
New book
“Formal Methods for Software Engineering

Languages, Methods, Application Domains”

Bernd-Holger Schlingloff, Markus Roggenbach

IFIP WG Meeting, March 2021

Motivation

Software engineering and Formal Methods:

I Current software engineering practices fail to deliver
dependable software.

I Formal methods are capable of improving this situation, and
are beneficial and cost-effective for mainstream software
development.

I Education in Formal Methods is key to progress things.

I Education in Formal Methods needs to be transformed.

From “Rooting Formal Methods Within Higher Education Curricula for
Computer Science and Software Engineering, a White Paper, Springer 2021.

https://link.springer.com/chapter/10.1007/978-3-030-71374-4_1

https://link.springer.com/chapter/10.1007/978-3-030-71374-4_1

Last Slide from our Presentation in Prague, 2019

The challenge of Software Engineering has been acknowledged for
decades now; the notion of software crisis has been related to the
debate on software industry since early days.

Safe to presume the state of the industry will continue this course
unless methods and practices are addressed.

Our work is motivated by the very challenge. The book is due out.
Watch this space!

Available in Autumn 2021

Markus Roggenbach, Antonio Cerone,

Bernd-Holger Schlingloff, Gerardo Schneider,

Siraj Ahmed Shaikh

Formal Methods for
Software Engineering
Languages, Methods, Application Domains

With a foreword by Manfred Broy
and a contribution on the origins and
development of Formal Methods by John V. Tucker

Table of Contents
xii Authors’ Preface

? ?

? ?

? ?

? ?

-
?

�

Fundamentals
Chapter 1

Formal Methods

Part I

Languages

Chapter 2

Logic

Chapter 3

CSP

Part II

Methods

Chapter 4

Alg. Spec.

Chapter 5

Testing

Part III

Application domains

Chapter 6

Contracts

Chapter 7

HCI

Chapter 8

Security

Part IV

Wrapping up

Chapter 9

Origin and development of FM

Conclusion

Fig. 1 Structure of the book.

The first path is for those who wish to stay with logic: Chapter 2 leads
on to Chapter 4 to provide a grounding in logic and the use in algebraic
specifications. Chapter 6 follows on as an area of application for modal logics.

An alternative path starts with Chapter 3, thoroughly covering CSP both
in theory and practice. Chapter 5 o↵ers a formal perspective on testing.
Chapters 7 and 8 provide case studies both using CSP to demonstrate how
the process algebra is applied. Only the last part of Chapter 7 depends on
logic, limited to temporal logic.

Chapter 9, written by our colleague John V. Tucker, puts the contents of
the previous chapters into the historical context. It can be read at any time
and it is independent of any of the other chapters.

The conclusion serves to summarise and reminds the reader of the final
message of the book. It is the natural ending to any reading path.

1. Formal Methods

I Motivating example: International Space Station, Byzantine
Generals, Verification with CSP

I More thorough example: Regular Expressions
I denotational, operational, and axiomatic semantics
I regular replacement

Definition

A Formal Method consists of syntax, semantics, and method.

I Formal Methods in Software Development
I Software lifecycle, V-model
I Use of formal methods
I Taxonomy of formal methods

I Comparative surveys and case studies; success stories

I How to get started

2. Logic

I Motivating example: car configuration

I Propositional logic as an institution

I PL, FOL, MSOL: syntax, semantics, calculi

I The logic of CASL

I Non-classical logics: modal, deontic, temporal

All demonstrated with examples from computer science.

92 B.-H. Schlinglo↵, M. Roggenbach, G. Schneider, A. Cerone

• (U, IR) is a modal frame, and
• IP is a mapping P ! 2U assigning a set of possible worlds to each modal

proposition symbol. The intention is that IP(p) denotes those worlds
where the modal proposition p is true.

If there is only one accessibility relation, then these models are also called
Kripke-structures.

Given a multimodal formula ', a model M, and an evaluation point w 2 U ,
the validation relation M, w |= ' can be defined.

Definition 28. (Validation relation for multimodal logic)

• M, w |= p if and only if p 2 w for p 2 P,
• M, w /|= ?, and M, w |= (')) if and only if M, w |= ' implies

M, w |= , and
• M, w |= hRi' if and only if there exists w0 2 U such that (w, w0) 2 IR(R)

and M, w0 |= '.

From the definition of [R]' it follows that

• M, w |= [R]' if and only if for all w0 2 U such that (w, w0) 2 IR(R) it
holds that M, w0 |= '.

A formula is universally valid in a model, if it holds at every point:

• M |= ' if and only if M, w |= ' for every w 2 U .

Example 32.1: Checking Links in the WWW Model

Assume the following MML-model M = (U, IR, IP , w0) for our frag-
ment of the world wide web:
• U = {w0, w1, w2, w3, w4 w5}
• IR(int) = {(w0, w2), (w0, w3), (w1, w2), (w1, w3), (w2, w0)}
• IR(ext) = {(w2, w4), (w3, w5), (w5, w5)}
• IP(isHome) = {w0, w1}, IP(isHobby) = {w2}, IP(isWork) =

{w3, w5}, IP(isClub) = {w2, w4}, IP(isLab) = {w5}
It is easy to see that all of the specification formulae given above are

universally valid in this model. A graphical description is as follows:

We can check whether there are no “dangling references” by evaluating
the formula (hinti> _ hexti>) for any w 2 U . It turns out that this

3. CSP

I ATM – for introduction of all CSP operators

I Starting Jet Engine controller – for introducing operational
and denotational semantics of the traces model

I Modelling buffers – for studying refinement and motivating
refusals

I Children’s Puzzle – for demonstrating analyses with tools:
Simulation, model-checking, theorem proving

150 M. Roggenbach, S.A. Shaikh, A. Cerone

To address this problem, we redesign the COMM SYSTEM . Even if it
is taken to be certain that every one of the three bits transmitted through
the medium is corrupted, the interfacing processes could be adapted to take
the best-of-three values. That is, necessarily assuming one out of three bits is
corrupted, any two values that match denote the original value transmitted.
To this end we modify the two interfacing processes:

Example 39.3: A Corrected Communication System

MSNDR = read?x ! input!x ! input!x ! input!x ! MSNDR
MRCVR = output?x ! output?y ! output?z !

if x == y then write!x ! MRCVR
else write!z ! MRCVR

With these modified processes, we form a new communication system –
without changing the MEDIUM :

MCOMM SYSTEM =
(MSNDR [|ToM |]MEDIUM) [|FromM |]MRCVR

Using the model checker FDR, we obtain for this system:
1. B vF MCOMM SYSTEM \ (FromM [ToM) and
2. MCOMM SYSTEM \ (FromM [ToM) vF B,

i.e., the abstracted modified system behaves like a two place bu↵er.

3.3 The Children’s Puzzle or What Csp Tools Can Do

In this chapter we analyze the Children’s Puzzle with various tools for Csp.
The puzzle belongs to the lore of mathematical riddles. It appears to be
impossible to name its inventor. One reference is [BPFS].

children

teacher

candies

Fig. 3.4 Children’s Puzzle: illustration with five children.

4. CASL

I Modelling, validating, consistency checking, and testing:
Telephone Database
I Automated theorem proving with Hets and Spass
I Random testing of Java programs with ConGu

I Verification of Ladder Logic programs
(as applied by Siemens for railway interlockings):
Controller of a Pelican Crossing
I PLCs; induction verification without and with invariants

I Structuring Specifications: Sorted Lists
I Methodologically motivated application of structuring4 Algebraic specification in CASL 213

Fig. 4.2 A Pelican crossing. R, A, and G represent red, amber and green lights, respec-
tively.

5. Specification Based Testing

248 B.-H. Schlinglo↵, M. Roggenbach

quality criterion of software, however, is correctness, i.e., the absence of fail-
ure. Thus, in this chapter we only consider testing a computational system
for correctness.

To do so, we need to discuss the meaning of the words ‘correctness’ and
‘failure’. A failure is a deficit with respect to the intended functionality of
a system. That is, a failure is a deviation of the actual behaviour of the
system from the specified or required one. A failure of the system may cause
an incident or accident, i.e., a negative e↵ect onto the environment of the
system, especially onto people. It is caused by a fault or defect, which is a
wrong state of the system, due to a flaw in the design or manufacturing
process. Each fault can be traced back to some human error or mistake, that
is, a misconception about the system to be built or operated. As a mnemonic,
‘an error can lead to a fault, and a fault can lead to a failure” (see Fig. 5.1).1

Fig. 5.1 Errors, faults and failures

In order to find errors via testing, it is important that the ‘right’ con-
ception is made explicit. That is, it is impossible to test the correctness of
a program without being given a specification which describes the intended
‘correct’ behaviour. Often, specifications are given only implicitly, or impre-
cisely. Examples of badly formulated requirements are “the system shall never
crash”, “it must always react to user input”, “there should not be any error
messages”, and similar. Here, it is unclear to which time period ‘never’ and
‘always’ refer to (not in a hundred years?); thus, such requirements can not
be tested. Other bad (untestable) formulations include “the system should be
as fast as possible”, “the system must achieve a feasible cost/benefit ratio”,
or “the security of the system must be properly maintained”. Here, we do
not know what is ‘possible’ and ‘feasible’, or which security threats need to
be considered.

Hence in order to set up a proper test for a system, it is necessary to provide
a specification which is precise, unambiguous, and has a clear semantics.
In the previous chapters, formal languages were introduced which allow to
formulate systems properties in such a way. In this chapter, we will show how
these formalisms can be used for testing.

In the above definition, testing was defined to be a systematic experiment,
that is, there must be some systematics which the experiments follow. There
are two main paradigms for such a systematics: The structure of the test

1 Here, we deviate from some parts of the literature where the words ‘error’ and ‘fault’ are
interchanged; for us, an error (occurring in the human mind) is more fundamental than a

fault (occurring in an artefact).

I State based testing: video recorder
I State machine modelling, test generation and coverage
I Conformance testing, IOCO

I Data based testing: calendar app
I Test data generation from CASL specifications
I Test evaluation
I Completeness of test suites

I Tool support for testing

5 Specification-based Testing 253

According to the informal specification, event dn leads from off to on,
and up leads from on to off. Furthermore, repeated occurrences of dn
cycle through rec, mem and play. In Fig. 5.3 we decided to place the
three operating modes rec, mem and play as states in a region within
state on. That way, the event up leads to off from any of these states.

Fig. 5.3 UML State Machine for the Camera Switch

Note that the semantics of UML determines that ‘unexpected’ events are
skipped. That is, if the machine is, e.g., in state off and an up-event is
received, it just stays in this state and the event is discarded.

The model in Fig. 5.3 can be seen as a formalisation of the informal re-
quirements given in Example 49. It describes the intended behaviour of the
switch, giving a precise meaning to phrases like ‘repeatedly’ or ‘desired mode’.
Usually, a UML state machine is an abstraction of an actual target system
(in our case, a video camera recorder). Such an abstraction can be used in
two ways:

• for constructing the target system by a stepwise refinement process, and
• as a source for the generation of test cases for the target system.

The first of these uses is known as ‘model-based design’ (MBD), whereas
the second one has been called ‘model-based testing’ (MBT).2 In this chapter,
MBT is discussed.

2 Note that the use of the word ‘model’ significantly di↵ers here from its use in logic.
In MBD/MBT, a model is defined to be a purposeful abstraction of some target system,

whereas in logic a model is a semantical structure for the evaluation of formulae.

6. E-Contracts

I Running example: airline ground crew

I Contract language (CL) based on deontic logic

I Translation of controlled natural language into CL

I Conflict analysis of e-contracts
296 G. Schneider

Fig. 6.1 High-level description of a contract analysis framework.

6.2.2.3 Terms of Service

Probably everybody has had the frustrating experience of having to accept an
agreement, called terms of service or ToS, before being allowed to download
an application on an electronic media (e.g., smart phone). In such cases, the
standard behaviour usually is not to read the agreement, but simply click on
the ‘agree’ button, knowing that otherwise it will not be possible to use the
application.

Given the time constraints we are under today, it could be highly desirable
to have the possibility to simply press a button ‘Quick Analysis’ before en-
gaging in accepting any agreement, so that a quick analysis of the document
is performed. This analysis might for instance highlight our obligations, and
describe briefly under which conditions they are enacted. Also, it could allow
the user to make a quick query on specific questions, for instance “What is
the worst case scenario if I do breach the agreement”.

6.3 A Framework for Specification and Analysis of
Contracts

We present in this section a conceptual framework to handle electronic (and
legal) contracts (see Fig. 6.1). A contract written in natural language is suc-
cessfully refined towards a formal language which might be analysed statically
and at runtime (flow from right to left in the figure). A scenario highlighting
a typical use of the framework is described in what follows.2

1. A contract is written in natural language (NL), as for instance English, by
an end-user (e.g., a lawyer) and fed into the framework (NLCon).

2 In subsequent sections we will develop the concepts mentioned in the framework and

present them in more details.

7. Human Computer Interaction

I Human errors and cognition
I Human memory and memory processes

I CSP and TL modelling of brain capacity

I Human behaviour and interaction
I CSP and TL modelling of cognitive, automatic, and deliberate

control

I Analyses of interactions with model checking for
I Cognitive overload
I Task failure

Demonstrated with examples from ATM cash withdrawal, air
traffic control, brain memory, car driving, and screen scanning.

8. Security Protocols

I Background
I Public key cryptography, principles of security
I Security protocols, attacks, Dolev/Yao intruder model

I CSP encodings
I How to model security protocols in CSP
I How to model different forms of authentication in CSP

I Analysis
I Protocol modelling in CSPm and verification with

modelchecking in FDR
(attacker had bounded reasoning depth)

I Protocol verification with rank functions
(attacker has unbounded reasoning depth)

Running example: Needham/Schroeder and its correction.

9. History of Formal Methods (by John V. Tucker)

I Where do Formal Methods for software engineering come
from?

I Logic

I Specifying programming languages and programs

I Specifications of data

I Reasoning and proof

I Concurrency

I Formal methods enter specialist areas

Writing Style

I Each chapter starts with a small anecdote or puzzle
I Examples play a huge role:

2 M. Roggenbach, B.-H. Schlinglo↵, G. Schneider

able to withdraw more than required. The agent wants at least the amount
which was asked for. Thus, both you and the agent expect that the payment
system gets its numbers right. The payment should go through – as, clearly,
your credit card is a valid one. Also, you don’t want too much information
to be disclosed, e.g., your PIN should stay secret. The transaction should
solely concern the holiday reservation, no further contracts shall be follow
from this. Finally, you want to be able to use the system without the need
to consult a user manual of hundreds of pages. All these points are typical
requirements for an electronic payment system. Formal Methods are one way
how software engineering can help ensure that a computer system meets such
requirements.

So, what is a Formal Method? Instead of trying to start with a compre-
hensive definition of the term, we give two motivating examples.

1.1.1 An Application in Space Technologies

Formal Methods are often used in safety-critical areas, where human life
or health or a large sum of money depends on the correctness of software.
We start with an example from the largest aerospace project mankind has
endeavoured so far.

Example 1: ISS Fault Tolerant Computer

The International Space Station (ISS) which was docked on Novem-
ber 2nd, 2000 (ISS-Expedition 1), has provided a platform to conduct
scientific research that cannot be performed in any other way.

At the heart of the ISS is a fault tolerant computer (FTC) “to be
used in the ISS to control space station assembly, reboost operations for
flight control and data management for experiments carried out in the
space station” [BKPS97].

In outer space, the probability of hardware faults due to radiation
is much higher than on earth. Thus, in the ISS-FTC there are four
identical interconnected hardware boards, which perform essentially the
same computation. A software fault management layer is responsible for
detecting, isolating, rebooting and reintegrating malfunctioning boards.

One problem in the design of this layer is the recognition of a faulty
board, since it not only can generate wrong messages, but also modify
messages of the other (correct) boards. To overcome this problem, a so-
called Byzantine agreement protocol is used, which abstractly models
the problem of distributed consensus in the presence of faults.

Lamport et al. use the following story to exemplify the distributed consensus
problem [LSP82]:

I 77 different examples
I often developed in several steps

e.g., the corrected Needham/Schroeder protocol in eight steps.

I Concise formalisms are being used as far as possible.

I Frequent applications and links to computer science are given.

I Chapters end with annotated bibliography and research
directions.

I The book includes a foreword by Manfred Broy.

Audience and Use

The book is appropriate for the following levels:

I Final year BSc students

I MSc students

I PhD students in the early phases of their research

The book can be used as:

I Underlying textbook for a university course
(lab sheets and online tools available).

I Primary source for a seminar (2-3 student talks per chapter).

I Individual chapters can provide basic material for advanced
module in the respective subjects.

I Self study for PhD students (crash course on a specific
subject)

Available in Autumn 2021

Markus Roggenbach, Antonio Cerone,

Bernd-Holger Schlingloff, Gerardo Schneider,

Siraj Ahmed Shaikh

Formal Methods for
Software Engineering
Languages, Methods, Application Domains

With a foreword by Manfred Broy
and a contribution on the origins and
development of Formal Methods by John V. Tucker

