A

 GORITHMIC GAM

U

L GROUN

Andrzej Murawski
University of VWarwick

D REF

%

-NC

=5 FOIS

e

Nikos Tzevelekos

Queen Mary

University of London

CONT

X TUAL

-QUIVAL

-NC

My = Mo

“AS

R GRAND C

IALL

NG

ref

FULL G

ROUN

DR

-NC

let vO=ref(0);;

val vO : int ref = {contents = 0} 1
let vi=ref (v0);; |
val vl int ref ref = {contents = {contents = 0}}

let v2=ref(vl);;

val v2 : int ref ref ref = {contents = {contents = {contents = 0}}}

let v3=ref(vl);;

val v3 : int ref ref ref = {contents = {contents = {contents = 0}}}

R ————

V2

v3

e Gl e

vl

P

POINTERS

=N
vO 0

e well-founded
* NO pointer aritfnfeis

1YPE

CONTEXTUAL EQUIVALENCE
I'EM:6

- XAMPLE

CREEe———

ref(int) — unit

unit

QU

-STION

For which types 604, - - - , 6, 0 is it possible l
to decide contextual equivalence between |
terms of the shape {

x1 .01, ,x,:0,FM:67

e ————

|

TECHNIQUES

GAME SEMANTICS

mm

™Mo 1M1 Mo Mg Mg MMy Mg TNy 1TNg 119

o> O P O P O P Ol

-MANTICS

intGreen

intBlue =

if int

if in then ir

if intBlue < 0 then intBlue =g strate
if intlevel = 1

color limb intCurren
color limb intCurrentB
endif

Ml) M2
contextually — [Mi] =[M3] << Ay 598
equivalent

GAME MODELS

e J. Laird. A game semantics of names and pointers.
Ann. Pure Appl. Logic 151(2-3): 151-169 (2008)

e A.S. Murawski and N. Tzevelekos. Game semantics
for good general references. LICS 2011: 75-84

METHODOLOGY

* Investigate the shape of plays for given types. l

* Try to find decidable classes of machine
models that can represent the corresponding

plays.

* If they are complicated enough, try to use
them to support a simulation of a Turing-
complete formalism.

R ———

— unit — unit

= unit — unit — unit

-ULL CLASSIFICATION

-0, 0p

PIRS—— ——

<
3

Or decidability

unit

unit — unit

(unit — unit) — unit

((unit — unit) — unit) — unit
unit — unit — unit

BEONOGNGNE®

4

0 = 93%...%93—>unitg

R —

NOMINAL GAME

o Fletn =ref(0)inAz""t.n

g ¢ n™0 Jm8) pnd) (m12) pm12)

RSR—— ————

o Az""t ref(0) : unit — ref

q * Cny

(n1,0) C(n1’5) ngrblﬁ),(nz,()) C(n1’12)’(n2’7) n§n1,12),(n2,7),(’n3,0) .

<

UNBOUND

D GROWTH

(n1,0)

g * cni™ (11,5) nén1,5),(n2,0) o(11,12),(n2,7) n:()’nl,12),(n2,7),(n3,0) ¥
R — ‘ 2 '_4

can be faithfully represented by

g * c ng’m,o) . n;maﬂ) . ngﬂ?no) {

PRS——— ——

PUSHDOWN AUTOMATA [CK98]

locally/globally fresh

Q is a finite set of states.
so € Q is the initial state.
u=uuy---u € X%, Iis the dlassignment to the r registers of . 4.

p: QO — {1,2,...,r}*¥Is a partial function from Q to {1,2,...,r} called
the reassignment. Intuitively, if . 4 is in state q, and p(q) is defined, then . ¢
can non-deterministically replace the content of the p(q)th register with a new
symbol of X' not appearing in any other register. Note that, unlike in [5], we
allow . ¢ to guess the replacement. This is essential, because grammars can
guess symbols they generate.

w is a mapping from Q x ({1,2, ..., r}U{e}) x{1,2,...,r} to finite subsets of
Q x{1,2,...,r}* called the transition function. Intuitively, if (p, jij> - - - Ju) €
(g, k,i), n > 0, then (after reassigning the p(q)th register) . ¢, whenever it
is in the state q, with content of the ith register at the top of the stack, and
the input symbol equal to the content of the kth register, can replace the top
symbol on the stack with the content of jith, jrth, ..., j,th registers (in this
order, read top-down), enter the state p, and pass to the next input symbol
(possibly €). Similarly, if (p,jij2---ju) € ulq,e,i), then A, whenever it is in
the state q, with content of the ith register at the top of the stack, can replace
the top symbol on the stack with the content of jith, jsth, ..., j.th registers,
enter the state p (without reading the input symbol), and pass to the next input
symbol (possibly €).

-QUIVALENCE TESTING

* Not a direct language equivalence test. ‘
* Store matching needs to take place.

* Local/global freshness clashes have to be
handled.

* Emptiness testing. }
R ——— |

SUMMARY

* Programming with references
 Contextual equivalence
* Nominal game semantics

* Automata over infinite alphabets

