Alternating Signal Temporal Logic

Holger Schlingloff Institut für Informatik der Humboldt Universität System Quality Center, Fraunhofer FOKUS

IFIP WG 1.3, Zoom, 19.1.2022

H. Schlingloff, 19.1.2022

Motivation

Foundations of Systems Specification

- Formal methods in real applications
- Scheduling of transport robots
- Controller design
- Specification and verification of industrial systems

Structure of this talk

- More motivation
- Concurrent game structures and strategic logics
- Hybrid automata and signal temporal logics
- Combining strategic and continuous systems and logics
- Model checking results
- Perspectives and outlook

Industrial Multi-Agent Systems

- Real-time / hybrid
 - Continuous sensor inputs, discrete control, continuous motor outputs
- Inherently distributed, space might be important
 - Unreliable communication, intrusion
- "Intelligent" and autonomous
 - Beliefs, intentions, desires; fuzzy goals
- Research questions
 - How to model such systems?
 - How to specify properties?
 - How to synthesize winning strategies?
- H. Schlingloff, 19.1.2022

Concurrent Game Structures

pos₀

- Classical definitions
 - Transition system TS = (St, δ , s_0), $\delta \subseteq$ St × St, $s_0 \in$ St
 - Labelled transition system LTS = (St, Act, δ , s_0), $\delta \subseteq$ St × Act × St
 - Kripke structure KS = (St, Prop, δ , Int, s₀), Int \subseteq St \times Prop
 - Finite state machine, Büchi/Rabin/Muller automaton, ...
- Several LTS's: $(LTS_1 \times ... \times LTS_n)$
 - Product transition system synchronization via shared actions
 - Concurrent game structure CGS = (Agt, St, Act, δ, s₀), δ ⊆ St x 2^(Agt × Act) x St combined action α = {(a₁, α_{a1}), ..., (a_n, α_{an})}, every agent at most one action ("agent a₁ chooses α_{a1} and ... and agent a_n chooses α_{an}")

Sec.

Thanks to Wojtek Jamroga and Wojtek Penczek

- Variants
 - Deterministic CGS with availability relation DCGS = (Agt, St, Act, avail, δ, s₀), avail ⊆ Agt x St x Act, δ: St x 2^(Agt x Act) → St is a function, (s, α, s') ∈ δ only if (a, s, α_a)∈ avail
 - Synchronous game structure: all agents have to choose an action in each state (that is, δ: St x Actⁿ → St)
 - Coalitional game structure: agents can form a coalition and choose their actions synchronously
 - Turn-based game structure: agents or coalitions take turn with their actions; TCDCGS = (Agt, St, Act, *avail*, δ, *turn*, s₀), *turn*: St → Agt; if *turn* (s) = a_i, then *avail* (a_i, s) ≠ Ø, and for all j≠i, *avail* (a_j, s) = Ø.

Goals and Strategies

OLD T-UNILAR STAN

- In the simple case, a goal is a designated set of states
 - more advanced goals can be described by logic, cf. later
- Strategy \mathbf{s}_i for a_i in a DCGS \mathbf{s}_i : St \rightarrow Act s.t. $(a_i, s, \mathbf{s}_i(s)) \in avail$
 - in case $\{a_a \mid (a_i, s, a_a) \in avail\} = \emptyset$, there is no strategy for a_i
- Combined action a is consistent with the strategies $\{s_1 ... s_k\}$ for agents $\{a_1 ... a_k\}$ in state s if $(a_i, s_i(s)) \in a$ for all *i*
- An execution σ following strategies {s₁, ..., s_k} for agents {a₁, ..., a_k} is an execution (s₀, a₀, s₁, a₁, ...), where every a_i is consistent with the strategies in s_i
 - Given strategies for <u>all</u> agents in a DCGS, there is only one possible execution following all these strategies (usually called the <u>outcome</u>)

H. Schlingloff, 19.1.2022

Slide 8

Example continued

- In the initial state, does Robot₁ have a strategy to bring the carriage into position pos₁?
- Do Robot₁ and Robot₂ have a combined strategy to reach any desired position?
- Does Robot₁ have a strategy to <u>avoid</u> pos_1 ?

Alternating Temporal Logic

- Syntax: $\langle\!\langle A \rangle\!\rangle \varphi$ where A is a set of agents and φ is an LTL formula
- Semantics: M ⊨ ⟨⟨A⟩⟩φ iff for each a_i in A there is a strategy s_i such that in each execution σ of M which follows all these s_i, it holds that σ ⊨ φ
 - Note that $\langle \langle a_1, a_2 \rangle \rangle \phi$ is not the same as $\langle \langle a_1 \rangle \rangle \langle \langle a_2 \rangle \rangle \phi$!

• Examples

- $\langle\!\langle Robot_1 \rangle\!\rangle \mathbf{F} pos_1$
- $\langle\!\langle \{Robot_1, Robot_2\} \rangle\!\rangle \mathbf{F} pos_1$
- $\langle\!\langle Robot_1 \rangle\!\rangle \mathbf{G} \neg pos_1$

- Robot₁ has a strategy to get to pos_1
- A combined strategy to reach pos₁
- A strategy to avoid pos₁

ATL Complexity and Algorithm

• Variants

- ATL: every temporal operator preceded by exactly one cooperation modality
- ATL*: no syntactic restriction
- Complexity results
 - ATL on CGS is in P (fixpoint unwinding)
 - ATL on CEGS with memory is undecidable
- Algorithms

- Calta, Schlingloff (2010): O(I*n²*3^(2*n*a^k/3))-algorithm for CEGSs (I strategic modalities, n states, k agents, a actions)
- Lomuscio et al (2015): MCMAS tool for ATLK on CGS (ISPL)

	Ir	IR	ir	iR
Simple \mathscr{L}_{CL}	Σ_2^P	Σ_2^P	Σ_2^P	Σ_2^P
\mathscr{L}_{CL}	Δ_3^P	Δ_3^P	Δ_3^P	Δ_3^P
\mathscr{L}_{ATL}	Δ_3^P	Δ_3^P	Δ_3^P	Undecidable [†]
\mathscr{L}_{ATL^+}	Δ_3^P	PSPACE	Δ_3^P	Undecidable [†]
\mathscr{L}_{ATL^*}	PSPACE	2EXPTIME	PSPACE	Undecidable [†]

Timed and Hybrid Automata

OLD T-UNIL H

- Basically, a HA is an LTS with additional real-valued variables
 - Finite set of *locations* a *state* is a location plus a variable valuation
 - → infinitely many states!
 - A *region* is a (convex) set of states
 - Locations and/or transitions may be constrained by equations using variables
 - Variables and their derivatives may be assigned values
- Timed automata (TA)
 - A clock is a variable where the derivative is always 1
 - All clocks always advance with the same speed, no stopwatches

Signal Temporal Logic

- Syntax and semantics borrowed from interval temporal logic
- Basic propositions: $(s \sim c)$
 - s is a real-valued signal (i.e., variable or clock), c is a constant
- Boolean junctors, interval temporal until:
 - $(S,t) \models (\varphi_1 \mathbf{U}_I \varphi_2) \longleftrightarrow \exists t_1 \in t + I \ (S,t_1) \models \varphi_2 \text{ and } \forall t_2 \in [t,t_1) \ (S,t_2) \models \varphi_1$
- Examples
 - (no crash) • $\mathbf{G}_{(0,\infty)}(sensor. US front \leq 5)$ - (finding items in time)
 - $\mathbf{F}_{(0,30]}((clock \geq 300) \lor (collect = true)))$
 - $\mathbf{G}_{[0,\infty)}((sensor.r \ge 200) \rightarrow ((wheels = -5) \mathbf{U}_{(2,4)}(sensor.r \le 200)))$ - (how to drive)

Model Checking STL on HA

- Reachability for hybrid automata is undecidable
 - but can be easily expressed in the considered logics
 - \rightarrow no hope to come up with a terminating model checking algorithm
- Reachability for timed automata is decidable (PSPACE-complete)
 - model checking for STL on TA can be reduced to this problem
 - Region-Graph and Difference-Bound Matrix construction of [Yovine 97, Alur 98]
- "Rectangular" hybrid automata
 - first derivative is bounded by constants
 - LTL model checking on RHA is in PSPACE

Combining Continuity and Strategies

Timed and hybrid CGS

- A fusion of CGS and timed / hybrid automata
- Formally, an automaton with dedicated actions for each player
 - Transitions are labelled with concurrent actions and activation conditions on the clocks or continuous variables
- Additional requirements: determinism, non-Zeno-ness
- Given a choice of strategies for all players, there is at most one run of the automaton

Alternating Signal Temporal Logic

AND TO NIL THE STAND

- Distinguish between monitored and controlled variables (sensors and actuators)
- Strategic decisions concern controlled variables

$$(\mathcal{T}, Q_0) \models \top \qquad \longleftrightarrow \forall l \in L \ Q_0^l \models I(l)$$

$$(\mathcal{T}, Q_0) \models x \sim c \qquad \longleftrightarrow Q_0 \models x \sim c \text{ and } \forall l \in L \ Q_0^l \models I(l)$$

$$(\mathcal{T}, Q_0) \models \neg \varphi \qquad \longleftrightarrow (\mathcal{T}, Q_0) \not\models \varphi \text{ and } \forall l \in L \ Q_0^l \models I(l)$$

$$(\mathcal{T}, Q_0) \models (\varphi_1 \lor \varphi_2) \qquad \longleftrightarrow (\mathcal{T}, Q_0) \models \varphi_1 \text{ or } (\mathcal{T}, Q_0) \models \varphi_2$$

$$(\mathcal{T}, Q_0) \models \langle A \rangle (\varphi_1 \ \mathbf{U}_I \ \varphi_2) \iff \exists F_A \ \forall \zeta \in \sin_{\mathcal{T}} (Q_0, F_A) \ \exists i \in \mathbb{N} \ \exists j \in \mathbb{N}$$

$$\exists t_1 \in I \ (\mathcal{T}, \{\zeta(t_1, i)\}) \models \varphi_2$$

$$\land \forall t_2 \in [\inf(I), t_1) \ (\mathcal{T}, \{\zeta(t_2, j)\}) \models \varphi_1$$

from the BA thesis of Sami Kharma, Nov. 2021

Model Checking ASTL on Timed Games

- Region-equivalence construction can be lifted to timed CGS
 - model checking for TATL on timed games is exponential [BLMO 07]
 - our result: lifting results to ASTL
 - still unclear: the case of ASTL*
- ASTL on rectangular hybrid games is still open
 - but we believe that it could be done

	algo. compl. w.r.t. ϕ and $\mathcal T$	theoretical complexity
ATL*	$2^{2^{O(\phi)}} \cdot 2^{O(\mathcal{T})}$	$2EXPTIME ext{-complete}$
TATL	$2^{O(\phi) \cdot O(\mathcal{T})}$	EXPTIME-complete
TALTL	$2^{2^{O(\phi)}} \cdot 2^{O(\mathcal{T})}$	2EXPTIME-complete

from Brihaye, Laroussinie, Markey, Oreiby: Timed Concurrent Game Structures

Algorithm

Algorithm 1 ASTL symbolic model-checkingInput: timed game \mathcal{T} , ASTL formula φ Output: boolean true or false

for φ' in $\operatorname{Sub}(\varphi)$ do case $\varphi' = \top$ $[\varphi'] \leftarrow Q_I$ case $\varphi' = x \sim c$ $[\varphi'] \leftarrow \operatorname{Reg}_{\mathcal{T}}(x \sim c)$ case $\varphi' = \neg \theta$ $[\varphi'] \leftarrow Q_I \setminus [\theta]$ case $\varphi' = (\theta_1 \vee \theta_2)$ $[\varphi'] \leftarrow [\theta_1] \cup [\theta_2]$ case $\varphi' = \langle\!\langle A \rangle\!\rangle (\theta_1 \mathbf{U}_I \theta_2)$ $[\varphi'] \leftarrow \operatorname{Pre}_{\mathcal{T}I}^*(A, [\theta_2], [\theta_1])$ end for return $q_0 \in [\varphi]$

H. Schlingloff, 19.1.2022

- Pre-image calculation: for a timed game, set of players, interval, returnes the set of states from which a goal state can be reached with one decision, traversing only given intermediate states
- can be calculated by algebraic considerations

 x_1

 x_2

Experimental Results

Service Contractor

• Yet unavailable

H. Schlingloff, 19.1.2022

Slide 19

Back to the Transport Robot Example

- MCMAS model
- Robots have a joint strategy to accomplish all transport jobs in time: checked
- "Fuzzy" properties
 - Average and maximal waiting time should be as low as possible

- Robots should keep their battery charged between 40% and 60%, if possible
- Robots should provides approximately equal wear and tear within the fleet
- Target properties are in Pareto equilibrium
- "Reasoning about Quality and Fuzziness of Strategic Behaviours" [Bouyer et al. 2019]

Thank you for your attention!

- Dream: Generate control programs automatically from the rules
- Vision: Verify control program with respect to the objectives

Models for industrial control tasks are often much more complex

- no firm goals, but approximate targets
- Well-suited to specify and model certain properties
 real time, interactivity
- model checking algorithm
- Presented a new combination of strategic and continuous logic

Conclusion

PDT-UNILAR STATE