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We consider: Systems of Communicating Components

Client; msg! Server
msg
>
fwd
vl ? reject? fwd!
Client, msg! ask! grant?
msg
@ fwd
>
fd? askl rejectT grantT

Communicating actions: Com(S) = {msg,fwd}

System transition: simultaneous execution of a communicating
action. In principle, any number of components can participate.

Not all system transtions are meaningful!
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We consider: Systems of Communicating Components
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Idea: Specify for each communicating action a a synchronisation
type st(a); e.g. st(msg) =1 — 1, st(fwd) = 1 — *.

This generates a set of system transitions formalised as an
extended team automaton 7 (st). It has transitions like

({Server},fwd {Clienty,Clients}) (0 0 0)

(0,0,3)
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Our Contributions

® Specification of teams through individual synchronisation
types per action; in general [mingy, maxoys] — [ming,, max;py]
(peer-to-peer, multicast, broadcast, gathering, master-slave, ...)

® Study of communication-safety properties in dependence of
synchronisation type specifications
— receptiveness, responsiveness

e Composition of systems and criteria for preservation of
communication-safety properties after composition
— compositionality results!
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On Safe Communication: Receptiveness
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On Safe Communication: Responsiveness
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On Safe Communication: Responsiveness
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rsp({Server}, msg)©@(0,0,0) v T(st) is “strongly responsive”
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Communication-Safety

General idea: A team T (st) satisfies a communication requirement
(receptiveness, responsiveness) if whenever a group of components
in the team issues a request for communication it can successfully
find partners to join.

e If the partners join immediately the team 7 (st) is strongly
receptive (strongly responsive, resp.).

® |f the partners join after execution of some intermediate
actions the team 7 (st) is weakly receptive (weakly responsive)

® The team 7 (st) is strongly communication-safe if it is
strongly receptive and strongly responsive.

® |t is weakly communication-safe if it is weakly receptive and
weakly responsive.
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Comparison with the Literature

® Receptiveness in synchronous systems:

[de Alfaro, Henzinger 2001], [Larsen, Nyman, Wasowski 2007],

[Littgen, Vogler, Fendrich 2015], ...

® Responsiveness in synchronous systems:
[Carmona, Cortadella 2002], [Carrez,Fantechi,Najm 2003],
[Duran,Ouederni,Salaiin 2012]
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[de Alfaro, Henzinger 2001], [Larsen, Nyman, Wasowski 2007],
[Littgen, Vogler, Fendrich 2015], ...

® Responsiveness in synchronous systems:

[Carmona, Cortadella 2002], [Carrez,Fantechi,Najm 2003],
[Duran,Ouederni,Salaiin 2012]

The above approaches are for systems, in which actions follow a
one-to-one synchronisation style.

Our approach supports any kind of synchronisation type
individually determined per action (thus generalising
[ter Beek, Carmona, Hennicker, Kleijn 2017]).

We also support weak notions of receptiveness and responsiveness.

. and now there come some compostionality results
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System Composition: Example

Server

Client1 msg!
fwd?
Client, msg!

fwd?

¥
wa\d<
-
msg! reject? fwd!
ask! grant?
y‘ ' \\2/ }
.«///Q%L’//A

ask l reject T grant T

l ask I reject Igrant

Arbiter
ask?
Y
reject! ; :
rant!

&

34/45



System Composition: Example
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Synchronisation Type Specifications: Example
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Synchronisation Type Specifications: Example
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System Composition: General Definitions

Let S1 = {A1,..., Ak} and S» = {B1,..., By} be
two component systems (more generally, S1,...,Sh).
® S; and S, are composable if Com(S1) N Com(Sy) =0
® The composition of S; and S5 is the system
S8 ={A1,..., A, B1,...,Bn}
® The interface actions of S1 ® Sy are given by
Com(S1 ® &2) \ (Com(S1) U Com(Sz))

Given synchronisation type specs. st; over S1 and sty over Ss.
Then provide a synchronisation type stins(a) for each interface
action a (task of the system architect). Thus we get a
synchronisation type specification st; ®s,,, St> over S1 ® Ss.
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Preservation of Communication-Safety Properties

Let S1, 85 as well as sty, sty and stins be as above.

Theorem 1

If 7(st1) and T (stz) are strongly communication-safe and

T (st1 @st,,, St2) is strongly communication-safe w.r.t. all interface
actions, then T (st; ®st,,, St2) is strongly communication-safe.
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T (st1 @st,,, St2) is strongly communication-safe w.r.t. all interface
actions, then T (st; ®st,,, St2) is strongly communication-safe.

Theorem 2

If T(st1) and T (st2) are weakly communication-safe and

T (st1 @styy,, Sto) is weakly communication-safe w.r.t. all interface
actions, then T (st; ®st,,, St2) is weakly communication-safe
provided that some additional conditions are satisfied (for instance
on the form of stjne).
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Example: Receptiveness of Interface Actions
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Example: Responsiveness of Interface Actions
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Example: Responsiveness of Interface Actions
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Conclusion

® Generic theory for communication-safety (compatibility) in
multi-component systems applicable to various kinds of
synchronisation policies

e Composition of systems and synchronisation type
specifications

® Compositionality results for strong and weak
communication-safety

® Future research:
— tool support for checking communication-safety properties,

— integration into a software engineering methodology
supporting encapsulation and refinement,

— larger case studies,

— asynchronous communication
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