
Hybrid System Development in Event-B

Zheng Cheng Dominique Méry
LORIA & Université de Lorraine

Meeting IFIP WG 1.3 at Lipari
September 5-September 9

1 / 61



General Summary

Hybrid Systems

Short Summary on Event-B

General Description of the Methodology

Design Hybrid Systems in Event-B (I)

Design Hybrid Systems in Event-B (II)

Embedding Event-B Events as B Operation

Discussion - Conclusion - Perspectives

2 / 61



Current Summary

Hybrid Systems

Short Summary on Event-B

General Description of the Methodology

Design Hybrid Systems in Event-B (I)

Design Hybrid Systems in Event-B (II)

Embedding Event-B Events as B Operation

Discussion - Conclusion - Perspectives

3 / 61



What Are Hybrid Systems

General Ideas

I Examples: bouncing ball, thermostat, inverted pendulum . . .

I A hybrid system is a dynamical system that exhibits both
continuous and discrete dynamic behavior

I Hybrid system = continuous dynamics + discrete jump

I Model-based hybrid system design

Hybrid Modeling

I discrete variables (x ∈ Z)

I continuous variables (y ∈ R+→ D)

I Hybrid Modelling = continuous events + discrete events

4 / 61



What Are Hybrid Systems

General Ideas

I Examples: bouncing ball, thermostat, inverted pendulum . . .

I A hybrid system is a dynamical system that exhibits both
continuous and discrete dynamic behavior

I Hybrid system = continuous dynamics + discrete jump

I Model-based hybrid system design

Hybrid Modeling

I discrete variables (x ∈ Z)

I continuous variables (y ∈ R+→ D)

I Hybrid Modelling = continuous events + discrete events

4 / 61



Current Summary

Hybrid Systems

Short Summary on Event-B

General Description of the Methodology

Design Hybrid Systems in Event-B (I)

Design Hybrid Systems in Event-B (II)

Embedding Event-B Events as B Operation

Discussion - Conclusion - Perspectives

5 / 61



Short Summary on Event-B

I Context: static properties of Event-B models
I Sets: user-defined types
I Constants: static object in development
I Axioms: presumed properties about sets and constants
I Theorems: derived properties about sets and constants

SETS
A

CONSTANTS
B,C , f

AXIOMS
ax1 : B <: A
ax2 : C <: A
ax3 : g ∈ B 7→ C

. . .

6 / 61



Short Summary on Event-B

I Machine: behavioral properties of Event-B models
I Variables: states
I Invariants: properties of variables that always need to hold
I Theorems: derived properties about variables
I Events: possible state changes

EVENT e
ANY

p
WHER
CONSTANTS

B,C , f
AXIOMSS

ax1 : B <: A
ax2 : C <: A
ax3 : g ∈ B 7→ C

. . .

7 / 61



General form of an event

EVENT e
ANY t
WHERE

G (c , s, t, x)
THEN

x : |(P(c , s, t, x , x ′))
END

I c et s are constantes and visible
sets by e

I x is a state variable or a list of
variabless

I G (c , s, t, x) is the condition for
observing e.

I P(c , s, t, x , x ′) is the assertion for
the relation over x and x ′.

I BA(e)(c , s, x , x ′) is the before-after
relationship for e and is defined by
∃t.G (c , s, t, x) ∧ P(c , s, t, x , x ′).

8 / 61



Short Summary on Event-B

I Proof obligations: must be proved to show that Event-B
models fulfill their specified properties.
I INV: invariant preservation
I FIS: action feasibility
I ...

9 / 61



General form of proof obligations for an event e

Proofs obligations are simplified when they are generated by the
module called POG and goals in sequents as Γ ` G :

1. Γ ` G1 ∧G2 is decomposed into the two sequents
(1)Γ ` G1

(2)Γ ` G2

2. Γ ` G1 ⇒ G2 is transformed into the sequent Γ,G1 ` G2

Proof obligations in Rodin

I INIT/I/INV : C (s, c), INIT (c, s, x) ` I (c , s, x)

I e/I/INV :
C (s, c), I (c , s, x),G (c , s, t, x),P(c , s, t, x , x ′) ` I (c , s, x ′)

I e/act/FIS : C (s, c), I (c , s, x),G (c , s, t, x) ` ∃x ′.P(c , s, t, x , x ′)

10 / 61



Short Summary on Event-B

I Theory plugin: more modularize and reusable polymorphic
“Context”

I Developed at University of Southampton
I Installation:

http://rodin-b-sharp.sourceforge.net/updates
I Modelling Extensions → Theory Feature

Extension of theories

The Event-B modelling language can be extended for handling
entities as differential equations, continuity, . . .

11 / 61

http://rodin-b-sharp.sourceforge.net/updates


Current Summary

Hybrid Systems

Short Summary on Event-B

General Description of the Methodology

Design Hybrid Systems in Event-B (I)

Design Hybrid Systems in Event-B (II)

Embedding Event-B Events as B Operation

Discussion - Conclusion - Perspectives

12 / 61



General Description of the Methodology

PB:
Problem Statement

MO:
Event-B Modelling

GC:
Generation of code
from Event-B/B Models

HP:
Hybrid Program

specification

translates

generates

implements

13 / 61



Problem Statement

I formalize the system to-be-developed using the continuous
action system.

I precisely express the problem context.

14 / 61



Event-B Modelling

I model the formalized problem context in Event-B.

I use refinement methodology to design correct hybrid system
by construction.

I focus on high-level system modeling.

15 / 61



Generation of code

I develop implementations in Atelier-B.

I certified translation from Event-B to Atelier-B.

I focus on low-level software development.

16 / 61



Hybrid Program

I validates the implementation against certain industry code
standards by cross-validation.

17 / 61



Points in this talk

I Focus on Event-B modeling in this talk

I Illustrate our modeling on a smart heating system example

I Illustrate modularization of software-based component
(Embedding Event-B Events as B Operation)

18 / 61



Current Summary

Hybrid Systems

Short Summary on Event-B

General Description of the Methodology

Design Hybrid Systems in Event-B (I)

Design Hybrid Systems in Event-B (II)

Embedding Event-B Events as B Operation

Discussion - Conclusion - Perspectives

19 / 61



Smart Heating System

I 2 modes: ON/OFF

I Simple dynamics: Ṫ =1/-1

I Sample at δ s

I Switch mode costs tact s
(tact < δ)

I Safety: Tmin ≤ T ≤ Tmax

20 / 61



Our Goals

I Design systems in a logical framework, and reason their safety
in a machine-checkable way.

I Taking implementation constraints into problem abstraction
to reduce the implementation efforts.

21 / 61



Refinement Strategy for Hybrid System Design

M safety

M cycle

M close loop

M control logic

M worst case analysis

M implementation

M specification
theory

D

controller

specia
lizati

on

USES

translation

design

REFINES

REFINES

REFINES

REFINES

REFINES

22 / 61



Smart Heating System (M safety)

t∞

T

Tmin

Tmax

f

23 / 61



Smart Heating System (M cycle)

t

T

Tmin

Tmax

now now+41 now+42

f1

f2

24 / 61



Smart Heating System (M close loop)

t

T

Tmin

Tmax

now
f1,41

now +41

f2,42

f1

f2

25 / 61



Smart Heating System (M control logic)
Case 1 (Bad): ON mode, T (now) ≤ Tmax , Stay ON

t

T

Tmin

Tmax

now
26 / 61



Smart Heating System (M control logic)
Case 1 (Good): ON mode, T (now + buffer) ≤ Tmax , Stay ON

t

T

Tmin

Tmax

now now + buffer

Ton

27 / 61



Smart Heating System (Revisit)

I 2 modes: ON/OFF

→ the only actuation we can do

I Simple dynamics: Ṫ =1/-1

→ monotonicity

I Sample at δ s

→ Decision at sampling time

I Switch mode costs tact s
(tact < δ)

→ Cost of switch mode

I Safety: Tmin ≤ T ≤ Tmax

28 / 61



Smart Heating System (M worst case analysis)
Case 1: ON mode, T (now + δ + tact) ≤ Tmax , Stay ON

t

T

Tmin

Tmax

now now + δ

now + δ + tact

Ton

29 / 61



Smart Heating System (M implementation)

ON
Ṫ = 1

start
ONOFF
Ṫ = ...

OFF
Ṫ = −1

OFFON
Ṫ = ...

Ton(now + δ + tact ) > Tmax
Ton(now + δ + tact ) ≤ Tmax

Toff (now + δ + tact ) < Tmin Toff (now + δ + tact ) ≥ Tmin

T
o

ff
(n

ow
+
δ
+

ta
ct )

≥
T

m
in

T off
(n

ow
+
δ
+

t ac
t
)
<

T m
in

T
o

ff
(n

ow
+
δ
+

t a
ct
)
≤

T
m

a
x

T off
(n

ow
+
δ
+

t ac
t
)
>

T m
ax

30 / 61



Smart Heating System (M implementation)

1: if q = ON ∨ q = OFFON then
2: if Ton(now + δ + tact) ≤ Tmax then
3: q ← ON
4: else
5: q ← ONOFF
6: end if
7: else if q = OFF ∨ q = ONOFF then
8: if Toff (now + δ + tact) ≥ Tmin then
9: m ← OFF

10: else
11: m ← OFFON
12: end if
13: end if

31 / 61



Overview of proof efforts

Total Auto. Man.
M specification 8 7 1

M safety 14 11 3

M cycle 16 9 7

M close loop 23 18 5

M control logic 42 27 15

M worst case analysis 231 149 82

M implementation 134 99 35

Total 468 320 (68%) 148 (32%)

32 / 61



Current Summary

Hybrid Systems

Short Summary on Event-B

General Description of the Methodology

Design Hybrid Systems in Event-B (I)

Design Hybrid Systems in Event-B (II)

Embedding Event-B Events as B Operation

Discussion - Conclusion - Perspectives

33 / 61



Smart Heating System

I 2 modes: ON/OFF

I Dynamics to be developed
at low-level modeling: Ṫ

I Sample at δ seconds

I Safety: Tmin ≤ T ≤ Tmax

. . . refining a little bit mpre!

Adding Sensing and Actuating events.

34 / 61



Smart Heating System (Specification M0)

Checklist:

I Generic hybrid system state trajectory

I Generic safety property

I Big-step semantics

35 / 61



Smart Heating System (Safety M1)

t∞

T

Tmin

Tmax

f

36 / 61



Smart Heating System (Safety M1)

Checklist:

I Concrete system state trajectory

I Concrete safety property

I Big-step semantics refined

37 / 61



Smart Heating System (Cycle M2)

t

T

Tmin

Tmax

now now+41 now+42

f1

f2

38 / 61



Smart Heating System (Cycle M2)

Checklist:

I Time pointer

I Refined system state trajectory

I Refined safety property

I Small-step semantics

39 / 61



Smart Heating System (Close-loop M3)

t

T

Tmin

Tmax

predict predict

progress

progress

40 / 61



Smart Heating System (Close-loop M3)

Checklist:

I Variable for close-loop mode control

I Prediction (Controller)

I Progression (Plant)

41 / 61



Smart Heating System (Control Logic M4)
Time-triggered

Goal:

I Assuming the controller takes place in a safe system state

I Assuming exists a specification of system dynamics

I Planning for a trajectory that is safe before the controller
takes place next time

42 / 61



Smart Heating System
Sub-system Specification

A specification for the dynamics of heating system:

I mode ON: monotonically increasing
(∀t1, t2 · t1 ≥ t2→ T (t1) ≥ T (t2))

I mode OFF: monotonically decreasing
(∀t1, t2 · t1 ≥ t2→ T (t1) ≤ T (t2))

43 / 61



Case 1: ON mode, T (now + δ) ≤ Tmax , Stay ON

t

T

Tmin

Tmax

now now + δ

Ton

44 / 61



Case 2: ON mode, T (now + δ) > Tmax , TO OFF

t

T

Tmin

Tmax

now
now + δ

Ton

45 / 61



Current Summary

Hybrid Systems

Short Summary on Event-B

General Description of the Methodology

Design Hybrid Systems in Event-B (I)

Design Hybrid Systems in Event-B (II)

Embedding Event-B Events as B Operation

Discussion - Conclusion - Perspectives

46 / 61



Time-triggered Design in Event-B

Event Predictioni =̂
R e f i n e s Predictioni
Where . . .

grd1 : Ci (x)
grd2 : s = DECISION

Theorem
thm1 : ∀t · t ∈ (now , now + δ]⇒ Safe(xui (t))

Then . . .
act1 : u, tu := ui , δ
act2 : s := RUN

End

47 / 61



Decomposing Time-triggered Design
Sensing: modeling sensor imperfections

Machine M IMPL
R e f i n e s M TIME TRIGGERED
V a r i a b l e s x xs . . .
I n v a r i a n t s

invxs : Rs(xs , x)
E v e n t s

Event Sense =̂
Where

grd2 : s = SENSE
Then

act1 : xs :| Rs(x ′
s , x)

act2 : s := DECISION
End
. . .

End

48 / 61



Decomposing Time-triggered Design
Actuate: modeling actuator configurations

Machine M IMPL
R e f i n e s M TIME TRIGGERED
I n v a r i a n t s

invud Ra(ud , u)
E v e n t s

Event Actuate =̂
Where

grd1 : s = ACTUATE
Then

act1 : u :| Ra(ud , u
′)

act2 : s := RUN
End
. . .

End

49 / 61



Decomposing Time-triggered Design
Control

Event Controli =̂
R e f i n e s Predictioni
Where

grd1 : CCi (xs)
grd2 : s = DECISION

Then
act1 : ud , tu := udi , δ
act2 : s := ACTUATE

End

50 / 61



Modularize Time-triggered Design
First step: extracting predicates from associated events

Event Controli =̂
R e f i n e s Controli
Where

grd1 : CCi (xs)
grd2 : s = DECISION

Then
act1 : ud , tu :| CCi (xs)⇒ u′

d = udi ∧ t ′u = δ
act2 : s := ACTUATE

End

51 / 61



Modularize Time-triggered Design
Second step: based on the extraction, generating operations to-be-implemented

O p e r a t i o n fc =̂
P a r a m e t e r s xs
R e t u r n s ud , tu
Axioms

∧i

(
CCi (xs)⇒ ud = udi ∧ tu = δ

)
End

Event Controli =̂
R e f i n e s Controli
Where

grd1 : CCi (xs)
grd2 : s = DECISION

Then
act1 : ud , tu :| fc (xs) = (u′

d , t
′
u)

act2 : s := ACTUATE
End

52 / 61



Modularize Time-triggered Design
Third step: merge events

Event Control =̂
R e f i n e s Control1 , . . . , Controli
Where

grd1 : CC1(xs) ∨ . . . ∨ CCi (xs)
grd2 : s = DECISION

Then
act1 : ud , tu := fc (xs)
act2 : s := ACTUATE

End

53 / 61



Methodological Issues

I Sense and Actuate events use two predicates Rs(xs , x) and
Ra(ud , u).

I Making explicit information on the sensing preciseness or on
the actuating effectiveness is related to the domain analysis
and formalization.

I The domain experts may provide a list of properties or
assumptions on those predicates (frameworks as ontologies or
knowledge domains).

I The Control event emphasizes on concrete control logic
development based on the digitized data (i.e. the observed
state xs , and the discrete actuation command ud ).

54 / 61



Current Summary

Hybrid Systems

Short Summary on Event-B

General Description of the Methodology

Design Hybrid Systems in Event-B (I)

Design Hybrid Systems in Event-B (II)

Embedding Event-B Events as B Operation

Discussion - Conclusion - Perspectives

55 / 61



The four boxes diagram

PB:
Problem Statement

MO:
Event-B Modelling

GC:
Generation of code
from Event-B/B Models

HP:
Hybrid Program

specification

translates

generates

implements

56 / 61



Discussion
I Problem Statement - hybrid action systems (or hybrid

automata or mathematics) with mathematical theories (reals,
continuity, differentiability, ODEs, . . . )

I Event-B Modelling:
I Dupont’s approach by using and instantiating patterns and

theories for event-triggered models with a link to Simulink
code: CBAP predicate for continuous events and proofs are
fully automated.

I Mammar’s approach by using and instantiating patterns and
theories for event-triggered and time-triggered events models
using dRL rules: one event models the time progress and some
proofs are not automated.

I Our approacs based on the same assumptions than Dupont’s
(no event for time progression); we use an notion of refinement
close to the differential dynamic logic and and proofs are fully
automated.

I specification - the process is mainly directed by the
informations available in the problem statement and the box
incrementally feeds the refinement steps.

57 / 61



Refinement-based Specification

refinement
safety

assessment

Informal Requirements

Formal Specification

Formal Verification

Formal Validation

Real Time Animation

Code Generation Acceptance Testing

integration

Error Correction

Error Correction

Domain Feedback

58 / 61



Discussion

I Generation of Code - The general process is based on the
refinement of B machines into B0 implementation and is
correct by experience.

I Hybrid Program - The activity aims to generate artifacts to
validate the implementation generated from GC, such as:
I code for Frama-C , and Polyspace to check against certain

industry code standards (e.g. reachability, absence of
non-determinism, absence of runtime error).

I simulation models for Simulink and Stateflow to give a holistic
view of the developed hybrid system.

59 / 61



Conclusion and Perspectives

I Uniform framework for designing a rich time-triggered
Event-B model using the Rodin platform.

I Sound transformation of the control part into an operation of
B.

I Enriching the picture at the different box.

I Develop Case Studies.

I Certification of each box MO et GC.

60 / 61



Bibliography
I Zheng Cheng, Dominique Méry: A Refinement Strategy for

Hybrid System Design with Safety Constraints. MEDI 2021:
3-17

I A Refinement Strategy for Hybrid System Design with Safety
Constraints Zheng Cheng, Dominique Méry [Research Report]
Université de Lorraine; INRIA; CNRS. 2020
https://hal.inria.fr/hal-02895528/file/merymain.pdf

I Yamine Äıt Ameur, Dominique Méry: Making explicit domain
knowledge in formal system development. Sci. Comput.
Program. 121: 100-127 (2016)

I Dines Bjørner: Domain Science and Engineering - A
Foundation for Software Development. Monographs in
Theoretical Computer Science. An EATCS Series, Springer
2021, ISBN 978-3-030-73483-1, pp. 3-319

I Dines Bjørner: Domain Analysis and Description Principles,
Techniques, and Modelling Languages. ACM Trans. Softw.
Eng. Methodol. 28(2): 8:1-8:67 (2019)

61 / 61


	Hybrid Systems
	Short Summary on Event-B
	General Description of the Methodology
	Design Hybrid Systems in Event-B (I)
	Design Hybrid Systems in Event-B (II)
	Embedding Event-B Events as B Operation
	Discussion - Conclusion - Perspectives

