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Motivations. . .

Much attention has been devoted in Computer Science to formal
verification of process behaviour.

Several techniques have been studied and developed that are based on a
formal understanding of system requirements through modal logics.

Such logics typically have a temporal flavour, describing the flow of events,
and are interpreted in various kinds of transition structures.

Among those techniques model checking is one of the most successful.
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From time to space. . .

Recently, aspects of computation related to the distribution of systems in
physical space have become increasingly relevant.

A huge amount of devices that interact with users and with each other
(data exchange) within a physical space. . .
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Reasoning about space. . .

New formalisms1 have been proposed to reason about space.

These formalisms are based on:

! a representation of space via Closure Spaces. . .

. . . (quasy-discrete) Closure Spaces that are graphs;

! logics equipped with spatial modalities expressing. . .

! proximity: a point is next to one satisfying satisfying some property;
! reachability: there is a route connecting a point to others.

! efficient model checking algorithms to reason about space.

1V. Ciancia, D. Latella, M. Loreti, M. Massink: Model Checking Spatial Logics for
Closure Spaces. Log. Methods Comput. Sci. 12(4) (2016)
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Reasoning about space. . .
An Example

Question: Can starting points reach the exit area?
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From physical to logical space. . .

The same tools can be used to reason about different type of structures
where spatiality is defined in terms of a given relation like:

! (Social) Networks;
! Ontologies;
! Graph Databases;

Spatial logic is often used as a query language to select points/data from a
model.
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Limitations. . .

A limitation is that the proposed approach does not permit speaking about
multiple dimensions:

! points, lines, surfaces, volumes,. . . in physical space;
! n−ary relations in logical space (persons, groups,. . . ) .

Question: how can model n−ary spatial relations?

Answer 1: Hyper-graphs! Relations among points are defined in terms of
hyper-edges.

Answer 2: Simplicial complexes! A mathematical framework used in
alebraic topology. Our Choice!
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Our proposal. . .

1. Use of simplicial complexes to model physical and logical space;

2. Interpretation of spatial logic on simplicial complexes;

3. Study of expressiveness of the logic and its operators in terms of
spatial equivalence relations.
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Example: Network of Scientific Collaborations

Let us consider
! A = {a1, a2, . . . an}, a set of authors
! P = {p1, p2, . . . pk }, a set of publications

We want to study the network of co-authorships to identify. . .
! collaborations among research groups;
! interactions among different disciplines.

We can use spacial properties to find. . .

Q1 the groups containing authors of at least a paper over topic A;

Q2 chains of collaborations on a topic A that leads to a work on topic B.
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Example: Emergency Rescue

We consider a rescue scenario where. . .
! an accident occurred that caused the emission of dangerous gasses
! some sensors are spread in area to identify dangerous zones

We want to identify safe paths and surfaces and allows us to reach victims.
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Simplicial compex. . .

A Simplicial Complex is a set of simplices. . .

12 12

2

12

2

2

node links triangle tetrahedra
0-simplex 1-simplex 2-simplex 3-simplex

Any k-simplex

! is a face of the simplicial complex
! is generalization of the notion of a triangle to arbitrary dimensions
! is characterized by a dimension k , the number of vertices minus one
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Simplicial compex. . .

A simplicial complex K is a collection of simplices, such that:

1. every face of a simplex of K is also in K
2. the intersection of any two simplices σi , σj of K is either ∅ or a face of

both σi and σj

A simplicial modelM = (K ,P, ν) consists of:
! a simplicial complex K ;
! a set of atomic propositions P;
! a labeling function ν : P → K .
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Simplicial Complex for Scientific Collaborations

A geometric interpretation of the relationships between actors and events

! 0-simplexes (nodes) identify the authors
! 1-simplexes (links) represent pairs of co-authors
! . . .

! k-simplex formalizes the relations ”co-authorship group of k + 1
researchers”

�2 �4

�5�3�1

Four groups of co-authors:
! [σ1,σ2,σ3] is composed of 3

authors
! [σ3,σ4], [σ3,σ5] , [σ5,σ4] are 3

groups composed of 2 authors
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Simplicial Complexes for Emergency Rescue

! 0-simplexes correspond to sensors
! 1-simplexes consist of the set of [si , sj] such that {si , sj} ⊆ Asi ∩ Asj

! 2-simplexes consist of the set of [si , sj , sk ] such that
{si , sk , sk } ⊆ Asi ∩ Asj ∩ Ask

Asi denotes the area covered by sensor si
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Adjacency of simplicial complexes

Relations characterising the adjacency of simplicial complexes
! lower adjacency⌣

two k-simplices share a common (k − 1)-face
! upper adjacency⌢

two k-simplices are both faces of the same common (k + 1)-simplex
! spacial adjacency!

two simplices share a common face

�1

�3

�2

�5

�4

�6
! [σ5,σ6]⌣ [σ4,σ6]

! [σ1,σ3]⌢ [σ3,σ2]

! [σ1,σ3,σ3]! [σ2,σ4,σ5]

Upper adjacency of 0-simplices corresponds to the graph adjacency
M. Loreti Reasoning about space IFIP WG 1.3 15 / 27



Spatial logics for Simplicial Complexes

The Spatial Logics for Simplicial Complexes (SLSC) consists of

! boolean operators: true (⊤), negation (¬), and conjunction (∧)
! Neighbourhood, N
! Reachability, R

The syntax of SLSC is

φ ::= p | ⊤ | ¬ϕ | ϕ1 ∧ ϕ2 | Nϕ1 | ϕ1Rϕ2 .

where p is an atomic propositions.
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Neighbourhood Operator

A simplex σ satisfies Nϕ1 if it is adjacent to a simplex satisfying ϕ1.

! it is a one step modality;
! no constraints on the simplex σ
! of the operators depends on the relation of the adjacency

! [σ1,σ2,σ3] does not satisfy Nϕ1 considering the lower adjacency
! [σ1,σ2,σ3] satisfies Nϕ1 considering the spatial adjacency
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Reachability Operator

A simplex σ satisfies ϕ1Rϕ2 if it satisfies ϕ2 or it is satisfies ϕ1 and it is
adjacent to a simplex satisfying ϕ1Rϕ2.

! a binary spatial operator, spatial version of the until operator.

• [σ4,σ6] satisfies ϕ1Rϕ2 considering the spatial adjacency

• [σ1,σ2,σ3] does not satisfy ϕ1Rϕ2 considering the upper or lower
adjacency
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Semantics of SLSC

Let C be an element of {⌣,⌢,!}. The set of simplexes of K satisfying
formula ϕ that is in simplicial modelM = (K ,P, ν) is defined by

" a #C = ν(a) (1)

" ⊤ #C = K (2)

" ϕ1 ∧ ϕ2 #C = " ϕ1 #C ∩ " ϕ2 #C (3)

" ¬ϕ #C = K \ " ϕ #C (4)

" Nϕ #C = {σ1 ∈ K : ∃ σ2 ∈ " ϕ #C and σ1 C σ2} (5)

" ϕ1Rϕ2 #C =
∞!

i=0

" ϕ1 Ri ϕ2 #C (6)

where
" ϕ1R0ϕ2 #C = " ϕ2 #C (7)

" ϕ1Rn+1ϕ2 #C = {σ1 ∈ " ϕ1 #C : ∃σ2 ∈ " ϕ1Rnϕ2 #Cσ1 C σ2}
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A use of SLSC formulas in Emergency Rescue

A simplex is safer if it is safe and it is not adjacent with an unsafe

simplex
ϕsafer = safe ∧ ¬N(unsafe)

To select the areas that the rescue team can use to reach a victim

ϕsaferRvictim
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Spatial Model Checking

The Model Checking Algorithm for SLSC. . .
! takes as input a simplicial modelM = (K ,P, ν) and a formula ϕ
! returns the set {σ ∈ K : σ ∈ "ϕ#C }
! is linear in the size of the simplicial complex and on the size of the

formula

The algorithm is standard:
! ϕ = Nϕ1: selection of the simplices adjacent to the ones satisfying ϕ
! ϕ = ϕ1Rϕ2: selection of the simplices

! from all the simplexes that satisfying ϕ2
! iteratively the algorithm consider the adjacent simplex that satisfying ϕ1
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Logic expressiveness. . .

We introduce two space equivalences that are indexed with respect to an
adjacency relations C ∈ {⌣,⌢,!}:

! a C -spatial bisimulation, denoted by !C ;
! a C -spatial branching bisimulation, denoted by !C

b .

Definition of the above relation is standard, by considering the a Kripke
Structure induced by a simplicial complex K and adjacency relations C .

We have that:
! σ1 !C σ2 if and only if σ1 and σ2 satisfy the same set of formulas φ;
! σ1 !C

b σ2 if and only if σ1 and σ2 satisfy the same set of formulas ψ
(ψ is not using operator N).
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Concluding remarks and Future directions. . .

We have seen how simplicial complexes can be used to model both
physical and logical space and the use of a spatial logic to specify and
verify their properties.

The proposed formalism in a conservative extension of the previous work
based on closure spaces.

We have introduced two spatial equivalence relations that permits
identifying the set of simplicial complexes that satisfy the same property.
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Future directions. . .

In the future we plan to

! study the interaction of space and time in dynamic evolving models;

! use the proposed formalism to describe some algebraic topology
concepts, such as Betti Numbers;

! use the formalism to study complex scenarios (integration with
engines for graph databases is under development).
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Thank you for the attention!
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Spatial equivalences. . .

Two lower-spatial bisimilar simplicial complex models:

K1 K2
�2

�1

�1

�2

�1

�5�4

�3

�1
�1

�2

�'1

�'2

�'3

�'4
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Spatial equivalence. . .

Below two lower-spatial branching bisimilar simplicial complex models:

K 1 K '1

�
1

�'1

�'3

�'4

�'2

�
1

�1

�1

�
1

�6

�3

�5
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