
Compositionality of Safe Communication
in Systems of Team Automata

Maurice H. ter Beek Rolf Hennicker Jetty Kleijn

ISTI–CNR, Pisa, Italy

LMU Munich, Germany

LIACS, Leiden University, The Netherlands

1 / 45



We consider: Systems of Communicating Components

Client1

0

msg !

fwd?

Server

0

21 3

msg?

ask! grant?

reject? fwd!

Client2

0

msg !

fwd?

msg

fwd

msg

fwd

ask reject grant

Communicating actions Com(S) = {msg,fwd}

2 / 45



We consider: Systems of Communicating Components

Client1

0

msg !

fwd?

Server

0

21 3

msg?

ask! grant?

reject? fwd!

Client2

0

msg !

fwd?

msg

fwd

msg

fwd

ask reject grant

Communicating actions Com(S) = {msg,fwd}

System transition: simultaneous execution of a communicating
action. In principle, any number of components can participate.

3 / 45



We consider: Systems of Communicating Components

Client1

0

msg !

fwd?

Server

0

21 3

msg?

ask! grant?

reject? fwd!

Client2

0

msg !

fwd?

msg

fwd

msg

fwd

ask reject grant

Communicating actions Com(S) = {msg,fwd}

System transition: simultaneous execution of a communicating
action. In principle, any number of components can participate.

4 / 45



We consider: Systems of Communicating Components

Client1

0

msg!

fwd?

Server

0

21 3

msg?

ask! grant?

reject? fwd!

Client2

0

msg !

fwd?

msg

fwd

msg

fwd

ask reject grant

Communicating actions Com(S) = {msg,fwd}

System transition: simultaneous execution of a communicating
action. In principle, any number of components can participate.

5 / 45



We consider: Systems of Communicating Components

Client1

0

msg !

fwd?

Server

0

21 3

msg?

ask! grant?

reject? fwd!

Client2

0

msg !

fwd?

msg

fwd

msg

fwd

ask reject grant

Communicating actions Com(S) = {msg,fwd}

System transition: simultaneous execution of a communicating
action. In principle, any number of components can participate.

6 / 45



We consider: Systems of Communicating Components

Client1

0

msg!

fwd?

Server

0

21 3

msg?

ask! grant?

reject? fwd!

Client2

0

msg!

fwd?

msg

fwd

msg

fwd

ask reject grant

Communicating actions Com(S) = {msg,fwd}

System transition: simultaneous execution of a communicating
action. In principle, any number of components can participate.

7 / 45



We consider: Systems of Communicating Components

Client1

0

msg !

fwd?

Server

0

21 3

msg?

ask! grant?

reject? fwd!

Client2

0

msg !

fwd?

msg

fwd

msg

fwd

ask reject grant

Communicating actions Com(S) = {msg,fwd}

System transition: simultaneous execution of a communicating
action. In principle, any number of components can participate.

8 / 45



We consider: Systems of Communicating Components

Client1

0

msg!

fwd?

Server

0

21 3

msg?

ask! grant?

reject? fwd!

Client2

0

msg !

fwd?

msg

fwd

msg

fwd

ask reject grant

Communicating actions Com(S) = {msg,fwd}

System transition: simultaneous execution of a communicating
action. In principle, any number of components can participate.

9 / 45



We consider: Systems of Communicating Components

Client1

0

msg !

fwd?

Server

0

21 3

msg?

ask! grant?

reject? fwd!

Client2

0

msg !

fwd?

msg

fwd

msg

fwd

ask reject grant

Communicating actions: Com(S) = {msg,fwd}

System transition: simultaneous execution of a communicating
action. In principle, any number of components can participate.

Not all system transtions are meaningful!

10 / 45



We consider: Systems of Communicating Components

Client1

0

msg !

fwd?

Server

0

21 3

msg?

ask! grant?

reject? fwd!

Client2

0

msg !

fwd?

msg

fwd

msg

fwd

ask reject grant

Idea: Specify for each communicating action a a synchronisation
type st(a); e.g. st(msg) = 1→ 1, st(fwd) = 1→ *.
This generates a set of system transitions formalised as an
extended team automaton T (st). It has transitions like

(0, 0, 3)
({Server},fwd ,{Client1,Client2})−−−−−−−−−−−−−−−−−−−−−→ (0, 0, 0)

11 / 45



Our Contributions

• Specification of teams through individual synchronisation
types per action; in general [minout, maxout]→ [minin, maxin]
(peer-to-peer, multicast, broadcast, gathering, master-slave, ...)

• Study of communication-safety properties in dependence of
synchronisation type specifications
→ receptiveness, responsiveness

• Composition of systems and criteria for preservation of
communication-safety properties after composition
→ compositionality results!

12 / 45



Our Contributions

• Specification of teams through individual synchronisation
types per action; in general [minout, maxout]→ [minin, maxin]
(peer-to-peer, multicast, broadcast, gathering, master-slave, ...)

• Study of communication-safety properties in dependence of
synchronisation type specifications
→ receptiveness, responsiveness

• Composition of systems and criteria for preservation of
communication-safety properties after composition
→ compositionality results!

13 / 45



On Safe Communication: Receptiveness

Client1

0

msg !

fwd?

Server

0

21 3

msg?

ask! grant?

reject? fwd!

Client2

0

msg !

fwd?

msg

fwd

msg

fwd

ask reject grant

14 / 45



On Safe Communication: Receptiveness

Client1

0

msg!

fwd?

Server

0

21 3

msg?

ask! grant?

reject? fwd!

Client2

0

msg !

fwd?

msg

fwd

msg

fwd

ask reject grant

15 / 45



On Safe Communication: Receptiveness

Client1

0

msg!

fwd?

Server

0

21 3

msg?

ask! grant?

reject? fwd!

Client2

0

msg !

fwd?

msg

fwd

msg

fwd

ask reject grant

Receptiveness requirement:

rcp({Client1},msg)@(0, 0, 0)

16 / 45



On Safe Communication: Receptiveness

Client1

0

msg!

fwd?

Server

0

21 3

msg?

ask! grant?

reject? fwd!

Client2

0

msg !

fwd?

msg

fwd

msg

fwd

ask reject grant

Receptiveness requirement:

rcp({Client1},msg)@(0, 0, 0)

17 / 45



On Safe Communication: Receptiveness

Client1

0

msg!

fwd?

Server

0

21 3

msg?

ask! grant?

reject? fwd!

Client2

0

msg !

fwd?

msg

fwd

msg

fwd

ask reject grant

Receptiveness requirement:

rcp({Client1},msg)@(0, 0, 0) 3 T (st) is “strongly receptive”

18 / 45



On Safe Communication: Receptiveness

Client1

0

msg !

fwd?

Server

0

21 3

msg?

ask! grant?

reject? fwd!

Client2

0

msg!

fwd?

msg

fwd

msg

fwd

ask reject grant

19 / 45



On Safe Communication: Receptiveness

Client1

0

msg !

fwd?

Server

0

21 3

msg?

ask! grant?

reject? fwd!

Client2

0

msg!

fwd?

msg

fwd

msg

fwd

ask reject grant

Receptiveness requirement:

rcp({Client2},msg)@(0, 0, 1)

20 / 45



On Safe Communication: Receptiveness

Client1

0

msg !

fwd?

Server

0

21 3

msg?

ask! grant?

reject? fwd!

Client2

0

msg!

fwd?

msg

fwd

msg

fwd

ask reject grant

Receptiveness requirement:

rcp({Client2},msg)@(0, 0, 1)

21 / 45



On Safe Communication: Receptiveness

Client1

0

msg !

fwd?

Server

0

21 3

msg?

ask! grant?

reject? fwd!

Client2

0

msg!

fwd?

msg

fwd

msg

fwd

ask reject grant

Receptiveness requirement:

rcp({Client2},msg)@(0, 0, 1)

22 / 45



On Safe Communication: Receptiveness

Client1

0

msg !

fwd?

Server

00

21 3

msg?

ask! grant?

reject? fwd!

Client2

0

msg!

fwd?

msg

fwd

msg

fwd

ask reject grant

Receptiveness requirement:

rcp({Client2},msg)@(0, 0, 1)

23 / 45



On Safe Communication: Receptiveness

Client1

0

msg !

fwd?

Server

0

21 3

msg?

ask! grant?

reject? fwd!

Client2

0

msg!

fwd?

msg

fwd

msg

fwd

ask reject grant

Receptiveness requirement:

rcp({Client2},msg)@(0, 0, 1)

24 / 45



On Safe Communication: Receptiveness

Client1

0

msg !

fwd?

Server

0

21 3

msg?

ask! grant?

reject? fwd!

Client2

0

msg!

fwd?

msg

fwd

msg

fwd

ask reject grant

Receptiveness requirement:

rcp({Client2},msg)@(0, 0, 1) 3 T (st) is “weakly receptive”

25 / 45



On Safe Communication: Responsiveness

Client1

0

msg !

fwd?

Server

00

21 3

msg?

ask! grant?

reject? fwd!

Client2

0

msg !

fwd?

msg

fwd

msg

fwd

ask reject grant

26 / 45



On Safe Communication: Responsiveness

Client1

0

msg !

fwd?

Server

00

21 3

msg?

ask! grant?

reject? fwd!

Client2

0

msg !

fwd?

msg

fwd

msg

fwd

ask reject grant

27 / 45



On Safe Communication: Responsiveness

Client1

0

msg !

fwd?

Server

00

21 3

msg?

ask! grant?

reject? fwd!

Client2

0

msg !

fwd?

msg

fwd

msg

fwd

ask reject grant

Responsiveness requirement:

rsp({Server},msg)@(0, 0, 0)

28 / 45



On Safe Communication: Responsiveness

Client1

0

msg !

fwd?

Server

00

21 3

msg?

ask! grant?

reject? fwd!

Client2

0

msg!

fwd?

msg

fwd

msg

fwd

ask reject grant

Responsiveness requirement:

rsp({Server},msg)@(0, 0, 0)

29 / 45



On Safe Communication: Responsiveness

Client1

0

msg !

fwd?

Server

00

21 3

msg?

ask! grant?

reject? fwd!

Client2

0

msg!

fwd?

msg

fwd

msg

fwd

ask reject grant

Responsiveness requirement:

rsp({Server},msg)@(0, 0, 0) 3 T (st) is “strongly responsive”

30 / 45



Communication-Safety

General idea: A team T (st) satisfies a communication requirement
(receptiveness, responsiveness) if whenever a group of components
in the team issues a request for communication it can successfully
find partners to join.

• If the partners join immediately the team T (st) is strongly
receptive (strongly responsive, resp.).

• If the partners join after execution of some intermediate
actions the team T (st) is weakly receptive (weakly responsive)

• The team T (st) is strongly communication-safe if it is
strongly receptive and strongly responsive.

• It is weakly communication-safe if it is weakly receptive and
weakly responsive.

31 / 45



Comparison with the Literature

• Receptiveness in synchronous systems:
[de Alfaro, Henzinger 2001], [Larsen, Nyman, Wasowski 2007],
[Lüttgen, Vogler, Fendrich 2015], ...

• Responsiveness in synchronous systems:
[Carmona, Cortadella 2002], [Carrez,Fantechi,Najm 2003],
[Durán,Ouederni,Salaün 2012]

The above approaches are for systems, in which actions follow a
one-to-one synchronisation style.

Our approach supports any kind of synchronisation type
individually determined per action (thus generalising
[ter Beek, Carmona, Hennicker, Kleijn 2017]).

We also support weak notions of receptiveness and responsiveness.

... and now there come some compostionality results

32 / 45



Comparison with the Literature

• Receptiveness in synchronous systems:
[de Alfaro, Henzinger 2001], [Larsen, Nyman, Wasowski 2007],
[Lüttgen, Vogler, Fendrich 2015], ...

• Responsiveness in synchronous systems:
[Carmona, Cortadella 2002], [Carrez,Fantechi,Najm 2003],
[Durán,Ouederni,Salaün 2012]

The above approaches are for systems, in which actions follow a
one-to-one synchronisation style.

Our approach supports any kind of synchronisation type
individually determined per action (thus generalising
[ter Beek, Carmona, Hennicker, Kleijn 2017]).

We also support weak notions of receptiveness and responsiveness.

... and now there come some compostionality results

33 / 45



System Composition: Example

Client1

0

msg !

fwd?

Server

0

21 3

msg?

ask! grant?

reject? fwd!

Client2

0

msg !

fwd?

Arbiter

0 1

ask?

grant!

reject!

msg

fwd

msg

fwd

ask reject grant

ask reject grant

34 / 45



System Composition: Example

Client1

0

msg !

fwd?

Server

0

21 3

msg?

ask! grant?

reject? fwd!

Client2

0

msg !

fwd?

Arbiter

0 1

ask?

grant!

reject!

msg

fwd

msg

fwd

ask reject grant

Interface actions:

ask , reject, grant

35 / 45



Synchronisation Type Specifications: Example

Client1

0

msg !

fwd?

Server

0

21 3

msg?

ask! grant?

reject? fwd!

Client2

0

msg !

fwd?

Arbiter

0 1

ask?

grant!

reject!

msg

fwd

msg

fwd

ask reject grant

st(msg) = 1→ 1

st(fwd) = 1→ ∗

36 / 45



Synchronisation Type Specifications: Example

Client1

0

msg !

fwd?

Server

0

21 3

msg?

ask! grant?

reject? fwd!

Client2

0

msg !

fwd?

Arbiter

0 1

ask?

grant!

reject!

msg

fwd

msg

fwd

ask reject grant

st(msg) = 1→ 1

st(fwd) = 1→ ∗
stinf(ask) = stinf(reject) =

stinf(grant) = 1→ 1

37 / 45



System Composition: General Definitions

Let S1 = {A1, . . . ,Ak} and S2 = {B1, . . . ,Bm} be
two component systems (more generally, S1, . . . ,Sn).

• S1 and S2 are composable if Com(S1) ∩ Com(S2) = ∅
• The composition of S1 and S2 is the system

S1 ⊗ S2 = {A1, . . . ,Ak ,B1, . . . ,Bm}
• The interface actions of S1 ⊗ S2 are given by

Com(S1 ⊗ S2) \ (Com(S1) ∪ Com(S2))

Given synchronisation type specs. st1 over S1 and st2 over S2.
Then provide a synchronisation type stinf(a) for each interface
action a (task of the system architect). Thus we get a
synchronisation type specification st1 ⊗stinf st2 over S1 ⊗ S2.

38 / 45



Preservation of Communication-Safety Properties

Let S1,S2 as well as st1, st2 and stinf be as above.

Theorem 1
If T (st1) and T (st2) are strongly communication-safe and
T (st1 ⊗stinf st2) is strongly communication-safe w.r.t. all interface
actions, then T (st1 ⊗stinf st2) is strongly communication-safe.

Theorem 2
If T (st1) and T (st2) are weakly communication-safe and
T (st1 ⊗stinf st2) is weakly communication-safe w.r.t. all interface
actions, then T (st1 ⊗stinf st2) is weakly communication-safe
provided that some additional conditions are satisfied (for instance
on the form of stinf).

39 / 45



Preservation of Communication-Safety Properties

Let S1,S2 as well as st1, st2 and stinf be as above.

Theorem 1
If T (st1) and T (st2) are strongly communication-safe and
T (st1 ⊗stinf st2) is strongly communication-safe w.r.t. all interface
actions, then T (st1 ⊗stinf st2) is strongly communication-safe.

Theorem 2
If T (st1) and T (st2) are weakly communication-safe and
T (st1 ⊗stinf st2) is weakly communication-safe w.r.t. all interface
actions, then T (st1 ⊗stinf st2) is weakly communication-safe
provided that some additional conditions are satisfied (for instance
on the form of stinf).

40 / 45



Example: Receptiveness of Interface Actions

Client1

0

msg !

fwd?

Server

0

21 3

msg?

ask! grant?

reject? fwd!

Client2

0

msg !

fwd?

Arbiter

0 1

ask?

grant!

reject!

msg

fwd

msg

fwd

ask reject grant

Receptiveness requirement:

rcp({Server}, ask)@(0, 0, 1, 0)

41 / 45



Example: Receptiveness of Interface Actions

Client1

0

msg !

fwd?

Server

0

21 3

msg?

ask! grant?

reject? fwd!

Client2

0

msg !

fwd?

Arbiter

0 1

ask?

grant!

reject!

msg

fwd

msg

fwd

ask reject grant

Receptiveness requirement:

rcp({Server}, ask)@(0, 0, 1, 0) 3

42 / 45



Example: Responsiveness of Interface Actions

Client1

0

msg !

fwd?

Server

0

21 3

msg?

ask! grant?

reject? fwd!

Client2

0

msg !

fwd?

Arbiter

0 1

ask?

grant!

reject!

msg

fwd

msg

fwd

ask reject grant

Responsiveness requirement:

rsp({Server}, grant ∨ reject)@(0, 0, 2, 1)

43 / 45



Example: Responsiveness of Interface Actions

Client1

0

msg !

fwd?

Server

0

21 3

msg?

ask! grant?

reject? fwd!

Client2

0

msg !

fwd?

Arbiter

0 1

ask?

grant!

reject!

msg

fwd

msg

fwd

ask reject grant

Responsiveness requirement:

rsp({Server}, grant ∨ reject)@(0, 0, 2, 1) 3

44 / 45



Conclusion

• Generic theory for communication-safety (compatibility) in
multi-component systems applicable to various kinds of
synchronisation policies

• Composition of systems and synchronisation type
specifications

• Compositionality results for strong and weak
communication-safety

• Future research:

– tool support for checking communication-safety properties,

– integration into a software engineering methodology
supporting encapsulation and refinement,

– larger case studies,

– asynchronous communication

45 / 45


