Hennessy-Milner Theorems via Galois Connections

Barbara König Universität Duisburg-Essen

Based on joint work with Harsh Beohar, Sebastian Gurke, Karla Messing

- Motivation
- 2 General Framework
- Bisimilarity
- Trace Metrics
- Conclusion

Motivation

Hennessy-Milner theorems connect behavioural equivalences with modal logics. Given two states $x_1, x_2 \in X$ and formulas φ :

$$x_1 \sim x_2 \iff \forall \varphi \colon (x_1 \models \varphi \Leftrightarrow x_2 \models \varphi)$$

There is a metric analogue, where d is a pseudo-metric on the state space and formulas φ evaluate to real-valued predicates $[\![\varphi]\!]:X\to[0,1]$

$$d(x_1,x_2) = \bigvee_{\varphi} \left| \llbracket \varphi \rrbracket(x_1) - \llbracket \varphi \rrbracket(x_2) \right|$$

Given a behavioural equivalence, the aim is typically to determine a modal logic that characterizes this equivalence → linear-time/branching-time spectrum [van Glabbeek], coalgebraic modal logics

Motivation

x, y are not bisimilar $(x \nsim y)$

They are distinguished by $\varphi = \diamondsuit_a(\diamondsuit_b \ true \land \diamondsuit_c \ true)$ where $x \models \varphi, \ y \not\models \varphi$.

Motivation

Our contributions:

- Hennessy-Milner theorems can be obtained from the fact that least fixpoints are preserved by left adjoints (of a Galois connection).
- Rather than starting with the definition of a behavioural equivalence, we go the other way and derive fixpoint equations for behavioural equivalences/metrics from the modal logics. (Including compositionality results.)
- We obtain (new) fixpoint equations for decorated trace metrics.

Galois Connection

Definition

Let \mathbb{L} , \mathbb{B} be two complete lattices with order \sqsubseteq . A Galois connection from \mathbb{L} to \mathbb{B} is a pair $\alpha \dashv \gamma$ of monotone functions such that

$$\alpha(\ell) \sqsubseteq m \iff \ell \sqsubseteq \gamma(m),$$

for all $\ell \in \mathbb{L}$, $m \in \mathbb{B}$.

Intuition in our case: \mathbb{L} – logical universe, \mathbb{B} – behaviour universe

General setting

$$\log \ \ \, \mathbb{L} \ \ \, \underbrace{ \ \ \, }_{\gamma} \ \ \, \mathbb{B} \ \, \mathrm{Deh}$$

$$\mathrm{beh} = \alpha \circ \log \circ \gamma$$

Compatibility

Let $\log, c \colon \mathbb{L} \to \mathbb{L}$ be two monotone endo-functions on a lattice \mathbb{L} . We call $\log c$ -compatible whenever $\log \circ c \sqsubseteq c \circ \log$.

Compatibility: concept borrowed from up-to techniques

Theorem

Let $\alpha \colon \mathbb{L} \to \mathbb{B}$, $\gamma \colon \mathbb{B} \to \mathbb{L}$ be a Galois connection and let $\log \colon \mathbb{L} \to \mathbb{L}$, beh: $\mathbb{B} \to \mathbb{B}$ (both monotone).

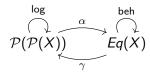
- **1** Then $\alpha \circ \log = \text{beh} \circ \alpha$ implies $\alpha(\mu \log) = \mu \text{ beh}$.
- 2 Let $c=\gamma\circ\alpha$ be the closure operator of the Galois connection and let beh $=\alpha\circ\log\circ\gamma$.

Then *c*-compatibility of log implies $\alpha(\mu \log) = \mu \cosh$.

 μ : least fixpoint operator

This theorem is well-known and goes back to work of Cousot & Cousot on abstract interpretation.

We instantiate this framework and start with the simplest case: bisimilarity on labelled transition systems (with state space X).



Eq(X): set of all equivalences on X, ordered by \supseteq

$$\alpha(S) = \{(x_1, x_2) \in X \times X \mid \forall S \in S : (x_1 \in S \Leftrightarrow x_2 \in S)\}$$

$$\gamma(R) = \{S \subseteq X \mid \forall (x_1, x_2) \in R : (x_1 \in S \Leftrightarrow x_2 \in S)\}$$

If $\log \circ c \subseteq c \circ \log$ (where $c = \gamma \circ \alpha$) and $beh = \alpha \circ \log \circ \gamma$:

$$\alpha(\mu \log) = \mu \operatorname{beh}$$

(μ : least fixpoint. Contravariance!) This is the Hennessy-Milner theorem (logical equivalence = behavioural equivalence).

Obtaining
$$\alpha(\{S_1,S_2\})$$
 for $S_1,S_2\subseteq X=\{a,b,c,d,e,f,g\}$
$$S_1 \qquad S_2$$

$$b \qquad d \qquad c \qquad f$$

Logic function:

$$\log(\mathcal{S}) = \bigcup_{a \in A} \diamondsuit_a[cI_f(\mathcal{S})]$$

- cl_f closes a set of sets under all finite boolean operations (empty conjunction: true, empty disjunction: false)
- $\diamondsuit_a(S) = \{x \in X \mid \exists y \in S \colon x \stackrel{a}{\to} y\}$
- Closure: $c = \alpha \circ \gamma$ closes a set of sets under all boolean operators log is compatible with c if transition system is *finitely branching*
- Behaviour function: for $R \in Eq(X)$

$$beh(R) = \alpha(\log(\gamma(R))) = \{(x_1, x_2) \mid \forall y_1 : x_1 \xrightarrow{a} y_1 \exists y_2 : x_2 \xrightarrow{a} y_2 \land (y_1, y_2) \in R \land \forall y_2 : x_2 \xrightarrow{a} y_2 \exists y_1 : x_1 \xrightarrow{a} y_1 \land (y_1, y_2) \in R\}$$

Trace equivalence can be generalized to trace metrics [de Alfaro, Faella, Stoelinga] [Fahrenberg, Legay] that measures the distance between the sets of traces originating from two states.

Useful for systems with quantitative information (probabilities, weights, etc.) where behavioural equivalence is too strict.

Here: we generalize the trace inclusion preorder to a directed trace metrics.

First step: Extend transition systems with a metric

 $d_A \colon A \times A \to [0,1]$ on the label set A.

Preliminaries on metrics

- DPMet(Y): set of all directed pseudo-metrics on Y, i.e., functions $d: Y \times Y \rightarrow [0,1]$ such that
 - d(y,y) = 0 for all $y \in Y$
 - $d(y_1, y_3) \le d(y_1, y_2) + d(y_2, y_3)$ (triangle inequality) for all $y_1, y_2, y_3 \in Y$.
 - not necessarily symmetric $(d(y_1, y_2) = d(y_2, y_1))$
- Directed pseudometric space: set Y with a directed pseudo-metric d
- Non-expansive functions between pseudometric spaces (Y, d_Y) , (Z, d_Z) : mapping $f: Y \to Z$ with $d_Z(f(y_1), f(y_2)) \le d_Y(y_1, y_2)$ for all $y_1, y_2 \in Y$.

Addition and subtraction are modified to stay within [0,1]

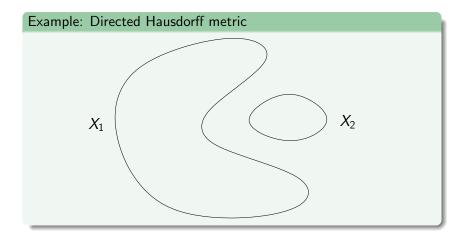
14

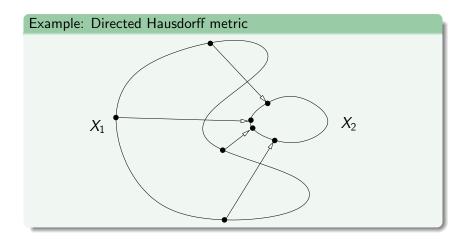
Directed Hausdorff metric

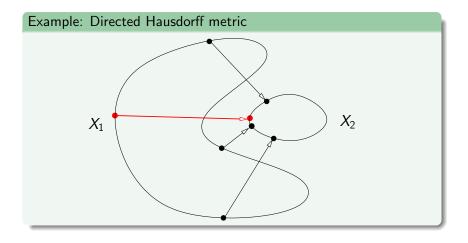
Lifting a directed metric space (X, d) to $(\mathcal{P}(X), d^H)$: let $X_1, X_2 \subseteq X$:

$$d^{H}(X_{1}, X_{2}) = \max_{x_{1} \in X_{1}} \min_{x_{2} \in X_{2}} d(x_{1}, x_{2})$$

- For each element $x_1 \in X_1$ take the closest element $x_2 \in X_2$ and measure the distance $d(x_1, x_2)$
- Take the maximum of all such distances.







Trace Distance of two states x, y

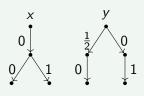
- Let $Tr(x) \subseteq A^*$ be the set of finite traces of x.
- The distance of two traces σ_1, σ_2 is defined as

•
$$d_{\mathsf{Tr}}(\sigma_1, \sigma_2) = 1$$
 if $|\sigma_1| \neq |\sigma_2|$

- $d_{Tr}(\varepsilon, \varepsilon) = 0$
- $d_{\mathsf{Tr}}(a_1\sigma_1', a_2\sigma_2') = \max\{d_A(a_1, a_2), d_{\mathsf{Tr}}(\sigma_1', \sigma_2')\}$ (sup-metric)
- Given two states x, y:

$$d(x,y) = (d_{\mathsf{Tr}})^H(\mathit{Tr}(x),\mathit{Tr}(y))$$

17



For simplicity we restrict to traces of length 2:

$$d(x,y) = (d_{\mathsf{Tr}})^{H} (\{00, 01\}, \{\frac{1}{2}, 0, 01\})$$

Hence: $d(x, y) = \frac{1}{2}$.

We apply our receipe and use the following Galois connection:

$$\log \left(\mathcal{P}([0,1]^X), \subseteq \right) \underbrace{ \left(\overset{lpha}{DPMet}(\mathcal{P}(X)), \subseteq \right) }_{\gamma} \text{ behavior}$$

$$\alpha(\mathcal{F})(X_1,X_2) = \bigvee_{f \in \mathcal{F}} (\tilde{f}(X_1) - \tilde{f}(X_2))$$

$$\gamma(d) = \{ f \in [0,1]^X \mid \tilde{f} \text{ is non-expansive wrt. } d \}$$
where $\tilde{f}: \mathcal{P}(X) \to [0,1]$

$$(f: X \to [0,1])$$

$$\tilde{f}(X') = \bigvee_{x \in X'} f(x)$$

Logic function:

Modality:
$$\bigcirc_a f(x) = \bigvee \{ \overline{D_a}(b) \land f(x') \mid x \xrightarrow{b} x' \}$$
 where $a \in A$, $f \colon X \to [0,1]$, $\overline{D_a}(b) = 1 - d_A(b,a)$.
$$\log(\mathcal{F}) = \bigcup_{a \in A} \bigcirc_a [\mathit{cl}^\mathsf{sh}(\mathcal{F})] \cup \{1\},$$

where cl^{sh} closes a set of functions under constant shifts $(f \mapsto f + c, f - c, c \in [0, 1])$.

The logic function is compatible with the closure of the Galois connection (shifts are needed for compatibility).

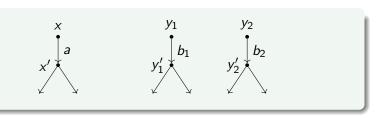
Completeness:

In order to convince ourselves that the logic is complete, we construct a distinguishing formula φ .

To obtain the trace distance of states x, y, take the trace $a_1 \dots a_n \in Tr(x)$ of x that is farthest from any trace in Tr(y).

Define
$$\varphi = \bigcap_{a_1} \cdots \bigcap_{a_n} 1$$

Fixpoint function/equation (special case): beh = $\alpha \circ \log \circ \gamma$



$$beh(d)(\{x\}, \{y_1, y_2\})$$

$$= (d_A(a, b_1) \land d_A(a, b_2)) \lor (d_A(a, b_1) \land d(\{x'\}, \{y'_2\}))$$

$$\lor (d_A(a, b_2) \land d(\{x'\}, \{y'_2\})) \lor d(\{x'\}, \{y'_1, y'_2\})$$

This result depends on the fact that $([0,1], \leq)$ is a distributive lattice.

Further Results

We can also handle . . .

- Preorders
- Behavioural metrics
- Decorated trace equivalences and metrics (completed traces, readiness, failure, etc.)

on labelled transition systems respectively metric transition systems.

Coalgebra & Fibrations

Future work: generalization for coalgebras living in Eilenberg-Moore categories (with Lutz Schröder, Jonas Forster, Paul Wild)

It is our aim to show that the following three notions induce the same metric:

- behavioural metrics obtained in the graded monad setting
- graded modal logics
- least solution of a fixpoint equation defined on the determinized coalgebra

Conclusion

Related Work

- Fahrenberg, Legay, Thrane: Characterization of the metric linear-time/branching-time spectrum via games. Does not treat logics and fixpoint equations for trace metrics are different.
- Klin (e.g. in Klin's PhD thesis): different handling of the closure, does not treat behavioural metrics.
- Dual adjunction: functor on the "logic universe" characterizes the syntax of the logics rather than the semantics. Fibrational setup deviates from [Kupke, Rot].
- Approximating family [Komorida, Katsumata, Kupke, Rot, Hasuo]: related to our notion of compatibility.