Compositionality of Safe Communication
in Systems of Team Automata

Maurice H. ter Beek Rolf Hennicker Jetty Kleijn

ISTI-CNR, Pisa, Italy
LMU Munich, Germany

LIACS, Leiden University, The Netherlands

1/45

We consider: Systems of Communicating Components

Client1 msg!

msg
>

fwd

fwd?

Client, msg!
msg
fwd

(e

fwd?

reject?

ask!

fwd!

grant7

Server

Communicating actions Com(S) = {msg,fwd}

ask l reject T grant

|

2/45

We consider: Systems of Communicating Components

Client; msg! Server
msg
>
fwd
vl ? reject? fwd!
Client, msg! ask! grant?
msg
@ fwd
>
fd? ask l reject T grant T

Communicating actions Com(S) = {msg,fwd}

System transition: simultaneous execution of a communicating
action. In principle, any number of components can participate.

3/45

We consider: Systems of Communicating Components

Client, meg! Server
msg
>
fwd
fwd? reject? fwd!
Client, msg! ask! grant7
msg
fwd
>
fwd? ask l reject T grant T

Communicating actions Com(S) = {msg,fwd}

System transition: simultaneous execution of a communicating
action. In principle, any number of components can participate.

4/45

We consider: Systems of Communicating Components

Client; msg! Sorvar
msg
>
fwd
fwd? msg? reject? fwd!
Client, msg! ask! grant7
msg
fwd
>
fwd? ask l reject T grant T

Communicating actions Com(S) = {msg,fwd}

System transition: simultaneous execution of a communicating
action. In principle, any number of components can participate.

5/45

We consider: Systems of Communicating Components

Client, meg! Server
msg
>
fwd
fwd? reject? fwd!
Client, msg! ask! grant7
msg
fwd
>
fwd? ask l reject T grant T

Communicating actions Com(S) = {msg,fwd}

System transition: simultaneous execution of a communicating
action. In principle, any number of components can participate.

6/45

We consider: Systems of Communicating Components

Client; msg! Server
msg
>
fwd
fwd? msg? reject? fwd!
Client, msg! ask! grant7
- msg
fwd
>
fwd? ask l reject T grant T

Communicating actions Com(S) = {msg,fwd}

System transition: simultaneous execution of a communicating
action. In principle, any number of components can participate.

7/45

We consider: Systems of Communicating Components

Client, meg! Server
msg
>
fwd
fwd? reject? fwd!
Client, msg! ask! grant7
msg
fwd
>
fwd? ask l reject T grant T

Communicating actions Com(S) = {msg,fwd}

System transition: simultaneous execution of a communicating
action. In principle, any number of components can participate.

8/45

We consider: Systems of Communicating Components

Client; msg! Server
msg
>
fwd
fwd? reject? fwd!
Client, msg! ask! grant7
msg
fwd
>
fwd? ask l reject T grant T

Communicating actions Com(S) = {msg,fwd}

System transition: simultaneous execution of a communicating
action. In principle, any number of components can participate.

9/45

We consider: Systems of Communicating Components

Client; msg! Server
msg
>
fwd
vl ? reject? fwd!
Client, msg! ask! grant?
msg
@ fwd
>
fd? askl rejectT grantT

Communicating actions: Com(S) = {msg,fwd}

System transition: simultaneous execution of a communicating
action. In principle, any number of components can participate.

Not all system transtions are meaningful!
10/45

We consider: Systems of Communicating Components

Client, msg! Server
msg
>
fwd
fwd? reject? fivd!
Client, msg! ask! grant7
msg
fwd
>
fwd? ask l reject T grant T

Idea: Specify for each communicating action a a synchronisation
type st(a); e.g. st(msg) =1 — 1, st(fwd) = 1 — *.

This generates a set of system transitions formalised as an
extended team automaton 7 (st). It has transitions like

({Server},fwd {Clienty,Clients}) (0 0 0)

(0,0,3)

11/45

Our Contributions

® Specification of teams through individual synchronisation
types per action; in general [mingy, maxoys] — [ming,, max;py]
(peer-to-peer, multicast, broadcast, gathering, master-slave, ...)

® Study of communication-safety properties in dependence of
synchronisation type specifications
— receptiveness, responsiveness

e Composition of systems and criteria for preservation of
communication-safety properties after composition
— compositionality results!

12/45

Our Contributions

® Study of communication-safety properties in dependence of
synchronisation type specifications
— receptiveness, responsiveness

13/45

On Safe Communication: Receptiveness

Client; msg! Server
msg
>
fwd
v ? y reject? fwd!
Cliont, _meg! ask! grant7
msg
fwd.
>
v askl rejectT gra"tT

14 /45

On Safe Communication: Receptiveness

Client; msg! Server
msg
>
fwd
v ?) reject? fwd!
Cliont, _meg! ask! grant?
msg
fwd
>
fvd? askl rejectT grantx

15 /45

On Safe Communication: Receptiveness

Client1 msg!
msg
>
fwd
fwd?
Client, msg!
msg
fwd
>

Server

|
reject? fwd!

ask! grant7

fwd?

Receptiveness requirement:
rcp({Client; }, msg)©(0,0,0)

ask l reject T grant T

16 /45

On Safe Communication: Receptiveness

Clients msg! Server
msg
>
fwd
fwd? msg? reject? fwd!
Client, msg! ask! grant7
msg
fwd
>
fwd? ask l reject T grant T

Receptiveness requirement:
rcp({Client; }, msg)©(0,0,0)

17/45

On Safe Communication: Receptiveness

Clients msg! Server
msg
>
fwd
fwd? msg? reject? fwd!
Client, msg! ask! grant7
msg
fwd
>
fwd? ask l reject T grant T

Receptiveness requirement:
rcp({Client; }, msg)©@(0,0,0) v T (st) is “strongly receptive”

18/ 45

On Safe Communication: Receptiveness

Client, msg! Server
msg
>
fwd
fwd? y reject? fwd!
Client, msg! ask! grant7
msg
fwd.
>
fwd? ask l reject T grant T

19/45

On Safe Communication: Receptiveness

Client1 msg]
msg
>
fwd
fwd?
Client, msg!
msg
fwd
>

Server

|
reject? fwd!

ask! grant7

fwd?

Receptiveness requirement:
rcp({Client2 }, msg)©(0,0,1)

ask l reject T grant T

20/45

On Safe Communication: Receptiveness

Client, msg! Server
¥
msg
>
fwd
?
fwd? meg’ reject? fwd!
Client, msg! ask! grant?
msg 1
fwd
>
fwd? ask l reject T grant T

Receptiveness requirement:
rcp({Client2 }, msg)©(0,0,1)

21/45

On Safe Communication: Receptiveness

Client, msg! Server
msg
>
fwd
fwd? ? reject? fwd!
Client, msg! ask! Grant7
msg
fwd
>
fwd? ask l reject T grant T

Receptiveness requirement:
rcp({Client2 }, msg)©(0,0,1)

22/45

On Safe Communication: Receptiveness

Client1 msg]
msg
>
fwd
fwd?
Client, msg!
msg
fwd
>

Server

reject? fwd!

ask! grant7

fwd?

Receptiveness requirement:
rcp({Client2 }, msg)©(0,0,1)

ask l reject T grant T

23/45

On Safe Communication: Receptiveness

Client, msg! Server
msg
>
fwd
fwd? msg? reject? fwd!
Client, msg! ask! grant?
N msg
fwd
>
fwd? ask l reject T grant T

Receptiveness requirement:
rcp({Client2 }, msg)©(0,0,1)

24 /45

On Safe Communication: Receptiveness

Client, msg! Server
msg
>
fwd
fwd? msg? reject? fwd!
Client, msg! ask! grant?
N msg
fwd
>
fwd? ask l reject T grant T

Receptiveness requirement:
rcp({Cliento}, msg)©(0,0,1) v T (st) is “weakly receptive”

25 /45

On Safe Communication: Responsiveness

Client; msg! Server
msg
>
fwd
v ? y reject? fwd!
Cliont, _meg! ask! grant7
msg
fwd.
>
v askl rejectT gra"tT

26 /45

On Safe Communication: Responsiveness

Client; msg! Server
msg
>
fwd
v ? y reject? fwd!
Cliont, _meg! ask! grant?
msg
fwd.
>
fwd? askl feJ'ECfT grantx

27 /45

On Safe Communication: Responsiveness

Client1 msg]

msg
>
fwd
fwd?
Client, msg!
msg
fwd

fwd?

Responsiveness requirement:
rsp({Server}, msg)©(0,0,0)

Server

|
reject? fwd!

ask! grant7

ask l reject T grant T

28/45

On Safe Communication: Responsiveness

Client, msg! Server
msg
>
fwd
fwd? msg? reject? fwd!
Client, msg! ask! grant?
N msg
fwd
>
fwd? ask l reject T grant T

Responsiveness requirement:
rsp({Server}, msg)©(0,0,0)

29/45

On Safe Communication: Responsiveness

Client, msg! Server
msg
>
fwd
fwd? msg? reject? fwd!
Client, msg! ask! grant?
N msg
fwd
>
fwd? ask l reject T grant T

Responsiveness requirement:

rsp({Server}, msg)©@(0,0,0) v T(st) is “strongly responsive”

30/45

Communication-Safety

General idea: A team T (st) satisfies a communication requirement
(receptiveness, responsiveness) if whenever a group of components
in the team issues a request for communication it can successfully
find partners to join.

e If the partners join immediately the team 7 (st) is strongly
receptive (strongly responsive, resp.).

® |f the partners join after execution of some intermediate
actions the team 7 (st) is weakly receptive (weakly responsive)

® The team 7 (st) is strongly communication-safe if it is
strongly receptive and strongly responsive.

® |t is weakly communication-safe if it is weakly receptive and
weakly responsive.

31/45

Comparison with the Literature

® Receptiveness in synchronous systems:

[de Alfaro, Henzinger 2001], [Larsen, Nyman, Wasowski 2007],

[Littgen, Vogler, Fendrich 2015], ...

® Responsiveness in synchronous systems:
[Carmona, Cortadella 2002], [Carrez,Fantechi,Najm 2003],
[Duran,Ouederni,Salaiin 2012]

32/45

Comparison with the Literature

® Receptiveness in synchronous systems:
[de Alfaro, Henzinger 2001], [Larsen, Nyman, Wasowski 2007],
[Littgen, Vogler, Fendrich 2015], ...

® Responsiveness in synchronous systems:

[Carmona, Cortadella 2002], [Carrez,Fantechi,Najm 2003],
[Duran,Ouederni,Salaiin 2012]

The above approaches are for systems, in which actions follow a
one-to-one synchronisation style.

Our approach supports any kind of synchronisation type
individually determined per action (thus generalising
[ter Beek, Carmona, Hennicker, Kleijn 2017]).

We also support weak notions of receptiveness and responsiveness.

. and now there come some compostionality results

33/45

System Composition: Example

Server

Client1 msg!
fwd?
Client, msg!

fwd?

¥
wa\d<
-
msg! reject? fwd!
ask! grant?
y‘ ' \\2/ }
.«///Q%L’//A

ask l reject T grant T

l ask I reject Igrant

Arbiter
ask?
Y
reject! ; :
rant!

&

34/45

System Composition: Example

Client; msg!

fwd?

Client, msg!

fwd?

Interface actions:

ask, reject, grant

msg

fwd

msg

fwd

Server
)\
reject? fwd!
ask! grant7
ask reject grant
2sk? Arbiter
Y
reject! ; :
grant!

35/45

Synchronisation Type Specifications: Example

Clientl msg!

SO

fwd?

Client, msg!

SO

fwd?

st(msg) =1—1
st(fwd) =1 —

msg

fwd

msg

fwd

Server
reject? fwd!
ask! grant7
ask reject grant
ask? Arbiter
Y
reject! ; :
grant!

36 /45

Synchronisation Type Specifications: Example

(Client, msg! Server
msg
>
fwd
fwd? ! reject? fwd!
Client, msg! ask! gTant7
msg
@ fwd
>
fwd? ask reject grant
. ask? Arbiter
st(msg) =1—1 et
st(fwd) =1 — *
Sting(ask) = stins(reject) = arant!

stins(grant) =1 —1
37/45

System Composition: General Definitions

Let S1 = {A1,..., Ak} and S» = {B1,..., By} be
two component systems (more generally, S1,...,Sh).
® S; and S, are composable if Com(S1) N Com(Sy) =0
® The composition of S; and S5 is the system
S8 ={A1,..., A, B1,...,Bn}
® The interface actions of S1 ® Sy are given by
Com(S1 ® &2) \ (Com(S1) U Com(Sz))

Given synchronisation type specs. st; over S1 and sty over Ss.
Then provide a synchronisation type stins(a) for each interface
action a (task of the system architect). Thus we get a
synchronisation type specification st; ®s,,, St> over S1 ® Ss.

38/45

Preservation of Communication-Safety Properties

Let S1, 85 as well as sty, sty and stins be as above.

Theorem 1

If 7(st1) and T (stz) are strongly communication-safe and

T (st1 @st,,, St2) is strongly communication-safe w.r.t. all interface
actions, then T (st; ®st,,, St2) is strongly communication-safe.

39/45

Preservation of Communication-Safety Properties

Let S1, 85 as well as sty, sty and stins be as above.

Theorem 1

If 7(st1) and T (stz) are strongly communication-safe and

T (st1 @st,,, St2) is strongly communication-safe w.r.t. all interface
actions, then T (st; ®st,,, St2) is strongly communication-safe.

Theorem 2

If T(st1) and T (st2) are weakly communication-safe and

T (st1 @styy,, Sto) is weakly communication-safe w.r.t. all interface
actions, then T (st; ®st,,, St2) is weakly communication-safe
provided that some additional conditions are satisfied (for instance
on the form of stjne).

40 /45

Example: Receptiveness of Interface Actions

Client; msg!

fwd?

Client, msg!

fwd?

Receptiveness requirement:

rcp({Server}, ask)©(0,0,1,0)

msg

fwd

msg

fwd

Server
I
reject? fwd!
ask! grant"
ask reject grant
ask? Arbiter

v

grant!

41/45

Example: Receptiveness of Interface Actions

Clients msg! Server
v
msg
>
fwd
5
fwd? mag’ reject? fwd!
Client, msg! @ ask! grant?
msg
fwd.
>
fud? ask reject grant
Arbiter
Receptiveness requirement: v ask?
rcp({Server}, ask)©(0,0,1,0) v W.
grant!

42/45

Example: Responsiveness of Interface Actions

Client; msg! Server
v
msg
>
fwd
5
fwd? MEY reject? fwd!
Client, msg! @ ask! grant?
msg
fwd
>
fwd? ask reject grant
. . 2 Arbiter
Responsiveness requirement: v ask’
rsp({Server}, grant V reject)©(0, 0,2, 1) W’
grant!

43 /45

Example: Responsiveness of Interface Actions

Client; msg!

msg
>
fwd
fwd?
Client, msg!
msg
fwd
>
fwd?

Responsiveness requirement:

rsp({Server}, grant V reject)©(0,0,2,1) v

Server
I
reject? fwd!
ask! gra nt?
ask reject grant
ask? Arbiter

v

grant!

44/ 45

Conclusion

® Generic theory for communication-safety (compatibility) in
multi-component systems applicable to various kinds of
synchronisation policies

e Composition of systems and synchronisation type
specifications

® Compositionality results for strong and weak
communication-safety

® Future research:
— tool support for checking communication-safety properties,

— integration into a software engineering methodology
supporting encapsulation and refinement,

— larger case studies,

— asynchronous communication

45 /45

