IFIP WG 1.3, Septembre 5–9, 2022 Lipari

Minimisation of Event Structures

Alessandra Raffaetà

What are we talking about?

True Concurrency

* Interleaving

concurrency reduced to the nondeterministic choice between the possible interleaving

True concurrent semantics

different concurrency causality

(Prime) Event structures

- * Prime event structures
- [Nielsen, Plotkin, Winskel]

• E events

$$(E, \leq, \#, \lambda)$$

- ≤ causality
- # conflict
- λ labelling

Computations as Configurations

$$(E, \leq, \#, \lambda)$$

Computations as configurations

(causally closed, conflict-free)

$$\emptyset \xrightarrow{taxi} \{taxi\} \xrightarrow{visa_0} \{taxi, visa_0\} \xrightarrow{airport_0} \{taxi, visa_0, airport_0\}$$

More expressive ES models

- Flow event structures [Boudol, Castellani]
 - Causality replaced by **flow relation** which permits conflictual disjunctive causes

More expressive ES models

* Asymmetric event structures

[Langerak], [B.. Corradini, Montanari]

• Asymmetric conflict: decl can be executed only before $visa_{01}$

Mining processes as ESs

* Processes mined in the form of event structures

[Dumas, García-Bañuelos, Armas-Cervantes, ...]

Original questions

* Can we get **smaller models**, by some form of **quotient**, keeping the **concurrent behaviour unchanged**?

* **Folding**: Surjective $f: E \to E'$, that **merges some events** establishing a **concurrent bisimulation**

* Some work ad hoc in [B., García-Bañuelos, Armas-Cervantes,]

Original questions

* It worked ...

General theory?

General theory of behaviour-preserving quotients for event structures?

- * Is the **notion of folding adequate** for expressing behaviour-preserving quotients?
- * Is there a **minimal quotient** in some general class of event structures? Does it exist in **specific subclasses**?
- * Can we have a **characterisation** of foldings directly on the ES?

Poset ES

* $\langle E, Conf(E), \lambda \rangle$

[Rensink]

- * E events
- * *Conf*(*E*) is a set of **configurations** (posets of events)

Prefix order on configurations

Stable ES as Poset ES

- * Common stable ES models are instances of poset ES
 - prime ES [Nielsen, Plotkin, Winskel]
 - * flow ES [Boudol, Castellani]
 - bundle ES [Langerak]
 - * asymmetric ES. [B., Corradini, Montanari]

...

Behavioural Equiv.: Hhp-bisimilarity

fully observes the interplay between causality, concurrency, non-determinism

HHP-bisimilarity between E and E'

$$R = \{ (C, f, C') \mid C \in Conf(\mathsf{E}), \ C' \in Conf(\mathsf{E}'), \ f : C \xrightarrow{\sim} C' \}$$

• Simulation:

if
$$(C_1, f, c_1') \in R$$
 and $C_1 \xrightarrow{x} C_2$ then $C_1' \xrightarrow{x'} C_2'$ with $(C_2, f[x \mapsto x'], C_2') \in R$, and vice versa.

• Down closure: if $(C_1, f, c'_1) \in R$ and $C_2 \sqsubseteq C_1$ then $(C_2, f_{|C_2}, f(C_2)) \in R$.

HHP-Bisimilarity

* An event of a system must be simulated by an event of the other with the same history (causal links)

Example

 \mathbf{E}_1 : $a \parallel b$

a b

 \swarrow_{hhp}

 E_2 : ab + ba

$$\emptyset \xrightarrow{\{a\}} \{a\} \xrightarrow{\{b\}} \{a < b\}$$

E₁ can perform b causally dependent on a while E₂ cannot

$$\emptyset \xrightarrow{\{a\}} \{a\} \xrightarrow{\{b\}} \{a < b\}$$

$$\{a \mid b\}$$

after a, E₁ can choose between a **causally dependent** and a **concurrent** b while E₂ cannot

Folding

Morphism

ES

 $f: E_1 \to E_2$ function on events, transform confs into confs

Folding

Folding ES_f Surjective morphism ES_f

 $R_f = \{(C, f_{|C}, f(C)) \mid C \}$

is hhp-bisimilarity

Int.: Merge events
without changing the concurrent behaviour

Folding Equivalence \equiv_f def. by $e_1 \equiv_f e_2$ iff $f(e_1) = f(e_2)$

then $E \sim_{hhp} E_{/\equiv_f}$

Folding: Example

Is the notion of folding adequate?

* Not all quotients which preserve behaviour are foldings

Minimal quotients?

Joining foldings

Joining Foldings

Given two foldings $f: E \to E'$ and $f: E \to E''$ there are always foldings $f: E' \to E_{/\equiv}$ and $f: E'' \to E_{/\equiv}$ where \equiv is $(\equiv_f \cup \equiv_g)^*$

Pushout in ESf

Joining foldings: example

Maximally folded ES / Minimal quotient

Lattice of folding equivalences

Given a poset ES the **folding equivalences** form a complete sublattice of the lattice of equivalences over E

Corollary

Given a poset ES there exists its maximally folded version min(E)

Characterising foldings

Folding through PESs

Theorem: Each poset ES E is the folding of a canonical **Prime** ES

$$\phi_E: \mathbb{P}(E) \to E$$

Histories of event *c*

Folding factorises through PESs

Theorem

Given poset ES E and E' and a morphism $f: E \to E'$ consider

$$\mathsf{E} \xrightarrow{f} \mathsf{E}'$$

f is a folding iff $\mathbb{P}(f)$ is a folding

Foldings on PES

Characterisation

Labels & causes $f: \mathsf{P} \to \mathsf{P}'$ surjective PE

f is a folding iff $\forall W \subset \Gamma$ Conflicts

- 1. if $x \#^{\forall} f^{-1}$
- Concurrency 2. if f(x) = f(y), $\cap W$ $\{x,y\}$ $= f(x) \text{ and } \cap (W \cup \{z\}).$ then $\exists z \in P$ such

Minimal Foldings for PESs?

Theorem:

Any PES has maximally folded version in the class of PESs

Example

Minimal Foldings for other classes?

Not true in the class of FESs (and other subclasses)

Conclusion

[Joyal, Nielsen, Winskel]

Foldings as open maps (with poset as cat of obs)

-> more abstract and general view of the results?

Folding algorithms (for PESs and other subclasses)?

Folding for operational models (finitary representations of ESs, e.g. Petri nets)