
Verification of software artifacts 
in the nuclear domain 
(an experience report)

Carlos Lopez Pombo

IFIP WG1.3 Foundations of System Specification

Salzburg, 5-9 / February / 2024

Joint work with German Regis and the instrumentation and control department of the
nuclear division of INVAP S.E.

this->unrn.edu.ar

Nuclear reactors are
potentially dangerous yet
safe in practice

this->unrn.edu.ar

Why nuclear reactors are potentially dangerous?

Fuel and waste management:
The nuclear fuel chain is complicated and it’s transport is in itself vulnerable for

accidents, incidents and theft.

The use of nuclear power leads to the production of large quantities of
dangerous radioactive waste.

Facilities safety:
Facilities might be vulnerable to accidents, incidents and attacks (Fukushima).

Runaway chain reaction (Chernobyl)

The fuel is radioactive material that can be disseminated:

Radiation in high dose is harmful and can even be lethal, and

Contamination with radioactive material can make entire regions uninhabitable
for thousands of years.

The context

this->unrn.edu.ar

What is a runaway chain reaction?

Nuclear fission chain reaction:

A uranium-235 atom absorbs a neutron and fissions into
two fission fragments, releasing two or three new neutrons
and a large amount of binding energy. Neutrons can be:

1. absorbed by an atom of uranium-238, not continuing the

reaction,
2. leave the system without being absorbed, or

3. they might collide with another atom of uranium-235,

leading to another fission, and the release of two or three
neutrons and more binding energy.

A runaway chain reaction is an uncontrolled chain reaction
in the presence of abundant fissionable material (nuclear
fuel rods), resulting in an amount of energy that cannot be
contained by the nuclear reactor’s core (NRC).

The context

this->unrn.edu.ar

Why nuclear reactors are safe in practice?

How nuclear chain reactions can be controlled? 
The NRC has control rods made of materials capable of absorbing
neutrons, like boron, installed in a way that they can be mechanically:

lowered inside the NRC for slowing the chain reaction (and even
stoping it) or

lifted for speeding it up.

Why safety is not an issue? 

There are dozens of analog signals coming out of sensors placed inside
the NRC; if any of them is out of range, the control rods are
automatically lowered and the chain reaction is fully stoped.

How can we trust those analog signals? 
They are measured and processed by a voting process of three
independent double-checked hardware modules built using nuclear
grade certified components.

The context

this->unrn.edu.ar

If it is not safety, what is
our role in this?

this->unrn.edu.ar

Then

The probability of failure of nuclear grade certified
electronics can be accurately estimated

Analog processing and display of signals provides
predictability according to the spec sheet of nuclear
grade hardware components

The problem

this->unrn.edu.ar

Digital displays require software for processing  
the analog signals to be shown over digital  
hardware components

Software failure probability cannot be accurately
estimated, thus there is no predictability

Now
The problem

this->unrn.edu.ar

The cost of a nuclear reactor for producing radioisotopes (the ones built
by INVAP S.E.) is between 10^8 and 10^9 euros

More activity in the NRC —>  
 more energy freed by the chain reaction —>  
 more production yielded by the nuclear reactor

Displays show the state of the NRC, suggesting whether control bars
could be lifted for speeding production up, or should be lowered for
slowing it down

If the displays wrongly show: 
 —less activity than there is, control bars might be lifted forcing an
emergency shut down, fully stoping the production (fuel is lost, NRC has to
be cooled down and refueled, leading to huge losses) 
 —more activity than there is, control bars might be lowered down
slowing down production

The problem
What is the big deal with the displays?

this->unrn.edu.ar

What can we offer?

The usual practice of the software quality assurance department is to use
testing information to clear software to be used in production.

Formal Methods (FMs) have to be applied to the object code that will
“fly”(*) excluding abstractions and imposing severe limitations on the
manipulation of the source code

Full certification of the correct behavior, even under prefixed desirable
properties, is out of reach [Reactive system + First order properties]

Application of FMs only pays off if the verdicts increase the confidence in
the product according to the industry practices, standards and metrics

Apply FMs to increase confidence in the correct behavior of the system:
Case-study: “The information shown is correct with respect to the analog-
digital conversion of the signals coming out from the NRC” (—>)

(*) Industry motto: Test as you fly, fly as you test.

The problem

this->unrn.edu.ar

(<—) "The information shown is correct with respect to the analog-digital
conversion of the signals coming out from the NRC”

The background is invariant according to the scale in which
the signal value is shown

Coherence of the bar:
The first pixel of the line whose number correspond to the

sample data received from the ADC is on and the one
immediately on top is off

If a pixel in a line l within the boundaries of the bar is black
(rest. green), then all the pixels in l within the boundaries of
the bar are black (rest. green)

If a pixel in a line l and column c within the boundaries of
the bar is black (rest. green), then all the pixels in line l’ > l
(resp. l’ < l) and column c within the boundaries of the bar
are black (resp. green)

The pixel state showing the number representation at the
bottom of the display correspond to the conversion to float of
the sample data received from the ADC

The problem

this->unrn.edu.ar

The (proposed) solution

this->unrn.edu.ar

Runtime Verification  
(a compromise between testing and verification)

Pros:
Extends testing quite naturally: the software executes and a tool

monitors that the desired properties (i.e., the specification of the correct
behavior) hold

Appropriate instrumentation allows the separation of event reporting

from properties monitoring

Event reporting constitutes a relatively small time overhead that can be

accurately estimated

Grey area: has to be performed near-line or off-line because the correct

behavior of the system depends on time related issues (e.g., the ADC has
time bounds for the readings to be correct) and, in general, property
checking is slow

Cons: We still cannot be sure…

The (proposed) solution

A runtime verification framework this->unrn.edu.ar

Specification language:

properties to be monitored are first-order formulae with free variables

expressed in SMT-LIB 2 [1]. Free variables are mapped to the program
variables, whose values are to monitored,

an abstract view of the software artifact as a workflow consisting of

tasks (abstracting some form of computation) and checkpoints
(indicating points of interest in the code) as atoms, and combined with
regular operators (including an infinite iteration operator to express
reactive behavior, like control loops of embedded systems)

tasks have pre and postconditions and optional internal checkpoints
checkpoints, both top level and those within tasks, have a set of

properties of interest to be checked

Specification language and events

[1] Clark Barrett Pascal Fontaine Cesare Tinelli, "The SMT-LIB Standard Version 2.6”. Available at: https://smtlib.cs.uiowa.edu/
language.shtml. Release: 2021-05-12

https://smtlib.cs.uiowa.edu/language.shtml
https://smtlib.cs.uiowa.edu/language.shtml

this->unrn.edu.ar

Specification language (example)

The workflow specifying the code for displaying neutron flow in logarithmic
scale(*):

(*) The pre and postconditions of tasks, and properties associated to checkpoints were abstracted away to lighten the visual
representation of the model.

A runtime verification framework

this->unrn.edu.ar

Events (and triggered actions):

variable declaration: declares a variable name for the monitor to track

values of interest (i.e., the free variables in the SMT formulae)
value assignment: reports the newly assigned value to a monitored

variable for the monitor to register a change in the program state
checkpoint reached: indicates that a checkpoint has been reached

(whether it is top level or within tasks), triggering the verifications: a) the
checkpoint can be reached, according to the traversing of the workflow
and, provided that this holds, b) the properties associated to the
checkpoint hold in the current program state

Specification language and events

A runtime verification framework

this->unrn.edu.ar

Events (and triggered actions):

task started: indicates that the execution of the program entered the

fragment of code implementing a specific task, triggering the
verifications: a) the task can start, according to the traversing of the
workflow and, provided that this holds, b) the precondition holds in the
current program state

task finished: indicates that the execution of the program reached the

end of a fragment of code implementing a specific task, triggering the
verifications: a) the task can finish, according to the traversing of the
workflow and, provided that this holds, b) the postcondition holds in the
current program state

Specification language and events

A runtime verification framework

this->unrn.edu.ar

Instrumentation / reporting

Instrumentation is done via an API written in the same language of the
code to be monitored (in this case C) containing a single function (report)

The function report takes a single parameter of type string formatted as
comma separated values: 
 10068,workflow_event,task_finished,init
 10069,workflow_event,task_started,filtering
 10071,workflow_event,variable_value_assigned,main_contador,0
 10076,hardware_event,adc,lectura,0,1661
 10109,workflow_event,checkpoint_reached,filtering_chk

Fields correspond to: 1) time of the event in microseconds, 2) type of the
event (i.e., workflow_event / hardware_event), 3) workflow event type
or hardware component receiving an API function call, depending on the
value of 2), 4) task id / checkpoint id / variable id (in the monitor name
space) , value reported, in the case of 2) being workflow_event and
input parameters and output parameter separated by comma, in the case
of 2) being hardware_event

A runtime verification framework

this->unrn.edu.ar

An important aspect of the monitoring framework is capturing events
related with hardware components…

… software artifacts run within isolated microcontrollers, which are
connected to specific hardware components (in our case-study, an ADC
and an SSD1963 digital display)

The state of the system does not only depend on the values of the
variables being monitored, but also on the internal state of the
hardware components

Example: Without knowing which pixels are set to which color, there is
no way in which the monitor can check the integrity of the information
shown in the display, and how it relates to the data measured by the
sensor in the NRC

Hardware events

A runtime verification framework

this->unrn.edu.ar

The tool

Tool Architecture this->unrn.edu.ar

…

Hardware 
components

(real or simulated)

Program under
analysis

C
om

m
un

ic
at

io
n 

bu
s

Event

reporter

Hardware CMDs

dispatcher

Event report

Execution
monitor

Hardware components’ state

…

Analysis
engines (e.g., Z3,  

CBMC, Minisat, etc)

Reporting
API

Hardware
components’
state query

Hardware
components’

state
update

Analysis requests /
response

Workflow specification
structure + properties

this->unrn.edu.arTool Demo (Reporting)

this->unrn.edu.arTool Demo (Reporting)

this->unrn.edu.arTool Demo (Monitoring)

this->unrn.edu.arTool Demo (Monitoring)

this->unrn.edu.arThe “bug” found

The missing pieces this->unrn.edu.ar

Distributed analysis: we are implementing a parallel and distributed,
multi language verification engine.

Transparent reporting of hardware events: we are reporting hardware
events at software level but we will move to a more transparent approach
by sniffing ports.

Timing: we are working on adding time invariants to tasks enabling the
additional verification of time constraints when tasks start or finish, and
when checkpoints are reached.

Monitoring temporal properties: we plan to implement a monitoring
algorithm for temporal properties, based on the work on Stream Runtime
Verification of Manna, Sanches, et.al.[2]

Interface and usability: rough and minimal, we plan to improve on this
as soon as we get some experience in production

[2] Online and Offline Stream Runtime Verification of Synchronous Systems. In Christian Colombo, Martin Leucker, eds:

Proceedings of the 18th International Conference Runtime Verification - RV 2018, Limassol, Cyprus, November 10-13, 2018. Lecture
Notes in Computer Science 11237, pp. 138-163. Springer-Verlag, 2018.

? & !
this->unrn.edu.ar

