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Nuclear reactors are 
potentially dangerous yet 
safe in practice



this->unrn.edu.ar

Why nuclear reactors are potentially dangerous?

Fuel and waste management: 
The nuclear fuel chain is complicated and it’s transport is in itself vulnerable for 

accidents, incidents and theft.


The use of nuclear power leads to the production of large quantities of 
dangerous radioactive waste.


Facilities safety: 
Facilities might be vulnerable to accidents, incidents and attacks (Fukushima).


Runaway chain reaction (Chernobyl)

The fuel is radioactive material that can be disseminated:

Radiation in high dose is harmful and can even be lethal, and


Contamination with radioactive material can make entire regions uninhabitable 
for thousands of years.

The context
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What is a runaway chain reaction?

Nuclear fission chain reaction: 

A uranium-235 atom absorbs a neutron and fissions into 
two fission fragments, releasing two or three new neutrons 
and a large amount of binding energy. Neutrons can be: 

1. absorbed by an atom of uranium-238, not continuing the 

reaction,  
2. leave the system without being absorbed, or 

3. they might collide with another atom of uranium-235, 

leading to another fission, and the release of two or three 
neutrons and more binding energy. 

A runaway chain reaction is an uncontrolled chain reaction 
in the presence of abundant fissionable material (nuclear 
fuel rods), resulting in an amount of energy that cannot be 
contained by the nuclear reactor’s core (NRC).

The context



this->unrn.edu.ar

Why nuclear reactors are safe in practice?

How nuclear chain reactions can be controlled? 
The NRC has control rods made of materials capable of absorbing 
neutrons, like boron, installed in a way that they can be mechanically:


lowered inside the NRC for slowing the chain reaction (and even 
stoping it) or 


lifted for speeding it up.

Why safety is not an issue? 

There are dozens of analog signals coming out of sensors placed inside 
the NRC; if any of them is out of range, the control rods are 
automatically lowered and the chain reaction is fully stoped.


How can we trust those analog signals? 
They are measured and processed by a voting process of three 
independent double-checked hardware modules built using nuclear 
grade certified components.

The context
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If it is not safety, what is 
our role in this?
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Then

The probability of failure of nuclear grade certified 
electronics can be accurately estimated


Analog processing and display of signals provides 
predictability according to the spec sheet of nuclear 
grade hardware components

The problem
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Digital displays require software for processing  
the analog signals to be shown over digital  
hardware components


Software failure probability cannot be accurately  
estimated, thus there is no predictability

Now
The problem
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The cost of a nuclear reactor for producing radioisotopes (the ones built 
by INVAP S.E.) is between 10^8 and 10^9 euros 

More activity in the NRC —>  
   more energy freed by the chain reaction —>  
   more production yielded by the nuclear reactor


Displays show the state of the NRC, suggesting whether control bars 
could be lifted for speeding production up, or should be lowered for 
slowing it down


If the displays wrongly show: 
     —less activity than there is, control bars might be lifted forcing an 
emergency shut down, fully stoping the production (fuel is lost, NRC has to 
be cooled down and refueled, leading to huge losses) 
     —more activity than there is, control bars might be lowered down 
slowing down production

The problem
What is the big deal with the displays?
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What can we offer?

The usual practice of the software quality assurance department is to use 
testing information to clear software to be used in production.


Formal Methods (FMs) have to be applied to the object code that will 
“fly”(*) excluding abstractions and imposing severe limitations on the 
manipulation of the source code


Full certification of the correct behavior, even under prefixed desirable 
properties, is out of reach [ Reactive system + First order properties ]  

Application of FMs only pays off if the verdicts increase the confidence in 
the product according to the industry practices, standards and metrics


Apply FMs to increase confidence in the correct behavior of the system: 
Case-study: “The information shown is correct with respect to the analog-
digital conversion of the signals coming out from the NRC” (—>) 

(*) Industry motto: Test as you fly, fly as you test.

The problem
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(<—) "The information shown is correct with respect to the analog-digital 
conversion of the signals coming out from the NRC”

The background is invariant according to the scale in which 
the signal value is shown

Coherence of the bar:
The first pixel of the line whose number correspond to the 

sample data received from the ADC is on and the one 
immediately on top is off

If a pixel in a line l within the boundaries of the bar is black 
(rest. green), then all the pixels in l within the boundaries of 
the bar are black (rest. green)

If a pixel in a line l and column c within the boundaries of 
the bar is black (rest. green), then all the pixels in line l’ > l 
(resp. l’ < l) and column c within the boundaries of the bar 
are black (resp. green)

The pixel state showing the number representation at the 
bottom of the display correspond to the conversion to float of 
the sample data received from the ADC

The problem
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The (proposed) solution



this->unrn.edu.ar

Runtime Verification  
(a compromise between testing and verification)

Pros: 
Extends testing quite naturally: the software executes and a tool 

monitors that the desired properties (i.e., the specification of the correct 
behavior) hold

Appropriate instrumentation allows the separation of event reporting 

from properties monitoring

Event reporting constitutes a relatively small time overhead that can be 

accurately estimated

Grey area: has to be performed near-line or off-line because the correct 

behavior of the system depends on time related issues (e.g., the ADC has 
time bounds for the readings to be correct) and, in general, property 
checking is slow 

Cons: We still cannot be sure…

The (proposed) solution
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Specification language: 

properties to be monitored are first-order formulae with free variables 

expressed in SMT-LIB 2 [1]. Free variables are mapped to the program 
variables, whose values are to monitored,

an abstract view of the software artifact as a workflow consisting of 

tasks (abstracting some form of computation) and checkpoints 
(indicating points of interest in the code) as atoms, and combined with  
regular operators (including an infinite iteration operator to express 
reactive behavior, like control loops of embedded systems)

tasks have pre and postconditions and optional internal checkpoints 
checkpoints, both top level and those within tasks, have a set of 

properties of interest to be checked

Specification language and events

[1] Clark Barrett Pascal Fontaine Cesare Tinelli, "The SMT-LIB Standard Version 2.6”. Available at: https://smtlib.cs.uiowa.edu/
language.shtml. Release: 2021-05-12 

https://smtlib.cs.uiowa.edu/language.shtml
https://smtlib.cs.uiowa.edu/language.shtml
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Specification language (example)

The workflow specifying the code for displaying neutron flow in logarithmic 
scale(*):

(*) The pre and postconditions of tasks, and properties associated to checkpoints were abstracted away to lighten the visual 
representation of the model.

A runtime verification framework
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Events (and triggered actions):

variable declaration: declares a variable name for the monitor to track 

values of interest (i.e., the free variables in the SMT formulae) 
value assignment: reports the newly assigned value to a monitored 

variable for the monitor to register a change in the program state 
checkpoint reached: indicates that a checkpoint has been reached 

(whether it is top level or within tasks), triggering the verifications: a) the 
checkpoint can be reached, according to the traversing of the workflow 
and, provided that this holds, b) the properties associated to the 
checkpoint hold in the current program state

Specification language and events

A runtime verification framework
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Events (and triggered actions):

task started: indicates that the execution of the program entered the 

fragment of code implementing a specific task, triggering the 
verifications: a) the task can start, according to the traversing of the 
workflow and, provided that this holds, b) the precondition holds in the 
current program state

task finished: indicates that the execution of the program reached the 

end of a fragment of code implementing a specific task, triggering the 
verifications: a) the task can finish, according to the traversing of the 
workflow and, provided that this holds, b) the postcondition holds in the 
current program state

Specification language and events

A runtime verification framework
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Instrumentation / reporting

Instrumentation is done via an API written in the same language of the 
code to be monitored (in this case C) containing a single function (report)


The function report takes a single parameter of type string formatted as 
comma separated values: 
     10068,workflow_event,task_finished,init 
     10069,workflow_event,task_started,filtering 
     10071,workflow_event,variable_value_assigned,main_contador,0 
     10076,hardware_event,adc,lectura,0,1661 
     10109,workflow_event,checkpoint_reached,filtering_chk


Fields correspond to: 1) time of the event in microseconds, 2) type of the 
event (i.e., workflow_event / hardware_event), 3) workflow event type 
or hardware component receiving an API function call, depending on the 
value of 2), 4) task id / checkpoint id / variable id (in the monitor name 
space) , value reported, in the case of 2) being workflow_event and 
input parameters and output parameter separated by comma, in the case 
of 2) being hardware_event

A runtime verification framework
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An important aspect of the monitoring framework is capturing events 
related with hardware components…


… software artifacts run within isolated microcontrollers, which are 
connected to specific hardware components (in our case-study, an ADC 
and an SSD1963 digital display)


The state of the system does not only depend on the values of the 
variables being monitored, but also on the internal state of the 
hardware components


Example: Without knowing which pixels are set to which color, there is 
no way in which the monitor can check the integrity of the information 
shown in the display, and how it relates to the data measured by the 
sensor in the NRC

Hardware events

A runtime verification framework
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The tool
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Distributed analysis: we are implementing a parallel and distributed, 
multi language verification engine.


Transparent reporting of hardware events: we are reporting hardware 
events at software level but we will move to a more transparent approach 
by sniffing ports.


Timing: we are working on adding time invariants to tasks enabling the 
additional verification of time constraints when tasks start or finish, and 
when checkpoints are reached.


Monitoring temporal properties: we plan to implement a monitoring 
algorithm for temporal properties, based on the work on Stream Runtime 
Verification of Manna, Sanches, et.al.[2]


Interface and usability: rough and minimal, we plan to improve on this 
as soon as we get some experience in production

[2] Online and Offline Stream Runtime Verification of Synchronous Systems. In Christian Colombo, Martin Leucker, eds:

Proceedings of the 18th International Conference Runtime Verification - RV 2018, Limassol, Cyprus, November 10-13, 2018. Lecture 
Notes in Computer Science 11237, pp. 138-163. Springer-Verlag, 2018.
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