Modular design patterns for neural-symbolic integration

Till Mossakowski

IFIP WG 1.3 meeting Jan 18, 2022

The two brain hemispheres

Left Hemisphere

- Logic, ratio
- Language, numbers
- Analysis
- Time-bound
- Controlled
- Details

Right Hemisphere

- Emotions, intuition
- Images
- Synthesis
- Timeless
- Spontaneous
- Relations

Neural networks versus symbolic reasoning

Symbolic reasoning

- "System 1"
- Slow
- Knowledge driven
- Abstraction
- Reliable
- Explainable

Neural networks

- "System 2"
- Fast
- Data driven
- Adapt to noisy data
- Flexible

Neural-symbolic systems

logical Reasoning neural Networks

- combining the strengths of both worlds
- path to general AI (says IBM...)
- NeSy meetings, also at general AI conferences 4/38

Specification of neural-symbolic systems: why?

- high-level descriptions of the architectures of neural-symbolic systems
 - understand commonalities and differences
 between different systems
- bridge the gap between communities
 - knowledge-based systems
 - machine learning
 - cognitive science
- engineering neural-symbolic systems out of reusable components

Specification of neural-symbolic systems: how?

- design patterns covering
 - symbols and data
 - neural and symbolic models

The subsequent presentation is based on the paper: Michael van Bekkum, Maaike de Boer, Frank van Harmelen, André Meyer-Vitali, Annette ten Teije: Modular design patterns for hybrid learning and reasoning systems Applied Intelligence, June 2021 doi.org/10.1007/s10489-021-02394-3

... and followed by some preliminary own work

Elements of design patterns

- Instances
 - Symbols
 - Data

symbol	
data]

- Models
 - Semantic
 - Statistical
- Processes
- Actors

model

Symbols

symbol

- 1) a symbol must designate an object, a class or a relation in the world, called the *interpretation* of the symbol;
- (2) symbols can be either *atomic* or *complex*, in which case they are composed of other symbols according to a formal set of compositional rules; and
- (3) there must be system of *operations* that, when applied to a symbol, generates new symbols, that again must have a designation.
- \rightarrow This means that symbols are terms!

Instances

- Symbols (in the sense of the previous slide),
 - Logical formulas and relations: p ∧ q ⊧ p
 - Labels
 - State machines
 - Relations between data items
- Data (everything else)
 - Numbers, text
 - Images, sound, other sensor input
 - Streams of data

Models

- Statistical models: dependencies between statistical variables
 - (Deep) Neural Networks
 - Bayesian Networks
 - Markov Models
- Semantic models / knowledge graphs
 - Taxonomies
 - Ontologies
 - Rule bases
 - Differential Equations

Processes

• Processes =

steps that lead from inputs to results

- generation of instances and models
- transformation of instances and models
- inferencing thereupon
 - Induction (from instances to model)
 - Deduction (from model to instances)

Actors

- autonomous (to different degrees)
- following intentions and goals
- Interaction of actors
 - collaboration, negotiation or competition
- Only rarely used in patterns so far

Fig. 1 Elementary patterns to generate a model

13/38

Using a model (deduction)

Fig. 2 Elementary patterns to use a model

Machine Learning Systems

Knowledge Representation systems

Hybrid systems

- Hybrid system = everything else defined using the patterns
- Systems can be classified
- Systems can be developed
 - Starting from abstract patterns
 - Stepwise refinement

Explainability through an extra semantic model

Fig. 4 Pattern for learning with symbolic output

• e.g. ontology learning from text

Explainable learning systems through rational reconstruction

e.g. explaining deep learning using DL reasoner

Learning intermediate abstractions

 e.g.
 DeepProbLog: addition of handwritten numbers

• e.g. AlphaGo

Informed learning with prior knowledge

data

(3a)

infer:deduce

- e.g. learning with semantic loss function
- More than 100 systems discussed in: Von Rueden L, et al. (2019) Informed machine learning-towards a taxonomy of explicit integration of knowledge into machine learning. Learning 18:19–20

21 / 38

symbol

(7)

Link prediction / graph completion

Fig. 8 From symbols to data and back again

Tensorising symbols

Fig. 9 Pattern for learning logical representations for statistical inferencing

- e.g. Logic tensor networks in combination with convolutional neural networks
- e.g. graph neural networks

Learning to reason

relation

(3a variant)

relation

(10)

Meta-reasoning for control

- e.g Alpine Meadow
- Curriculum learning

Use-case: skills matching

Use-case: robot in action

27 / 38

Taxonomy of elements

28/38

Beyond the pattern paper

- The pattern paper lists as future work: Coherent methodology for AI systems
 - Grammar and logic for composing and verifying patterns
 - Trustworthy by design
 - Guidelines for implementation of concepts

Neural-symbolic design patterns, formally

- Definition. A neural-symbolic design pattern (NeSy pattern) is a directed graph, with node labels = non-top classes from the taxonomy
- Given a NeSy pattern,
 - input nodes = nodes without ingoing edges
 - output nodes = nodes without outgoing edges

Refinement of neural-symbolic design patterns

- Definition. Given NeSy patterns P_1 and P_2 , a **refinement** $\phi:P_1 \rightarrow P_2$ is
 - a morphism of unlabled graphs $\varphi:P_1 \rightarrow P_2$, such that for each node $n \in P_1$,
 - $lab(\varphi(n)) \leq lab(n)$ in the taxonomy.

Refinement of neural-symbolic design patterns: example

Combinations of NeSy patterns

- Definition. Given a diagram of NeSy patterns and refinements, its **combination** is the colimit in the category of NeSy patterns and refinement.
- It is built as follows:
 - The (unlabeled) directed graph is the colimit C in the category of directed graphs.
 - For a node $n \in C$, let $N = U_{i \in I} \mu_i^{-1}(n)$, where $(\mu_i)_{i \in I}$ are colimit injections. Then
 - $lab(n) = inf_{m \in N} lab(m)$.

Combinations of NeSy patterns, example (ILP, automata training)

Combinations of NeSy patterns

- Usually, we are interested in combinations of diagrams where
 - only input and output nodes are identified,
 - only input nodes are refined.

Towards a model theory

- How can we interpret the different elements?
 - Symbol: term of some signature Σ
 - Data: vector in \mathbb{R}^n
 - Statistical model: transformation $\mathbb{R}^m \to \mathbb{R}^n$
 - Semantic model: function $T_{\Sigma 1} \rightarrow T_{\Sigma 2}$
 - Inference process: application of model
- \rightarrow NeSy patterns need to be enriched with Σ , n

Conclusion

- We have recalled a graphical language for neural-symbolic design patterns
- We have started formalising these patterns
- So far covered:
 - Signatures, signature morphisms
 - First ideas for model theory

Future work

- A logic for specification and verifcation
 - Formalised as an institution?
 - DOL/Hets can be used to compute colimits
 - DOL alignments as friendly input syntax for diagrams
- Different types of refinement
 - For development
 - For composition
- Use string diagrams and lenses?
- Cooperations are welcome!