Nawrotzki's Algorithm, for the Countable Splitting Lemma, Constructively

IFIP WG 1.3 Meeting "Salzburg" 19.1.22

Ana Sokolova \& Harald Woracek
©
0

Foundations of System Specification

Probabilistic Systems - Analysis and Verification In particular:

Probabilistic Programming ...

Interesting connection to economy, games, financial mathematics via stochastic dominance

But in essence, this talk presents a purely mathematical result - functional analysis - on constructing couplings in the countable case

Question 1:

Given: Two measures μ, ν on X, Y, respectively
Goal: Find a measure on $X \times Y$ with marginals μ, ν
Answer: Easy, just take the product measure $\mu \times \nu$

What if we require additional properties?

Question 2:

Given: Two probability measures μ, ν on X, Y, respectively, $\Lambda \subseteq D(X \times Y)$
Goal: Find a measure $\lambda \in \Lambda$ with marginals μ, ν
convex and closed, models the additional conditions

Strassen '65: It is possible iff

$$
\begin{aligned}
\int_{X} f d \mu+\int_{Y} g d \nu \leqslant \sup \left\{\int_{X \times Y}(\right. & f \oplus g) d \lambda \mid \lambda \in \Lambda\} \\
(& f \oplus g)(x, y)=f(x)+g(y)
\end{aligned}
$$

for bounded, measurable f,g

Question 2:

Given: Two probability measures μ, ν on X, Y, respectively, $\Lambda \subseteq D(X \times Y)$
Goal: Find a measure $\lambda \in \Lambda$ with marginals μ, ν

Strassen '65: It is possible iff
convex and closed, models the additional
conditions
one particular special case...

Question 3:

```
and a relation
```

Given: Two probability measures μ, ν on X, Y, respectively, $\Lambda=\left\{\lambda \mid \lambda\left(R^{c}\right)=0\right\}$
Goal: Find a measure $\lambda \in \Lambda$ with marginals μ, ν
further, one particular special case...

Question 4:

Given: Two probability measures μ, ν on countable $X, \Lambda=\left\{\lambda \mid \lambda\left(R^{c}\right)=0\right\}$
Goal: Find a measure $\lambda \in \Lambda$ with marginals μ, ν

Kellerer '61, Nawrotzki '62 : It is possible iff $\mu \leq \nu$, i.e., they satisfy stochastic dominance.

> Countable Splitting Lemma (Jones,Levy)

Stochastic dominance?

Example: A politician can pick up strategies for the elections. One strategy ν stochastically dominates another strategy μ iff the outcome under ν is always better.

$$
\forall x \in X . \mu(\{y \mid x \leqslant y\}) \leqslant \nu(\{y \mid x \leqslant y\})
$$

Def: ν stochastically dominates μ if for every upward closed set $U \subseteq X(=\mathbb{N})$

$$
\mu(U) \leqslant \nu(U) \quad \text { wrt a preorder } \mathrm{R})
$$

This amounts to \star for the set of natural numbers and any well-order on it, and to $\hat{\sim}$ from Strassen's theorem, in this special case.

Question 4:

and a partial order

Given: Two probability measures μ, ν on countable $X, \Lambda=\left\{\lambda \mid \lambda\left(R^{c}\right)=0\right\}$
Goal: Find a measure $\lambda \in \Lambda$ with marginals μ, ν

Kellerer '61, Nawrotzki '62 : It is possible iff $\mu \leqslant \nu$, i.e., they satisfy stochastic dominance.

Countable Splitting Lemma (Levy)

Kellerer's proof

1. Proves the finite case
2. Considers cutoffs μ_{n}, ν_{n}
3. Produces λ_{n} on $\{1, \ldots, n\} \times\{1, \ldots, n\}$ with marginals μ_{n}, ν_{n}
4. Takes the (pointwise) limit ... but it does not necessarily exist.

Way out: Choose a subsequence $\left(n_{l}\right)_{l=0}^{\infty}$ such that the limit

$$
\lambda(i, j)=\lim _{l \rightarrow \infty} \lambda_{n_{l}}(i, j) \text { exists for all } i, j
$$

Nawrotzki's proof

Also produces approximations, but differently - not with cutoffs
Produces λ_{n} with the monotonicity property:

$$
\begin{aligned}
& i=j \Rightarrow \lambda_{n+1}(i, j) \leqslant \lambda_{n}(i, j) \\
& i \neq j \Rightarrow \lambda_{n+1}(i, j) \geqslant \lambda_{n}(i, j)
\end{aligned}
$$

non increasing on the diagonal non decreasing off the diagonal

These approximations do not have "correct" marginals (in general).
Defines $\lambda(i, j)=\lim _{n \rightarrow \infty} \lambda_{n}(i, j)$ exists by monotonicity

Proves that this limit has the correct marginals.

Nonconstructiveness

Kellerer: Each approximation λ_{n} is computable.

Nonconstructiveness due to limit by compactness argument.

Heine-Borel: On a compact subset of real numbers, every sequence has a converging subsequence...
but how to find it?
Nawrotzki: Nonconstructiveness is in the definition of the approximations λ_{n}

```
requires computing a sum of an
    infinite series and evaluating
        suprema of infinite sets
```

Only λ_{1} is computable, the others not.

Nonconstructiveness

Strassen's proof is super-nonconstructive - compactness comes in on every corner !

Banach-Alaoglu, Riesz-Markov representation, Krein-Milman

Our proof

4/5 Nawrotzki + 1/5 Kellerer

Each approximation is computable.
Still does not have "correct" marginals.
Has computable error estimate, for fixed position i, j

[^0]
[^0]: The sequence of approximation converges to the solution in ℓ^{1}-norm

