Compositionality of Safe Communication in Systems of Team Automata

Maurice H. ter Beek Rolf Hennicker Jetty Kleijn

ISTI-CNR, Pisa, Italy

LMU Munich, Germany

LIACS, Leiden University, The Netherlands

Communicating actions $Com(S) = \{msg, fwd\}$

Communicating actions: $Com(S) = \{msg, fwd\}$

System transition: simultaneous execution of a communicating action. In principle, any number of components can participate. Not all system transtions are meaningful!

Idea: Specify for each communicating action *a* a synchronisation type st(a); e.g. $st(msg) = 1 \rightarrow 1$, $st(fwd) = 1 \rightarrow *$. This generates a set of system transitions formalised as an extended team automaton $\mathcal{T}(st)$. It has transitions like

 $(0,0,3) \xrightarrow{({Server}, fwd, {Client_1, Client_2})} (0,0,0)$

Our Contributions

- Specification of teams through individual synchronisation types *per action*; in general [min_{out}, max_{out}] → [min_{in}, max_{in}] (peer-to-peer, multicast, broadcast, gathering, master-slave, ...)
- Study of communication-safety properties in dependence of synchronisation type specifications

 receptiveness, responsiveness
- Composition of systems and criteria for preservation of communication-safety properties after composition → compositionality results!

- Specification of teams through individual synchronisation types *per action*; in general [min_{out}, max_{out}] → [min_{in}, max_{in}] (peer-to-peer, multicast, broadcast, gathering, master-slave, ...)
- Study of *communication-safety properties* in dependence of synchronisation type specifications
 → *receptiveness*, *responsiveness*
- Composition of systems and criteria for preservation of communication-safety properties after composition → compositionality results!

Receptiveness requirement:

Receptiveness requirement:

Receptiveness requirement:

 $rcp({Client_1}, msg)@(0, 0, 0) \checkmark T(st)$ is "strongly receptive"

Receptiveness requirement:

Receptiveness requirement:

Receptiveness requirement:

Receptiveness requirement:

Receptiveness requirement:

Receptiveness requirement:

 $rcp({Client_2}, msg)@(0, 0, 1) \checkmark T(st)$ is "weakly receptive"

Responsiveness requirement:

 $rsp({Server}, msg)@(0, 0, 0)$

Responsiveness requirement:

 $rsp({Server}, msg)@(0, 0, 0)$

Responsiveness requirement:

 $rsp({Server}, msg)@(0, 0, 0) \checkmark T(st)$ is "strongly responsive"

Communication-Safety

General idea: A team $\mathcal{T}(st)$ satisfies a communication requirement (receptiveness, responsiveness) if whenever a group of components in the team issues a request for communication it can successfully find partners to join.

- If the partners join immediately the team T(st) is strongly receptive (strongly responsive, resp.).
- If the partners join <u>after execution of some intermediate</u> <u>actions</u> the team *T*(*st*) is *weakly receptive* (*weakly responsive*)
- The team $\mathcal{T}(st)$ is strongly communication-safe if it is strongly receptive and strongly responsive.
- It is **weakly communication-safe** if it is weakly receptive <u>and</u> weakly responsive.

Comparison with the Literature

- Receptiveness in synchronous systems: [de Alfaro, Henzinger 2001], [Larsen, Nyman, Wasowski 2007], [Lüttgen, Vogler, Fendrich 2015], ...
- Responsiveness in synchronous systems: [Carmona, Cortadella 2002], [Carrez,Fantechi,Najm 2003], [Durán,Ouederni,Salaün 2012]

Comparison with the Literature

- Receptiveness in synchronous systems: [de Alfaro, Henzinger 2001], [Larsen, Nyman, Wasowski 2007], [Lüttgen, Vogler, Fendrich 2015], ...
- Responsiveness in synchronous systems: [Carmona, Cortadella 2002], [Carrez,Fantechi,Najm 2003], [Durán,Ouederni,Salaün 2012]

The above approaches are for systems, in which actions follow a one-to-one synchronisation style.

Our approach supports any kind of synchronisation type individually determined per action (thus generalising [ter Beek, Carmona, Hennicker, Kleijn 2017]).

We also support weak notions of receptiveness and responsiveness.

... and now there come some compostionality results

System Composition: Example

System Composition: Example

Synchronisation Type Specifications: Example

Synchronisation Type Specifications: Example

System Composition: General Definitions

Let $S_1 = \{A_1, \dots, A_k\}$ and $S_2 = \{B_1, \dots, B_m\}$ be two component systems (more generally, S_1, \dots, S_n).

- S_1 and S_2 are composable if $Com(S_1) \cap Com(S_2) = \emptyset$
- The *composition* of S_1 and S_2 is the system $S_1 \otimes S_2 = \{A_1, \dots, A_k, B_1, \dots, B_m\}$
- The interface actions of S₁ ⊗ S₂ are given by Com(S₁ ⊗ S₂) \ (Com(S₁) ∪ Com(S₂))

Given synchronisation type specs. st_1 over S_1 and st_2 over S_2 . Then provide a synchronisation type $st_{inf}(a)$ for each interface action *a* (task of the system architect). Thus we get a synchronisation type specification $st_1 \otimes_{st_{inf}} st_2$ over $S_1 \otimes S_2$.

Preservation of Communication-Safety Properties

Let S_1, S_2 as well as st_1, st_2 and st_{inf} be as above.

Theorem 1

If $\mathcal{T}(st_1)$ and $\mathcal{T}(st_2)$ are strongly communication-safe and $\mathcal{T}(st_1 \otimes_{st_{inf}} st_2)$ is strongly communication-safe w.r.t. all interface actions, then $\mathcal{T}(st_1 \otimes_{st_{inf}} st_2)$ is strongly communication-safe.

Theorem 2 If $\mathcal{T}(st_1)$ and $\mathcal{T}(st_2)$ are weakly communication-safe and $\mathcal{T}(st_1 \otimes_{st_{inf}} st_2)$ is weakly communication-safe w.r.t. all interface actions, then $\mathcal{T}(st_1 \otimes_{st_{inf}} st_2)$ is weakly communication-safe provided that some additional conditions are satisfied (for instance on the form of st_{inf}).

Preservation of Communication-Safety Properties

Let S_1, S_2 as well as st_1, st_2 and st_{inf} be as above.

Theorem 1

If $\mathcal{T}(st_1)$ and $\mathcal{T}(st_2)$ are strongly communication-safe and $\mathcal{T}(st_1 \otimes_{st_{inf}} st_2)$ is strongly communication-safe w.r.t. all interface actions, then $\mathcal{T}(st_1 \otimes_{st_{inf}} st_2)$ is strongly communication-safe.

Theorem 2

If $\mathcal{T}(st_1)$ and $\mathcal{T}(st_2)$ are weakly communication-safe and $\mathcal{T}(st_1 \otimes_{st_{inf}} st_2)$ is weakly communication-safe w.r.t. all interface actions, then $\mathcal{T}(st_1 \otimes_{st_{inf}} st_2)$ is weakly communication-safe provided that some additional conditions are satisfied (for instance on the form of st_{inf}).

Example: Receptiveness of Interface Actions

Example: Receptiveness of Interface Actions

Example: Responsiveness of Interface Actions

Example: Responsiveness of Interface Actions

Conclusion

- Generic theory for communication-safety (compatibility) in multi-component systems applicable to various kinds of synchronisation policies
- Composition of systems and synchronisation type specifications
- Compositionality results for strong and weak communication-safety
- Future research:
 - tool support for checking communication-safety properties,
 - integration into a software engineering methodology supporting encapsulation and refinement,
 - larger case studies,
 - asynchronous communication