requirements # SafeSec

1. Analysis of the syntactical structure of the safety and security requirements
expressed in a LESS specification document.

2. Designing controlled conversations with the user in order to achieve further

semantic information needed for the analysis, refinement and derivation activities
mentioned above.

3. Processing of the user's response and generating the result, which can be a
consistency or completeness verdict, a refined requirement, or a test case.

Refinement and Testing Methods based on LESS

Detailing and Refining S&S Requirements

» “Interaction wizard”

= Based on an interactive process, where the machine
supports the human by asking relevant questions

= Responsibility at any moment rests with the
safety/security engineers

" No need of formal tool qualification
" Possibility of extensions by more use cases

" Machine has parsed LESS requirements and
asks questions about them

Embedded
SafeSec

safety/security
goal

l ref

safety/security
functional requirement

[ref

safety/security
technical requirement

Refinement and Testing Methods based on LESS

Embedded
Example: Dealing with Vagueness SafeSec
= Rule: “In case of a vaguely formulated condition, ask for a more detailed
condition”
" Dialogue: [SReq-06b] ‘In case of a fault the Engine Control Unit SHALL switch

to a safe state.’
(Functional Safety Requirement, ASIL B)

[SReq-06b] refers to the case of a ‘fault’.
Would you like to further define a ‘fault’? [Yes/No/Later]

> Y
> “fault’ := ‘Unintended_Acceleration’

[SReg-06b.1] ‘In case of Unintended Acceleration the
Engine Control Unit SHALL switch to a safe state.’
(Functional Safety Requirement, ASIL B)

Refinement and Testing Methods based on LESS
Embedded

SafeSec

Example: Dealing with Missing Definitions

" Rule: “In case a requirement mentions a safe state, ask for detailed definition of it”

m D .

Dlalogue. [SReg-06b.1] ‘In case of Unintended Acceleration the
Engine_Control Unit SHALL switch to a safe state.’
(Functional Safety Requirement, ASIL B)

[SReg-06b.1] refers to a safe state. Would you like to detail the
safe state mentioned in [SReg-06b.1]? [Yes/No/Later]

> Y
> [SS-01] := Injection driver of the gasoline engine is switched off

(Safe State)

Would you like to review / update the original requirement [SReq-
@6b.1] as well? [Yes/No/Later]

> Y
> [SReq-06b.1.1] ‘In case of Unintended Acceleration the

Engine_Control Unit SHALL switch into Safe State [SS-01].°
(Functional Safety Requirement, ASIL B)

Refinement and Testing Methods based on LESS
Embedded

Checking Consistency and Completeness SafeSec

= Currently: identification of missing steps in a chain of actions

" EX.: [SReg-06a.2] ‘The Engine Control Unit SHALL confirm undesired states of
High Driving Torque. (Functional Safety Requirement, ASIL B)

= Here, we find a requirement with the verb ‘confirm’

[SReg-06a.2] refers to the confirmation of 'undesired states of
High Driving Torque'.
Would you like to specify a subsequent action? [Yes/No/Later]

> Y

> [SReg-06a.2.1] In case of confirmed undesired states of
High Driving Torque the Engine_Control _Unit SHALL switch
into a safe state.

(Functional Safety Requirement, ASIL B)

= New requirement is added to the data base

Refinement and Testing Methods based on LESS
Embedded

Test Case Generation SafeSec

= Semi-automatic generation of test cases

= |f a requirement mentions actions which are to be performed in certain states, the user is asked how
to reach that state and how to confirm that the intended action has been performed

= Example: (1) [SReg-06b.1.1] ‘In case of Unintended_Acceleration the
Engine_Control Unit SHALL switch into Safe State [SS-01].°
(Functional Safety Requirement, ASIL B)

(2) [SS-01] ‘Injection driver of the gasoline engine is switched
off’
(Safe State)

Here is the generated testcase:

TC 001 System is 1. Set 1. Engine_Control Unit SHALL switch to Safe
(SReg- running Current_Vehicle Acceleration > State [SS-01].
06b.1.1) Target Vehicle Acceleration

Refinement and Testing Methods based on LESS

Embedded
Test Case Generation Tool Support SafeSec

' ESS_Con_ITPS_O1 ? X

Enter Requirement ID

'SReq-06b.1.1| ‘

Cancel ' S5 Con 9% 8 ?
Descride all the ways how the condition
8! £SS Con [TPS 0 ? X IN CASY OF Unintendod Acceleration
Is DI CASE OF Unintended_Acceleration’ con be fulfilied.

a precondition or does it constrain the test input? 1

5S¢t (urrent Vehicle Acceleration > Target Vehicle Acceleration

O Precondition)

® Test input

OK Cancel

Canced

Refinement and Testing Methods based on LESS

Test Case Generation Tool Support

R ESS Con ITPS DN ?

Are there any other preconditions for the testcase?

[Yes] Mo

x

B 135 Com 1195 00

Flease ealer the other peesoeckilions below, separated by comoe:

e Cancel

feCONINonN Test input

[Save | Cancel

xpe<ted Behavior

Embedded
SafeSec

ore Details

Q Magazin June 2023

" hsQE
SQ s

|

SICHERHEIT 'M
FOKUS — SAFETY &

SECURITY

Y-
FETY- UND SECUR!
SE?QG\NEER\NG HAND N HAND

_SECURWTY usS
SR NEERING ~EN
O AUTONOMES'®
£

Y
ECUR\\SCRE“ DRIFT

%
al acent®
Jgen S8 St uod e
PO ain, TV
1inke

VDA Conference 2023

Joint Specification and Testing of Safety
and Security Requirements

Sadegh Sadeghipour?, Holger Schlingloff?, Mirko Conrad?, Harald Schiilzke®

* [TPower Solutions GmbH, Berlin, Germany
#ZeSys e.V. and Fraunhofer FOKUS, Berlin, Germany

3samoconsult GmbH, Berlin, Germany

Abstract

Violation of safety or security in modern highly networked and automated devices and functions, such as
those used for the Internet of Things, Industry 4.0, and autonomous driving, can lead to catastrophic
consequences for people and the environment. Therefore, the development process of embedded
systems and software is associated with demanding requirements regarding safety and security.

While the discipline of safety engineering is well established and supported by international standards
like [EC 61508, 1O 26262, and EN 5012, security engineering and its interaction with the safety process
in the field of embedded systems is still in early phases of its development

In this paper we present a methodology for the joint specification of safety and security requirements of
embedded systems, and the derivation of test cases. Currently, safety and security are treated In two
separate engineering processes. The advantage of a process for specification both safety and security at
the same time Is that possible redundancies and Inconsistencies between safety and security
requirements can be identified at an early stage.

The core of the methodology presented here is a domain-specific language (DSL) called LESS (Language
for Embedded Safety and Security), which is based on natural language templates often used in
requirements engineering. With the aid of a few simple rules and a small set of keywords users can define
safety and security requirements in a formalized way without any need for a difficult-to-understand
mathematical or a complex graphical notation.

We also present a set of methods that form the basis for implementing semi-automatic procedures for
analyzing and refining requirements as well as deriving test cases from them. These methods are based
on an analysis of the syntactical structure of the safety and security requirements expressed In LESS, and
on the design of controlled conversations with the user. The results of the conversations are used to
achieve further semantic information needed for the analysis, refinement and derivation activities
mentioned above. Some of the developed methods have been implemented as prototypes and applied
to case studies from automotive and medical technology.

Due to the easy-to-learn and well d pecific language LESS, as well as the controlled
wizard-like with the user, the presented here possesses a high potential to
be used in all industrial sectors where safety- and security-related applications are developed.

Keywords: Safety and Security Co-Engineering, Language for Embedded Safety and Security (LESS)

* The described activities were conducted as part of the EmbeddedSafeSec project (Mar. 2021 — Dec. 2022). The
EmbeddedSafeSec project was funded by the Investitionsbank Berlin (1BB) program for the promotion of research, innovation
and technology - ProFIT - and by the European Regional Development Fund (ERDF).

Embedded
SafeSec

Next Steps

L]

Du

A so-called "Chris-Rupp-Sentence" consists of the following components: First a
precondition, then the words "the system”, the one of the words "shall", "should" or
"will", then a process, and finally an object or process detail. A process is a word
describing an activity, or the words "be able to" followed by a word describing an
activity, or the word "provide" followed by an object followed by the words "the ability
to" followed by a process. Is the following a Chris-Rupp-Sentence? "If the signal is on,
the system should provide the student the ability to submit the thesis."

ChatGPT
Yes, the given sentence fits the structure of a Chris-Rupp-Sentence. Let's break it

down:

Precondition: "If the signal is on,"
"the system"

"should" (indicating a requirement)
Process: "provide"

Object: "the student"

Process Detail: "the ability to submit the thesis."

So, the sentence follows the specified format for a Chris-Rupp-Sentence.

Embedded
SafeSec

Me:

Can you re-formulate the following as a Chris-
Rupp-Sentence? "Let us assume that the signal is
set to on. Then the intended system must be
programmed such that it offers students a
possibility to hand in their work for evaluation as
a thesis."

ChatGPT

Certainly! Here is the re-formulated sentence in
the Chris-Rupp-Sentence format:

"If the signal is set to on, the system shall be
programmed to offer students the ability to hand
in their work for evaluation as a thesis."

Embedded
ITEA Genius SafeSec

" A new project to be submitted in 2 weeks

= >5 European countries, ~35 partners

" 3 main focus points:
* Generation of (formal) requirements from natural language
» Generation of code artifacts from natural language
» Generation of test cases from natural language

= More to comel!

Embedded
Summary and Conclusion SafeSec

" An easy-to-learn and easy-to-understand domain-specific language: LESS

= Refining and analyzing requirements as well as generating test cases
* Embedded into a joint safety / security life cycle

* Two case studies (E-Gas and VAD) successfully completed

= Used in first consultancy projects for automotive customers

= Work in progress: extraction of state diagrams for test case generation
= Al-based natural language dialogues
= Advancing tool support from prototype to product

Thank you for your attention!

	Introduction
	Folie 1: Joint Specification and Testing of Safety and Security Requirements
	Folie 2: Contents of this talk
	Folie 3: Results from the EmbeddedSafeSec Project
	Folie 4: Co-Engineering Functional Safety and Cybersecurity

	Co-Engineering
	Folie 5: Safety and Security Co-Engineering
	Folie 6: Ideal World (Project Proposal)
	Folie 7: Ideal World (Project Proposal)
	Folie 8: Real World – ISO 26262 and ISO/SAE 21434
	Folie 9: Development Phases – Activity Mapping

	CNLs
	Folie 10: Controlled Natural Languages
	Folie 11: Specifying Safety and Security
	Folie 12: Three Definitions
	Folie 13: Characterization
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20

	LESS
	Folie 21: The Domain-Specific Language LESS
	Folie 22: Typical Safety / Security Requirements
	Folie 23: A DSL for Specifying Safety and Security
	Folie 24
	Folie 25: E-Gas Case Study
	Folie 26: E-Gas Case Study
	Folie 27: The LESS Template
	Folie 28: E-Gas Case Study
	Folie 29: VAD Case Study

	Fefinement and Testing Methods
	Folie 30: Refinement and Testing Methods based on LESS
	Folie 31: Three Steps to Analyze and Refine LESS Requirements
	Folie 32: Detailing and Refining S&S Requirements
	Folie 33: Example: Dealing with Vagueness
	Folie 34: Example: Dealing with Missing Definitions
	Folie 35: Checking Consistency and Completeness
	Folie 36: Test Case Generation
	Folie 37: Test Case Generation Tool Support
	Folie 38: Test Case Generation Tool Support
	Folie 39: SQ Magazin June 2023

	Summary and Conclusion
	Folie 40: Next Steps
	Folie 41: ITEA Genius
	Folie 42: Summary and Conclusion

