
Generating Correct-by-Construction

Distributed Implementations from Formal

Maude Designs

Si Liu1 Atul Sandur2 José Meseguer2

Peter Ölveczky3 Qi Wang2

(IFIP WG 1.3 meeting, Jan 19, 2022; work originally presented at NFM’20)

1ETH Zürich
2University of Illinois at Urbana-Champaign
3University of Oslo

Background: Maude (I)

Maude

• based on rewriting logic

• expressive, simple, and general

• applied to wide range of systems

• cloud transaction systems

• semantics of programming and modeling languages

• electronic contracts

• large distributed systems protocols

• systems biology (Pathway Logic)

• cryptographic protocols (Maude-NPA)

• ...

1

Background: Maude (II)

Maude

• explicit-state simulation, reachability analysis, LTL model

checking

• “symbolic” analysis:

• narrowing

• rewriting modulo SMT

• object-based specification for distributed systems

• state multiset of objects and messages

2

Background: Maude (II)

Maude

• explicit-state simulation, reachability analysis, LTL model

checking

• “symbolic” analysis:

• narrowing

• rewriting modulo SMT

• object-based specification for distributed systems

• state multiset of objects and messages

2

Example: Token-Ring Mutex

Example

rl [executeInCS] :

(msg token from O to O’)

< O’ : Node | state : waiting >

=>

< O’ : Node | state : executingInCS > .

rl [passOnToken] :

(msg token from O to O’)

< O’ : Node | state : outsideCS, nextNode : O’’ >

=>

< O’ : Node | >

(msg token from O’ to O’’) .

3

Performance Estimation

Statistical model checking via (e.g.) PVeStA

• model-based performance “curves”/“comparisons” consistent

with actual implementations

4

Performance Estimation

Statistical model checking via (e.g.) PVeStA

• model-based performance “curves”/“comparisons” consistent

with actual implementations

4

Background: Talk at IFIP Meeting 2019

Maude for cloud-based transaction systems

• UIUC Center for Assured Cloud Computing

• Correctness and performance estimation
• Google Megastore (+ modified design)

• Apache Cassandra (+ alternative design)

• Apache Zookeeper

• UC Berkeley’s RAMP transactions (+ variations)

• Walter, Jessy, P-Store, ...

• ROLA (new design for new consistency model)

5

Background: Talk at IFIP Meeting 2019

Maude for cloud-based transaction systems

• UIUC Center for Assured Cloud Computing
• Correctness and performance estimation

• Google Megastore (+ modified design)

• Apache Cassandra (+ alternative design)

• Apache Zookeeper

• UC Berkeley’s RAMP transactions (+ variations)

• Walter, Jessy, P-Store, ...

• ROLA (new design for new consistency model)
5

Today’s Talk

So far

Maude specifications of correct designs with promising performance

Today

Synthesize correct-by-construction distributed implementation of

such Maude specification

• distributed (prototype?) implementation for free

• correct

• analyze with real workloads (e.g., YCSB)

• latency due to communication instead of computation (?)

6

Today’s Talk

So far

Maude specifications of correct designs with promising performance

Today

Synthesize correct-by-construction distributed implementation of

such Maude specification

• distributed (prototype?) implementation for free

• correct

• analyze with real workloads (e.g., YCSB)

• latency due to communication instead of computation (?)

6

Today’s Talk

So far

Maude specifications of correct designs with promising performance

Today

Synthesize correct-by-construction distributed implementation of

such Maude specification

• distributed (prototype?) implementation for free

• correct

• analyze with real workloads (e.g., YCSB)

• latency due to communication instead of computation (?)

6

Obtaining Distributed Maude Implementations

Goal

Synthesize distributed Maude implementation

External Objects in Maude

• Maude object can send/receive messages to/from external

objects

• TCP/IP socket manager is one external object

• Maude instances on different machines can communicate

• Communication with outside world (e.g., YCSB)

Questions

1. Proving socket-based implementation correct?

2. Is resulting implementation useful/efficient?

7

Obtaining Distributed Maude Implementations

Goal

Synthesize distributed Maude implementation

External Objects in Maude

• Maude object can send/receive messages to/from external

objects

• TCP/IP socket manager is one external object

• Maude instances on different machines can communicate

• Communication with outside world (e.g., YCSB)

Questions

1. Proving socket-based implementation correct?

2. Is resulting implementation useful/efficient?

7

Obtaining Distributed Maude Implementations

Goal

Synthesize distributed Maude implementation

External Objects in Maude

• Maude object can send/receive messages to/from external

objects

• TCP/IP socket manager is one external object

• Maude instances on different machines can communicate

• Communication with outside world (e.g., YCSB)

Questions

1. Proving socket-based implementation correct?

2. Is resulting implementation useful/efficient?

7

D Transformation

The D Transformation

• Middleware for communication
• between Maude sessions

• with external objects

• Implementation
• mediator object added to each Maude session

A

B

C
E

F

D

B

A
C

F

E
D

D-transformation

Mediator Mediator Mediator

8

Transformation D : (M , init, di) 7→ D(M , init, di)

• Input:

• object-oriented Maude module M defining actor system

• initial state init

• distribution information di

• Output for each distributed Maude session (ip, i):

• Maude program D(M, init, di)

• initial state initDdi
(ip, i)

9

Transformation D : (M , init, di) 7→ D(M , init, di)

• Input:

• object-oriented Maude module M defining actor system

• initial state init

• distribution information di

• Output for each distributed Maude session (ip, i):

• Maude program D(M, init, di)

• initial state initDdi
(ip, i)

9

Correctness of D Transformation

• Verifying (M, init, di) 7→ D(M, init, di) requires verifying

TCP/IP sockets and their implementation in Maude

• We instead define abstract model of socket communication

• Abstract model D0(M, init, di) of distributed model

D(M, init, di)

Theorem

K(D0(M, init, di), initD0) and K(M, init) are stuttering bisimular

10

Correctness of D Transformation

• Verifying (M, init, di) 7→ D(M, init, di) requires verifying

TCP/IP sockets and their implementation in Maude

• We instead define abstract model of socket communication

• Abstract model D0(M, init, di) of distributed model

D(M, init, di)

Theorem

K(D0(M, init, di), initD0) and K(M, init) are stuttering bisimular

10

Correctness of D Transformation

• Verifying (M, init, di) 7→ D(M, init, di) requires verifying

TCP/IP sockets and their implementation in Maude

• We instead define abstract model of socket communication

• Abstract model D0(M, init, di) of distributed model

D(M, init, di)

Theorem

K(D0(M, init, di), initD0) and K(M, init) are stuttering bisimular

10

Implementation

Implementation

• D transformation

• 300 LOC in Maude

• Deployment

• Python-based prototype

• automated deployment and run on distributed machines

• Foreign object

• Yahoo! Cloud Serving Benchmark (YCSB)

• open standard for performance evaluation of data stores

11

Case Studies

Case Studies: ROLA & NO WAIT

• ROLA

• distributed update atomic transactions

• 850 LOC in Maude

• No existing implementation

• NO WAIT

• lock-based distributed transactions providing serializability

• optimized implementation at CMU & MIT

• 12K LOC in C++ (vs 600 LOC in Maude)

12

Performance Comparison

Model-based statistical model checking vs Implementation-based

evaluation

• Consistent trends

• statistical model checking

• distributed Maude implementation

• conventional distributed implementation

• Actual performance values

• distributed Maude implementation

• conventional distributed implementation (C++)

13

Results for ROLA

• Similar trends for 2 sets of experiments

 0.6

 0.9

 1.2

 1.5

 1.8

 2.1

 0 25 50 75 100Th
ro

ug
hp

ut
 (t

xn
/ti

m
e

un
it)

Percentage Reads

Statistical Model Checking - ROLA_A

5 Partitions
3 Partitions

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60Th
ro

ug
hp

ut
 (t

xn
/ti

m
e

un
it)

Concurrent Clients

Statistical Model Checking - ROLA_B

95% Reads
50% Reads

 0

 100

 200

 300

 400

 0 25 50 75 100

Th
ro

ug
hp

ut
 (t

xn
/s

)

Percentage Reads

Distributed Maude Implementation - ROLA_A

5 Partitions
3 Partitions

 0

 100

 200

 300

 400

 0 5 10 15 20 25 30 35

Th
ro

ug
hp

ut
 (t

xn
/s

)

Concurrent Clients

Distributed Maude Implementation - ROLA_B

95% Reads
50% Reads

14

Results for NO WAIT

 0

 1

 2

 3

 4

 5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9Th
ro

ug
hp

ut
 (t

xn
/ti

m
e

un
it)

Skew Factor (Theta)

Statistical Model Checking - Lock_A

50% Updates
100% Updates

 0

 1

 2

 3

 4

 5

 0 25 50 75 100Th
ro

ug
hp

ut
 (t

xn
/ti

m
e

un
it)

Percentage Reads

Statistical Model Checking - Lock_B

Txn_size=4
Txn_size=8

 4

 5

 6

 7

 8

 9

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Th
ro

ug
hp

ut
 (1

03
tx

n/
s)

Skew Factor (Theta)

Distributed Maude Implementation - Lock_A

50% Updates
100% Updates

 0

 2

 4

 6

 8

 10

 12

 0 25 50 75 100

Th
ro

ug
hp

ut
 (1

03
tx

n/
s)

Percentage Reads

Distributed Maude Implementation - Lock_B

Txn_size=4
Txn_size=8

 0

 10

 20

 30

 40

 50

 60

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Th
ro

ug
hp

ut
 (1

03
tx

n/
s)

Skew Factor (Theta)

C++ Implementation - Lock_A

50% Updates
100% Updates

 0

 20

 40

 60

 80

 0 25 50 75 100

Th
ro

ug
hp

ut
 (1

03
tx

n/
s)

Percentage Reads

C++ Implementation - Lock_B

Txn_size=4
Txn_size=8

• Similar trends

• Maude implementation

(only?) 6 times slower

than C++

implementation

15

Take Away

• Automated transformation of Maude specifications to
correct-by-construction Maude distributed implementation
• broad class of systems

• performance analysis on real workloads (YCSB)

• correctness proof uses simplified model of sockets

• Specification and implementation in Maude
• correctness proof easy

• One artifact for:
• correctness checking

• performance prediction

• distributed implementation

• Maude distributed implementation > 6 times slower than
optimized C++ implementation by Stonebraker et al.
• proof-of-concept prototype vs optimized C++ implementation

• extra layer around foreign objects?

• socket implementation in Maude?

16

Take Away

• Automated transformation of Maude specifications to
correct-by-construction Maude distributed implementation
• broad class of systems

• performance analysis on real workloads (YCSB)

• correctness proof uses simplified model of sockets

• Specification and implementation in Maude
• correctness proof easy

• One artifact for:
• correctness checking

• performance prediction

• distributed implementation

• Maude distributed implementation > 6 times slower than
optimized C++ implementation by Stonebraker et al.
• proof-of-concept prototype vs optimized C++ implementation

• extra layer around foreign objects?

• socket implementation in Maude?

16

Take Away

• Automated transformation of Maude specifications to
correct-by-construction Maude distributed implementation
• broad class of systems

• performance analysis on real workloads (YCSB)

• correctness proof uses simplified model of sockets

• Specification and implementation in Maude
• correctness proof easy

• One artifact for:
• correctness checking

• performance prediction

• distributed implementation

• Maude distributed implementation > 6 times slower than
optimized C++ implementation by Stonebraker et al.
• proof-of-concept prototype vs optimized C++ implementation

• extra layer around foreign objects?

• socket implementation in Maude?

16

Take Away

• Automated transformation of Maude specifications to
correct-by-construction Maude distributed implementation
• broad class of systems

• performance analysis on real workloads (YCSB)

• correctness proof uses simplified model of sockets

• Specification and implementation in Maude
• correctness proof easy

• One artifact for:
• correctness checking

• performance prediction

• distributed implementation

• Maude distributed implementation > 6 times slower than
optimized C++ implementation by Stonebraker et al.
• proof-of-concept prototype vs optimized C++ implementation

• extra layer around foreign objects?

• socket implementation in Maude?
16

	D Transformation
	Implementation
	Case Studies

