
Formal Development of Multi-Purpose
Interactive Application (MPIA)

for ARINC 661

Dominique Méry2

Joint work with
Neeraj Kumar Singh1, Yamine Äıt Ameur1, David Navarre3,

Philippe Palanque3 and Marc Pantel1

1INPT-ENSEEIHT / IRIT University of Toulouse, France
2LORIA, Telecom Nancy Université de Lorraine, France

3IRIT, Université de Toulouse, Toulouse, France

January 14, 2020

IFIP WG 1.3
Massa Marittina (Mery et. al.) 1

Outline

1 Context and Problems

2 Correctness by Construction

3 Event-B

4 First steps in HMI using Event-B
Using refinement-based methodology
MPIA in Event-B

5 Second step in HMI using Pivot Modelling Language

6 FLUID

7 Modelling Framework
ICO and PetShop CASE Tools

8 MPIA Case Study

9 Development of MPIA
MPIA in FLUID
MPIA FLUID Model in Event-B
MPIA FLUID Model in PetShop

10 Discussion

11 Conclusion and Future Work
Massa Marittina (Mery et. al.) 2

Current Summary

1 Context and Problems

2 Correctness by Construction

3 Event-B

4 First steps in HMI using Event-B
Using refinement-based methodology
MPIA in Event-B

5 Second step in HMI using Pivot Modelling Language

6 FLUID

7 Modelling Framework
ICO and PetShop CASE Tools

8 MPIA Case Study

9 Development of MPIA
MPIA in FLUID
MPIA FLUID Model in Event-B
MPIA FLUID Model in PetShop

10 Discussion

11 Conclusion and Future Work
Massa Marittina (Mery et. al.) 3

Human Machine Interface (HMI)

What is Human Machine Interface?

A human-machine interface (HMI) is a device or software that
allows its user to communicate with systems.

Acoustic & Optics Bionics Tactile Motion

Flight Cockpit Medical Industry Games and Robotics

Types of HMI

Applications of HMI

Massa Marittina (Mery et. al.) 3

Context and Problems

Context

Development of a rigorous formal framework for modelling and
designing Human Machine Interface (HMI) complying with ARINC
661 specification standard using a correct-by-construction
approach.

Problems

• Increasing complexity in HMIs;

• Lack of abstraction or of formal design patterns for handling
different aspects interactive systems;

• Needs better techniques & tools to manage interactions, time,
task analysis, domain properties, scenarios and concurrency in
HMIs;

• Needs some sound techniques to meet certification standards
related to HMIs.

Massa Marittina (Mery et. al.) 4

Objectives (1)

• Development of a new pivot language, FLUID (Formal
Language of User Interface Design), for modelling and
designing a complex HMI;

• Formal development of a complex HMI using a correct by
construction approach;

• Formal verification and validation of requirements, scenarios,
tasks, interactions and safety properties of HMI;

• Integration of several techniques and tools in a single
modelling framework for developing HMIs;

• To demonstrate the use of proposed framework to an
industrial case study;

• Use of formal proofs and animations as an evidence in HMI
certification.

Massa Marittina (Mery et. al.) 5

Current Summary

1 Context and Problems

2 Correctness by Construction

3 Event-B

4 First steps in HMI using Event-B
Using refinement-based methodology
MPIA in Event-B

5 Second step in HMI using Pivot Modelling Language

6 FLUID

7 Modelling Framework
ICO and PetShop CASE Tools

8 MPIA Case Study

9 Development of MPIA
MPIA in FLUID
MPIA FLUID Model in Event-B
MPIA FLUID Model in PetShop

10 Discussion

11 Conclusion and Future Work
Massa Marittina (Mery et. al.) 6

Correctness by Construction

• Correctness by Construction is a method of building software
-based systems with demonstrable correctness for security-
and safety-critical applications.

• Correctness by Construction advocates a step-wise refinement

process from specification to code using tools for checking
and transforming models.

• Correctness by Construction is an approach to
software/system construction

• starting with an abstract model of the problem.
• progressively adding details in a step-wise and checked fashion.
• each step guarantees and proves the correctness of the new

concrete model with respect to requirements

Massa Marittina (Mery et. al.) 6

The Cleanroom Method as CbC

• The Cleanroom method, developed by Harlan Mills and his
colleagues at IBM and elsewhere, attempts to do for software
what cleanroom fabrication does for semiconductors: to
achieve quality by keeping defects out during fabrication.

• In semiconductors, dirt or dust that is allowed to
contaminate a chip as it is being made cannot possibly be
removed later.

• But we try to do the equivalent when we write programs that
are full of bugs, and then attempt to remove them all using
debugging.

Massa Marittina (Mery et. al.) 7

The Cleanroom Method as CbC

The Cleanroom method, then, uses a number of techniques to
develop software carefully, in a well-controlled way, so as to avoid
or eliminate as many defects as possible before the software is ever
executed. Elements of the method are:

• specification of all components of the software at all levels;

• stepwise refinement using constructs called ”box structures”;

• verification of all components by the development team;

• statistical quality control by independent certification testing;

• no unit testing, no execution at all prior to certification
testing.

Massa Marittina (Mery et. al.) 8

Critical System Development Life-Cycle Methodology

refinement
safety

assessment

Informal Requirements

Formal Specification

Formal Verification

Formal Validation

Real Time Animation

Code Generation Acceptance Testing

integration

Error Correction

Error Correction

Domain Feedback

Massa Marittina (Mery et. al.) 9

Overview of Methodology

• Informal Requirements: Restricted form of natural language.

• Formal Specification: Modeling language like Event-B , Z,
ASM, VDM, TLA+. . .

• Formal Verification: Theorem Prover Tools like PVS, Z3,
SAT, SMT Solver. . .

• Formal Validation: Model Checker Tools like ProB, UPPAAL ,
SPIN, SMV . . .

• Real-time Animation: Real-Time Animator . . .

• Code Generation: EB2ALL: EB2C, EB2C++, EB2J,
EB2C# . . .

• Acceptance Testing: Failure Mode, Effects and Critically
analysis(FMEA and FMEA), System Hazard Analyses(SHA)

Massa Marittina (Mery et. al.) 10

Case Studies

Previous Topics

• Colin Boyd and Anish Mathuria. Protocols Authentication
and Key Establisment. Springer 2003.

• C. C. Marquezan and L. Z. Granville. Self-* and P2P for
Network Management - Design Principles and Case Studies.
Springer Briefs in Computer Science. Springer, 2012.

• Pacemaker Challenge Contribution

Human-Machine Interface

• Cruise Controller

• Multi-Purpose Interactive Application

Massa Marittina (Mery et. al.) 11

Case Studies

Previous Topics

• Colin Boyd and Anish Mathuria. Protocols Authentication
and Key Establisment. Springer 2003.

• C. C. Marquezan and L. Z. Granville. Self-* and P2P for
Network Management - Design Principles and Case Studies.
Springer Briefs in Computer Science. Springer, 2012.

• Pacemaker Challenge Contribution

Human-Machine Interface

• Cruise Controller

• Multi-Purpose Interactive Application

Massa Marittina (Mery et. al.) 11

Current Summary

1 Context and Problems

2 Correctness by Construction

3 Event-B

4 First steps in HMI using Event-B
Using refinement-based methodology
MPIA in Event-B

5 Second step in HMI using Pivot Modelling Language

6 FLUID

7 Modelling Framework
ICO and PetShop CASE Tools

8 MPIA Case Study

9 Development of MPIA
MPIA in FLUID
MPIA FLUID Model in Event-B
MPIA FLUID Model in PetShop

10 Discussion

11 Conclusion and Future Work
Massa Marittina (Mery et. al.) 12

Event-B

• Contexts describe static
properties of underlying
logical and mathematical
structures (i.e. graphs)

• Machines describe
invariants for variables
modified by events

M0 C0

M1 C1

.

Mn Cn

-SEES

6
REFINES

-SEES

6
EXTENDS

6
REFINES

-SEES

6
EXTENDS

6
REFINES

-SEES

6
EXTENDS

Massa Marittina (Mery et. al.) 12

Event B Structure and Proofs

CONTEXT MACHINE
ctxt id 2 machine id 2

EXTENDS REFINES
ctxt id 1 machine id 1

SETS SEES
s ctxt id 2

CONSTANTS VARIABLES
c v

AXIOMS INVARIANTS
A(s, c) I(s, c, v)

THEOREMS THEOREMS
Tc(s, c) Tm(s, c, v)

END VARIANT
V (s, c, v)

EVENTS
Event evt?

any x
where G(s, c, v, x)
then

v : |BA(s, c, v, x, v′)
end

END

Table: Model structure

Invariant A(s, c) ∧ I(s, c, v)
preservation ∧G(s, c, v, x)

∧BA(s, c, v, x, v′)
⇒I(s, c, v′)

Event A(s, c) ∧ I(s, c, v)
feasibility ∧G(s, c, v, x)

⇒∃v′.BA(s, c, v, x, v′)
Variant A(s, c) ∧ I(s, c, v)
modelling ∧G(s, c, v, x)
progress ∧BA(s, c, v, x, v′)

⇒V (s, c, v′) < V (s, c, v)
Theorems A(s, c)⇒ Tc(s, c)

A(s, c) ∧ I(s, c, v)
⇒Tm(s, c, v)

Table: Selected proof obligations

Massa Marittina (Mery et. al.) 13

Event-B and Rodin for stepwise model development

Refinement of states and/or events

• Adding/refinement of state variables

• Adding new events by refining the skip event (stuttering)

• Refinement of events (reduction of underspecification) by
guard strengthening and event simulation

Rodin Tools

• Safety and type invariants, and deadlock freeness

• Availability of powerful provers (i.e. SMTs) in the Rodin
platform

• Availability of model checkers and model animators (i.e.
ProB)

• Availability of code generators (i.e. EB2ALL)

Massa Marittina (Mery et. al.) 14

Modelling systems in Event-B

MACHINE

m
SEES

c
VARIABLES

x
INVARIANT

I(x)
THEOREMS

Q(x)
INITIALISATION

Init(x)
EVENTS

. . . e
END

c defines the static environment for the proofs
related to m: sets, constants, axioms, theorems Γ(m).

Γ(m) ` ∀x ∈ V alues : Init(x)⇒ I(x)

∀e :
Γ(m) ` ∀x, x′, u ∈ V alues : I(x) ∧R(u, x, x′)⇒ I(x′)

Γ(m) ` ∀x ∈ V alues : I(x)⇒ Q(x)

e
ANY

u
WHERE

G(x, u)
THEN

x : |(R(u, x, x′))
END

or e is observed x
e−→ x′

Massa Marittina (Mery et. al.) 15

Modelling systems in Event-B

MACHINE

m
SEES

c
VARIABLES

x
INVARIANT

I(x)
THEOREMS

Q(x)
INITIALISATION

Init(x)
EVENTS

. . . e
END

c defines the static environment for the proofs
related to m: sets, constants, axioms, theorems Γ(m).

Γ(m) ` ∀x ∈ V alues : Init(x)⇒ I(x)

∀e :
Γ(m) ` ∀x, x′, u ∈ V alues : I(x) ∧R(u, x, x′)⇒ I(x′)

Γ(m) ` ∀x ∈ V alues : I(x)⇒ Q(x)

e
ANY

u
WHERE

G(x, u)
THEN

x : |(R(u, x, x′))
END

or e is observed x
e−→ x′

Massa Marittina (Mery et. al.) 15

Modelling systems in Event-B

MACHINE

m
SEES

c
VARIABLES

x
INVARIANT

I(x)
THEOREMS

Q(x)
INITIALISATION

Init(x)
EVENTS

. . . e
END

c defines the static environment for the proofs
related to m: sets, constants, axioms, theorems Γ(m).

Γ(m) ` ∀x ∈ V alues : Init(x)⇒ I(x)

∀e :
Γ(m) ` ∀x, x′, u ∈ V alues : I(x) ∧R(u, x, x′)⇒ I(x′)

Γ(m) ` ∀x ∈ V alues : I(x)⇒ Q(x)

e
ANY

u
WHERE

G(x, u)
THEN

x : |(R(u, x, x′))
END

or e is observed x
e−→ x′

Massa Marittina (Mery et. al.) 15

Modelling systems in Event-B

MACHINE

m
SEES

c
VARIABLES

x
INVARIANT

I(x)
THEOREMS

Q(x)
INITIALISATION

Init(x)
EVENTS

. . . e
END

c defines the static environment for the proofs
related to m: sets, constants, axioms, theorems Γ(m).

Γ(m) ` ∀x ∈ V alues : Init(x)⇒ I(x)

∀e :
Γ(m) ` ∀x, x′, u ∈ V alues : I(x) ∧R(u, x, x′)⇒ I(x′)

Γ(m) ` ∀x ∈ V alues : I(x)⇒ Q(x)

e
ANY

u
WHERE

G(x, u)
THEN

x : |(R(u, x, x′))
END

or e is observed x
e−→ x′

Massa Marittina (Mery et. al.) 15

Modelling systems in Event-B

MACHINE

m
SEES

c
VARIABLES

x
INVARIANT

I(x)
THEOREMS

Q(x)
INITIALISATION

Init(x)
EVENTS

. . . e
END

c defines the static environment for the proofs
related to m: sets, constants, axioms, theorems Γ(m).

Γ(m) ` ∀x ∈ V alues : Init(x)⇒ I(x)

∀e :
Γ(m) ` ∀x, x′, u ∈ V alues : I(x) ∧R(u, x, x′)⇒ I(x′)

Γ(m) ` ∀x ∈ V alues : I(x)⇒ Q(x)

e
ANY

u
WHERE

G(x, u)
THEN

x : |(R(u, x, x′))
END

or e is observed x
e−→ x′

Massa Marittina (Mery et. al.) 15

Modelling systems in Event-B

MACHINE

m
SEES

c
VARIABLES

x
INVARIANT

I(x)
THEOREMS

Q(x)
INITIALISATION

Init(x)
EVENTS

. . . e
END

c defines the static environment for the proofs
related to m: sets, constants, axioms, theorems Γ(m).

Γ(m) ` ∀x ∈ V alues : Init(x)⇒ I(x)

∀e :
Γ(m) ` ∀x, x′, u ∈ V alues : I(x) ∧R(u, x, x′)⇒ I(x′)

Γ(m) ` ∀x ∈ V alues : I(x)⇒ Q(x)

e
ANY

u
WHERE

G(x, u)
THEN

x : |(R(u, x, x′))
END

or e is observed x
e−→ x′

Massa Marittina (Mery et. al.) 15

Modelling systems in Event-B

MACHINE

m
SEES

c
VARIABLES

x
INVARIANT

I(x)
THEOREMS

Q(x)
INITIALISATION

Init(x)
EVENTS

. . . e
END

c defines the static environment for the proofs
related to m: sets, constants, axioms, theorems Γ(m).

Γ(m) ` ∀x ∈ V alues : Init(x)⇒ I(x)

∀e :
Γ(m) ` ∀x, x′, u ∈ V alues : I(x) ∧R(u, x, x′)⇒ I(x′)

Γ(m) ` ∀x ∈ V alues : I(x)⇒ Q(x)

e
ANY

u
WHERE

G(x, u)
THEN

x : |(R(u, x, x′))
END

or e is observed x
e−→ x′

Massa Marittina (Mery et. al.) 15

Current Summary

1 Context and Problems

2 Correctness by Construction

3 Event-B

4 First steps in HMI using Event-B
Using refinement-based methodology
MPIA in Event-B

5 Second step in HMI using Pivot Modelling Language

6 FLUID

7 Modelling Framework
ICO and PetShop CASE Tools

8 MPIA Case Study

9 Development of MPIA
MPIA in FLUID
MPIA FLUID Model in Event-B
MPIA FLUID Model in PetShop

10 Discussion

11 Conclusion and Future Work
Massa Marittina (Mery et. al.) 16

Current Summary

1 Context and Problems

2 Correctness by Construction

3 Event-B

4 First steps in HMI using Event-B
Using refinement-based methodology
MPIA in Event-B

5 Second step in HMI using Pivot Modelling Language

6 FLUID

7 Modelling Framework
ICO and PetShop CASE Tools

8 MPIA Case Study

9 Development of MPIA
MPIA in FLUID
MPIA FLUID Model in Event-B
MPIA FLUID Model in PetShop

10 Discussion

11 Conclusion and Future Work
Massa Marittina (Mery et. al.) 16

MVC-based Methodology

ViewController

Model

UpdatesManipulates

Renders

Send Request

ViewControllerModel

Updates

Manipulates

Renders

Send Request

Abstract
Model

Rk
Rk+1

Rm
Rm+1

Rn
Rn+1

Concrete
Model

Massa Marittina (Mery et. al.) 17

Summary on the MVC-based Methodology

• each component of the MVC is defined progressively using
refinement.

• the classical scheme of MVC with possible interaction protocol
and refinements for each MVC component: in the figure, each
triangle represents possible refinements corresponding to the
MVC components.

• Such refinement strategy allows us to analyse and reasoning a
complex behaviour of an interactive system under the given
constraints.

• Initially, an interactive system can be defined abstractly and
then it can be refined by introducing more concrete behaviour
using new state variables, events and properties.

Massa Marittina (Mery et. al.) 18

Cruise Controller Interface

A set of informal requirements of HMI is defined as:

- REQ1: the selected speed is bounded;

- REQ2: the current speed is bounded;

- REQ3: only one button can be pressed at a time;

- REQ4: the slider can be moved only if no button is pressed;

- REQ5: the default mode of HMI is stopped;

- REQ6: the limit mode and control mode can be active;

Massa Marittina (Mery et. al.) 19

MVC-based methodology

Automaton

When the system is in the stop mode then it can switch either in
the limit mode or in the control mode. There are several possible
interactions defined in this abstract automaton to describe the
model of HMI. In the context of the initial model, we define three
enumerated sets: MODES - a set of different controller modes;
POWERED - on and off power states; and STATUS - driving
status and suspended status.

Power Off

Stop

shutdown

DRIV

SUSP

DRIV

SUSP

suspendedstatus

drivingstatus

suspendedstatus

drivingstatus

selectControl

selectStop

selectLimit

selectControl

selectLimit

selectStop

ControlLimit

powering

Power On

Massa Marittina (Mery et. al.) 20

Steps

• first, formalize the model component, which describes a very
high level of abstraction of an interactive system in form of
system modality.

• Each refinement step introduces system level modality related
to subsystem for analysing the required safety properties and
for guaranteeing the correctness of modes transitions of an
interactive system.

• second, introduce the controller component and the required
controller behaviour.

• third, after introducing the model and controller components
in the developing interactive system, introduce the view
component: all visual and graphical elements, such as
buttons, radio buttons, labels, of an interactive system.

Massa Marittina (Mery et. al.) 21

Current Summary

1 Context and Problems

2 Correctness by Construction

3 Event-B

4 First steps in HMI using Event-B
Using refinement-based methodology
MPIA in Event-B

5 Second step in HMI using Pivot Modelling Language

6 FLUID

7 Modelling Framework
ICO and PetShop CASE Tools

8 MPIA Case Study

9 Development of MPIA
MPIA in FLUID
MPIA FLUID Model in Event-B
MPIA FLUID Model in PetShop

10 Discussion

11 Conclusion and Future Work
Massa Marittina (Mery et. al.) 22

MPIA (from left to right: WXR, GCAS and AIRCOND)

• the Multi-Purpose Interactive Application (MPIA) complies
with ARINC 661 standard

• MPIA is a real User Application (UA) for handling several
flight parameters.

• This application contains a tabbed panel with three tabs:
• WXR for managing weather radar information
• GCAS for Ground Collision Avoidance System parameters
• AIRCOND for dealing with air conditioning settings.

• A crew member is allowed to switch in any mode.

Massa Marittina (Mery et. al.) 23

Applying MVC-based Methodology

ViewControllerModel

Updates

Manipulates

Renders

Send Request

Abstract
Model

Rk
Rk+1

Rm
Rm+1

Rn
Rn+1

Concrete
Model

Massa Marittina (Mery et. al.) 24

M as Model

• M describes possible interactions.

• M declares three enumerated sets, WXR MODE SELC SET -
a set of mode selection from a radio option widget,
WXR MODE SELC SET - auto or manual mode for tilt
selection, and WXR STAB SELC SET - on or off mode for
stabilisation, to specify the MPIA components in axioms
(axm1-axm3).

axm1 : partition(WXR MODE SELC SET, {M OFF},
{STDBY }, {TST}, {WXON}, {WXA})

axm2 : partition(WXR TILT SELC SET, {AUTO},
{MANUAL})

axm3 : partition(WXR STAB SELC SET, {ON}, {OFF}))

Massa Marittina (Mery et. al.) 25

M as Model

• The machine model specifies the dynamic properties of MPIA.

• Three variables ModeSelection, TiltSelection and
Stabilization:

• the variable ModeSelection represents the current selected
mode from a widget (radio) given in the workspace area of
WXR,

• the variable TiltSelection presents the current tilt selection
mode (AUTO or MANUAL)

• the variable Stabilization indicates the current stabilization
mode (ON or OFF).

• Introduce a safety property saf1 to state that if the tilt
selection is in MANUAL mode then the stabilization can turn
on or turn off and the AUTO mode of the tilt selection does
not alllow to change the stabilization mode.

Massa Marittina (Mery et. al.) 26

M as Model

inv1 : ModeSelection ∈WXR MODE SELC SET
inv2 : T iltSelection ∈WXR TILT SELC SET
inv3 : Stabilization ∈WXR STAB SELC SET
saf1 : T iltSelection = MANUAL⇒

Stabilization = ON ∨ Stabilization = OFF

Five events: WXR modeSelection - to select the current mode
from a widget (radio) of WXR; TiltControl Manual - to switch
in manual mode; TiltControl Auto - to switch in auto mode;
Stabilization On - to select the stabilization mode (On); and
Stabilization Off - to select the stabilization mode (Off).

Massa Marittina (Mery et. al.) 27

C as Controller

• to introduce controller components of MPIA.
• to define a constant WXR ANGL RANG to represent a range

of tilt angles.

axm1 : WXR ANGL RANG = −15 .. 15

• to introduce a new variable TAngle to modify/update the tilt
angle in MANUAL mode.

• A new safety property (saf1) is added to guarantee that the
tilt angle TAngle is always within the range of -15 to +15 in
the MANUAL mode whenever it is modified.

inv : TAngle ∈WXR ANGL RANG
saf1 : T iltSelection = MANUAL ⇒ TAngle ≥ −15 ∧ TAngle ≤ 15

EVENT LowTiltAngle
ANY angl
WHERE

grd1 : T iltSelection = MANUAL
grd2 : angl ∈ Z ∧ angl < −15

THEN
act1 : TAngle := − 15

END
Massa Marittina (Mery et. al.) 28

V as View (1)

• to define an enumerated set WXR BUTTONS in axm1 for
tilt control and stabilization control buttons.

axm1 : partition(WXR BUTTONS, {TILT CTRL},
{STAB CTRL})

• To introduce two new variables RadioBox and BAction to
describe the functional behaviour of option (radio) button,
and tilt and stabilization buttons, respectively.

• The variable RadioBox is defined as a total function that
maps the set of options of radio widget to boolean to specify
different (selected / not selected) states of the option widget.

inv1 : RadioBox ∈WXR MODE SELC SET →BOOL
inv2 : BAction ∈WXR BUTTONS→BOOL

Massa Marittina (Mery et. al.) 29

V as View (2)

• Safety

saf1 : ∀m1,m2·m1 ∈WXR MODE SELC SET∧
m2 ∈WXR MODE SELC SET∧
m1 7→ TRUE ∈ RadioBox∧
m2 7→ TRUE ∈ RadioBox
⇒
m1 = m2

saf2 : T iltSelection = MANUAL
⇔
BAction(STAB CTRL) = TRUE

saf3 : T iltSelection = AUTO
⇔
BAction(STAB CTRL) = FALSE

saf4 : BAction(TILT CTRL) = TRUE

EVENT WXR modeSelection refines WXR modeSelection
ANY mode
WHERE

grd1 : mode ∈WXR MODE SELC SET
THEN

act1 : ModeSelection := mode
act2 : RadioBox := ({i 7→ j|i ∈WXR MODE SELC SET∧

j = FALSE} ∪ {mode 7→ TRUE}) \ {mode 7→ FALSE}
ENDMassa Marittina (Mery et. al.) 30

Current Summary

1 Context and Problems

2 Correctness by Construction

3 Event-B

4 First steps in HMI using Event-B
Using refinement-based methodology
MPIA in Event-B

5 Second step in HMI using Pivot Modelling Language

6 FLUID

7 Modelling Framework
ICO and PetShop CASE Tools

8 MPIA Case Study

9 Development of MPIA
MPIA in FLUID
MPIA FLUID Model in Event-B
MPIA FLUID Model in PetShop

10 Discussion

11 Conclusion and Future Work
Massa Marittina (Mery et. al.) 31

Objectives (2)

• Development of a new pivot language, FLUID (Formal
Language of User Interface Design), for modelling and
designing a complex HMI;

• Formal development of a complex HMI using a correct by
construction approach;

• Formal verification and validation of requirements, scenarios,
tasks, interactions and safety properties of HMI;

• Integration of several techniques and tools in a single
modelling framework for developing HMIs;

• To demonstrate the use of proposed framework to an
industrial case study;

• Use of formal proofs and animations as an evidence in HMI
certification.

Massa Marittina (Mery et. al.) 31

The FORMEDICIS development chain

FLUID-MODEL

EVENT-B-MODEL1

EVENT-B-MODEL2

. . .

EVENT-B-MODELn DJNN-MODEL

ICO-MODEL

ProB

Electrum

ICO

DJNN

feedback

feedback

feedback

feedback

validation/ProB

validation/Electrum

validation/ICO

validation/DJINN

VERIFICATION

REFINES

REFINES

REFINES

TRANSLATION

TRANSLATION

Massa Marittina (Mery et. al.) 32

Current Summary

1 Context and Problems

2 Correctness by Construction

3 Event-B

4 First steps in HMI using Event-B
Using refinement-based methodology
MPIA in Event-B

5 Second step in HMI using Pivot Modelling Language

6 FLUID

7 Modelling Framework
ICO and PetShop CASE Tools

8 MPIA Case Study

9 Development of MPIA
MPIA in FLUID
MPIA FLUID Model in Event-B
MPIA FLUID Model in PetShop

10 Discussion

11 Conclusion and Future Work
Massa Marittina (Mery et. al.) 33

FLUID (Formal Language of User Interface Design)

INTERACTION Component Name
DECLARATION

SETS s
CONSTANT c

STATE
Input State Variables
Output State Variables
SysInput State Variables
SysOutput State Variables

v //A variable without @tag
v@tag //A variables with domain specific @tag

EVENTS
INIT
Acquisition Events
Presentation Events
Internal Events

event evt@tag[x]
where
G(s, c, v, x, v@tag, x@tag)

then
v : |BA(s, c, v, x, v′, v@tag, x@tag, v′@tag)

end

ASSUMPTIONS
A(s, c)

EXPECTATIONS
Exp(s, c)

REQUIREMENTS
PROPERTIES

Prop(s, c, v, v@tag)
SCENARIOS

NOMINAL
SC(s, c, v, v@tag)

NON NOMINAL
NSC(s, c, v, v@tag)

END Component Name

Massa Marittina (Mery et. al.) 33

FLUID (Formal Language of User Interface Design)

• ASSUMPTIONS section: introducing the required
assumptions related to environment that includes the user and
machine agents.

• EXPECTATIONS section: describing prescriptive statements
that are expected to be fulfilled by parts of the environment of
an interactive system.

• REQUIREMENTS section: divided into two subsections,
known as PROPERTIES and SCENARIOS.

• PROPERTIES section describes in logic all the required
properties of an interactive system that must be preserved by a
defined system.

• SCENARIOS section describes both nominal and non-nominal
scenarios using algebraic expressions, close to CTT, for
analyzing possible acceptable and non-acceptable interactions.

Massa Marittina (Mery et. al.) 34

FLUID Semantics (big step)

Configuration

〈EltSynt, s〉
Env = Loc −→ V al

s = {(l1 7→ v1), · · · , (ln 7→ vn)}

Expressions

Exp × Env −→ V al

Transitions

〈EltSynt, s〉 =⇒ 〈Skip , s′〉

Actions (Deterministic Assignment)

〈x := Exp, s〉 =⇒ 〈Skip, s[lx 7→ v]〉

Massa Marittina (Mery et. al.) 35

Continue...

Events (Guarded Event)

〈G, s〉 =⇒ 〈True, s〉 〈A, s〉 =⇒ 〈Skip, s′〉
〈where G then A, s〉 =⇒ 〈Skip, s′〉

Interleaving Rule

〈e1, s〉 =⇒ 〈Skip, s′〉, 〈e2, s′〉 =⇒ 〈Skip, s′′〉
〈e1||e2, s〉 =⇒ 〈Skip, s′′〉

〈e1, s′〉 =⇒ 〈Skip, s′′〉, 〈e2, s〉 =⇒ 〈Skip, s′〉
〈e1||e2, s〉 =⇒ 〈Skip, s′′〉

Massa Marittina (Mery et. al.) 36

Current Summary

1 Context and Problems

2 Correctness by Construction

3 Event-B

4 First steps in HMI using Event-B
Using refinement-based methodology
MPIA in Event-B

5 Second step in HMI using Pivot Modelling Language

6 FLUID

7 Modelling Framework
ICO and PetShop CASE Tools

8 MPIA Case Study

9 Development of MPIA
MPIA in FLUID
MPIA FLUID Model in Event-B
MPIA FLUID Model in PetShop

10 Discussion

11 Conclusion and Future Work
Massa Marittina (Mery et. al.) 37

Current Summary

1 Context and Problems

2 Correctness by Construction

3 Event-B

4 First steps in HMI using Event-B
Using refinement-based methodology
MPIA in Event-B

5 Second step in HMI using Pivot Modelling Language

6 FLUID

7 Modelling Framework
ICO and PetShop CASE Tools

8 MPIA Case Study

9 Development of MPIA
MPIA in FLUID
MPIA FLUID Model in Event-B
MPIA FLUID Model in PetShop

10 Discussion

11 Conclusion and Future Work
Massa Marittina (Mery et. al.) 37

ICO and PetShop CASE Tools

Interactive Cooperative Objects

The ICO formalism is a formal description technique for describing
interactive systems using high level Petri nets. There are four main
components:

• cooperative object (describes the behavior of the object)

• presentation part (i.e. the graphical interface)

• activation function

• rendering function

PetShop tool can be used for execution and verification of ICO
Models.

Massa Marittina (Mery et. al.) 38

Current Summary

1 Context and Problems

2 Correctness by Construction

3 Event-B

4 First steps in HMI using Event-B
Using refinement-based methodology
MPIA in Event-B

5 Second step in HMI using Pivot Modelling Language

6 FLUID

7 Modelling Framework
ICO and PetShop CASE Tools

8 MPIA Case Study

9 Development of MPIA
MPIA in FLUID
MPIA FLUID Model in Event-B
MPIA FLUID Model in PetShop

10 Discussion

11 Conclusion and Future Work
Massa Marittina (Mery et. al.) 39

Multi-Purpose Interactive Application (MPIA)

Snapshots of the MPIA (a real User Application)

• WXR: managing weather radar informations.

• GCAS: Ground Anti Collision System parameters.

• AIRCOND: AIR CONDitioning settings.

Massa Marittina (Mery et. al.) 39

Multi-Purpose Interactive Application (MPIA)

Snapshots of the MPIA (a real User Application)

• WXR: managing weather radar informations.

• GCAS: Ground Anti Collision System parameters.

• AIRCOND: AIR CONDitioning settings.

Massa Marittina (Mery et. al.) 39

Multi-Purpose Interactive Application (MPIA)

Snapshots of the MPIA (a real User Application)

• WXR: managing weather radar informations.

• GCAS: Ground Anti Collision System parameters.

• AIRCOND: AIR CONDitioning settings.

Massa Marittina (Mery et. al.) 39

Multi-Purpose Interactive Application (MPIA)

Snapshots of the MPIA (a real User Application)

• WXR: managing weather radar informations.

• GCAS: Ground Anti Collision System parameters.

• AIRCOND: AIR CONDitioning settings.

Massa Marittina (Mery et. al.) 39

Current Summary

1 Context and Problems

2 Correctness by Construction

3 Event-B

4 First steps in HMI using Event-B
Using refinement-based methodology
MPIA in Event-B

5 Second step in HMI using Pivot Modelling Language

6 FLUID

7 Modelling Framework
ICO and PetShop CASE Tools

8 MPIA Case Study

9 Development of MPIA
MPIA in FLUID
MPIA FLUID Model in Event-B
MPIA FLUID Model in PetShop

10 Discussion

11 Conclusion and Future Work
Massa Marittina (Mery et. al.) 40

Current Summary

1 Context and Problems

2 Correctness by Construction

3 Event-B

4 First steps in HMI using Event-B
Using refinement-based methodology
MPIA in Event-B

5 Second step in HMI using Pivot Modelling Language

6 FLUID

7 Modelling Framework
ICO and PetShop CASE Tools

8 MPIA Case Study

9 Development of MPIA
MPIA in FLUID
MPIA FLUID Model in Event-B
MPIA FLUID Model in PetShop

10 Discussion

11 Conclusion and Future Work
Massa Marittina (Mery et. al.) 40

MPIA in FLUID: DECLARATION

// WXR Mode enumeration set
TYPE WXR MODE SELC SET = enumeration (M OFF, STDBY, TST, WXON, WXA)

// WXR Tilt and Stabilisation message enumeration set
TYPE WXR TILT STAB MSG = enumeration (ON, OFF, AUTO, MANUAL)

// WXR Tilt angle range
CONSTANT WXR ANGL RANG = [-15 .. 15]

// WRX actions
TYPE WXR ACTIONS = enumeration (TILT CTRL, STAB CTRL)

Massa Marittina (Mery et. al.) 41

MPIA in FLUID: STATE

// Acquisition states
A ModeSelection@{Input, Checked} : WXR MODE SELC SET // Mode state

A TiltSelection@{Input, Enabled} : WXR TILT SELC SET // Tilt state
. . .
. . .

// Presentation states
// Radio buttons presentation states
P checkMode@{Output, Checked} : WXR MODE SELC SET → BOOL

// CTRL tilt button presentation state
P ctrlModeTilt Button@{Output, Enabled} : WXR ACTIONS

. . .

. . .

Massa Marittina (Mery et. al.) 42

MPIA in FLUID: EVENT INIT

// Initialisation Event
INIT =
A ModeSelection := OFF

A ModeSelection@Checked := TRUE

. . .
// Only OFF mode is selected at initialisation
P checkMode := {i 7→ j | i ∈ WXR MODE SELC SET ∧
j = FALSE } ∪ { M OFF 7→ TRUE })\{M OFF 7→ FALSE}
P checkMode@Checked := TRUE

. . .

Massa Marittina (Mery et. al.) 43

MPIA in FLUID: ACQUISITION EVENT

// ACQUISITION Events
// Any mode is allowed to select from WXR to acquisition state
event modeSelection@Acquisition [mode]=

WHERE

mode : WXR MODE SELC SET

THEN

A ModeSelection := mode

A ModeSelection@Checked := TRUE

END

event tiltCtrl@Acquisition = . . .
event stabCtrl@Acquisition = . . .
event tiltAngle@Acquisition = . . .
event tiltAngle Greater 15@Acquisition = . . .
event tiltAngle Less 15@Acquisition = . . .

Massa Marittina (Mery et. al.) 44

MPIA in FLUID: PRESENTATION EVENT

// PRESENTATION Events
// Presentation of radio button: Only selected mode will be checked as TRUE

event checkMode@Presentation =

WHEN

A ModeSelection@Checked = TRUE

THEN

P checkMode:=({i 7→ j | i ∈ WXR MODE SELC SET

∧ j = FALSE }∪{ A ModeSelection 7→ TRUE })\
{A ModeSelection 7→ FALSE}
P checkMode@checked := TRUE

END

event ctrlModeTilt Auto@Presentation = . . .
event ctrlModeTilt Manual@Presentation = . . .
event ctrlModeStab On@Presentation = . . .
event Event ctrlModeStab Off@Presentation = . . .
event tiltAngle True@Presentation = . . .
event tiltAngle False@Presentation = . . .

Massa Marittina (Mery et. al.) 45

MPIA in FLUID: REQUIREMENTS

PROPERTIES
Prop1 :∀ m1,m2· m1∈ WXR MODE SELC SET ∧ m2∈ WXR MODE SELC SET ∧ m17→ TRUE ∈ prj1(prj1(P checkMode)) ∧

m27→ TRUE ∈ prj1(prj1(P checkMode)) ⇒ m1=m2

Prop2 :G(e(modeSelection@Acquisition) ⇒ X (e(checkMode@Presentation))))

. . .

. . .

SCENARIOS
NOMINAL
SC 1 = INIT; ((modeSelection@Acquisition; checkMode@Presentation)

|| (tiltCtrl@Acquisition; (ctrlModeTilt Auto@Presentation [] ctrlModeTilt Manual@Presentation))

|| (stabCtrl@Acquisition; (ctrlModeStab On@Presentation [] ctrlModeStab Off@Presentation))

|| (tiltAngle@Acquisition [] tiltAngle Greater 15@Acquisition [] Evt tiltAngle Less 15@Acquisition);

(tiltAngle True@Presentation [] Evt tiltAngle False@Presentation))∗

NON NOMINAL
SC 1 = INIT; ((modeSelection@Acquisition; checkMode@Presentation)

||(tiltCtrl@Acquisition;ctrlModeTilt Auto@Presentation;(stabCtrl@Acquisition[]tiltAngle@Acquisition)))∗

Massa Marittina (Mery et. al.) 46

Current Summary

1 Context and Problems

2 Correctness by Construction

3 Event-B

4 First steps in HMI using Event-B
Using refinement-based methodology
MPIA in Event-B

5 Second step in HMI using Pivot Modelling Language

6 FLUID

7 Modelling Framework
ICO and PetShop CASE Tools

8 MPIA Case Study

9 Development of MPIA
MPIA in FLUID
MPIA FLUID Model in Event-B
MPIA FLUID Model in PetShop

10 Discussion

11 Conclusion and Future Work
Massa Marittina (Mery et. al.) 47

Translation Rules: FLUID to Event-B

INTERACTION Component Name
DECLARATION

Tdecl
(
SETS s

)
//Sets

Tdecl
(
CONSTANT c

)
//Constant

STATE
Tst

(
v
)

//Variable without @tag
Tst

(
v@tag

)
//Variables with domain specific @tag

EVENTS
INIT

. . .
Tevt

(
//Events

Event evt@tag[x]
where
Tgrd

(
G(s, c, v, x, v@tag, x@tag)

)
//Guard

then
Tact

(
(v, v@tag) : |(BA(s, c, v, x, v′, v@tag, x@tag, v′@tag)

)
//Action

end)
ASSUMPTIONS

Taxm
(
A(s, c)

)
//Axioms

EXPECTATIONS
Texp

(
Exp(s, c)

)
//Expectations

REQUIREMENTS
PROPERTIES

Tprop
(
Prop(s, c, v, v@tag)

)
//Properties

SCENARIOS
NOMINAL

Tsc
(
SC(s, c, v, v@tag)

)
//Nominal Scenarios

NON NOMINAL
Tnsc

(
NSC(s, c, v, v@tag)

)
//Non nominal Scenarios

END Component Name

Table: Translation for FLUID ModelMassa Marittina (Mery et. al.) 48

MPIA FLUID Model in Event-B

HMI TAGS

daxm1 : partition(HMI TAG, {Input}, {Output}, {SysInput}, {SysOutput})
daxm2 : CHECKED = BOOL ∧ V ISIBLE = BOOL ∧ ENABLED = BOOL

MPIA CONTEXT

axm1 : partition(WXR MODE SELC SET, {M OFF}, {STDBY }, {TST}, {WXON}, {WXA})
axm2 : partition(WXR TILT STAB MSG, {AUTO}, {MANUAL}, {ON}, {OFF})
axm3 : partition(WXR ACTIONS, {TILT CTRL}, {STAB CTRL})
axm4 : WXR ANGL RANG = −15 .. 15

MPIA INVARIANTS

inv1 : A ModeSelection ∈ WXR MODE SELC SET ×HMI TAG× CHECKED
inv2 : A TiltSelection ∈ WXR ACTIONS ×HMI TAG× ENABLED
. . .
. . .
inv5 : P checkMode ∈ (WXR MODE SELC SET → BOOL)×HMI TAG× CHECKED
inv6 : P ctrlModeTilt Button ∈ WXR ACTIONS ×HMI TAG× ENABLED
. . .
. . .

saf1 : ∀m1,m2·m1 ∈ WXR MODE SELC SET ∧m2 ∈ WXR MODE SELC SET∧
m1 7→ TRUE ∈ prj1(prj1(P checkMode)) ∧m2 7→ TRUE ∈ prj1(prj1(P checkMode))⇒m1 = m2

Massa Marittina (Mery et. al.) 49

MPIA FLUID Model in Event-B

MPIA EVENT

EVENT INITIALISATION
BEGIN

act1 : A ModeSelection := M OFF 7→ Input 7→ TRUE
act2 : A TiltSelection := TILT CTRL 7→ Input 7→ TRUE

. . .

. . .
act6 : P checkMode := (({i 7→ j|i ∈ WXR MODE SELC SET ∧ j = FALSE}∪
{M OFF 7→ TRUE}) \ {M OFF 7→ FALSE}) 7→ Output 7→ TRUE

act7 : P ctrlModeTilt Button := TILT CTRL 7→ Output 7→ TRUE
. . .
. . .

END

EVENT modeSelection@Acquisition
ANY mode
WHERE

grd1 : mode ∈ WXR MODE SELC SET
THEN

act1 : A ModeSelection := mode 7→ Input 7→ TRUE
END

Massa Marittina (Mery et. al.) 50

MPIA FLUID Model in Event-B

EVENT tiltCtrl@Acquisition
ANY n tilt
WHERE

grd1 : n tilt ∈ WXR ACTIONS ×HMI TAG× ENABLED∧
prj1(prj1(n tilt)) = TILT CTRL ∧ prj2(n tilt) = TRUE

THEN
act1 : A TiltSelection := n tilt

END

EVENT checkMode@Presentation
ANY n tilt
WHERE

grd1 : prj2(A ModeSelection) = TRUE
THEN

act1 : P checkMode := (({i 7→ j|i ∈ WXR MODE SELC SET ∧ j = FALSE}∪
{prj1(prj1(A ModeSelection)) 7→ TRUE})\
{prj1(prj1(A ModeSelection)) 7→ FALSE}) 7→ Output 7→ TRUE

END

Massa Marittina (Mery et. al.) 51

Model Validation and Analysis

ProB model checker is used to animate and to check additional
properties and the deadlock freeness.

Model Total number Automatic Interactive
of POs Proof Proof

Event-B Model 44 41(93%) 3(7%)

Table: Proof statistics

Prop1 : (G(e(AE modeSelection) => X(e(PE checkMode))))

Prop2 : (e(AE tiltAngle) => (e(PE tiltAngle True)ore(PE tiltAngle False)))

Prop3 : {P ctrlModeTilt Label = (AUTO|− > Output)|− > TRUE =>
P ctrlModeStab Label = (OFF |− > Output)|− > TRUE}

Prop4 : {P ctrlModeTilt Label = (MANUAL|− > Output)|− > TRUE =>
P ctrlModeStab Label = (ON|− > Output)|− > TRUE}

Prop5 : {P ctrlModeTilt Label = (AUTO|− > Output)|− > TRUE =>
P ctrlModeStab Button = (STAB CTRL|− > Output)|− > FALSE}

Prop6 : {P ctrlModeTilt Label = (MANUAL|− > Output)|− > TRUE =>
P ctrlModeStab Button = (STAB CTRL|− > Output)|− > TRUE}

Prop7 : {P ctrlModeTilt Label = (MANUAL|− > Output)|− > TRUE =>
P TiltAngle = (10|− > Output)|− > TRUE}

. . .

. . .

Massa Marittina (Mery et. al.) 52

Current Summary

1 Context and Problems

2 Correctness by Construction

3 Event-B

4 First steps in HMI using Event-B
Using refinement-based methodology
MPIA in Event-B

5 Second step in HMI using Pivot Modelling Language

6 FLUID

7 Modelling Framework
ICO and PetShop CASE Tools

8 MPIA Case Study

9 Development of MPIA
MPIA in FLUID
MPIA FLUID Model in Event-B
MPIA FLUID Model in PetShop

10 Discussion

11 Conclusion and Future Work
Massa Marittina (Mery et. al.) 53

MPIA FLUID Model in PetShop

Public interface WXR PAGE extends ICOWidget {
// List of user events.
public enum WXR PAGE events {asked off, asked stdby, asked wxa,

asked wxon, asked tst, asked auto asked stabilization,

asked changeAngle}

// List of activation rendering methods.
void setWXRModeSelectEnabled(WXR PAGE events, List<ISubstitution>);

void setWXRTiltSelectionEnabled (WXR PAGE events, List<ISubstitution>);

// List of rendering methods.
void showModeSelection (IMarkingEvent anEvent);

void showTiltAngle (IMarkingEvent anEvent);

void showAuto (IMarkingEvent anEvent);

void showStab (IMarkingEvent anEvent);

}

Figure: Software interface of the page WXR from the user application
MPIA

Massa Marittina (Mery et. al.) 54

MPIA FLUID Model in PetShop

Figure: High-level Petri net model describing the behaviour of the page
WXR
Massa Marittina (Mery et. al.) 55

Current Summary

1 Context and Problems

2 Correctness by Construction

3 Event-B

4 First steps in HMI using Event-B
Using refinement-based methodology
MPIA in Event-B

5 Second step in HMI using Pivot Modelling Language

6 FLUID

7 Modelling Framework
ICO and PetShop CASE Tools

8 MPIA Case Study

9 Development of MPIA
MPIA in FLUID
MPIA FLUID Model in Event-B
MPIA FLUID Model in PetShop

10 Discussion

11 Conclusion and Future Work
Massa Marittina (Mery et. al.) 56

Discussion

• First integrated framework
for modelling and designing
interactive systems.

• A pivot language FLUID for
expressing:

• Interaction behaviour
• Properties
• Nominal and Non-nominal

Scenarios
• Task Analysis

• Integration of several
approaches (i.e. model
checking, theorem prover
and animators) for analysing
different aspects of HMI.

FLUID-MODEL

EVENT-B-MODEL1

EVENT-B-MODEL2

. . .

EVENT-B-MODELn DJNN-MODEL

ICO-MODEL

ProB

Electrum

ICO

DJNN

feedback

feedback

feedback

feedback

validation/ProB

validation/Electrum

validation/ICO

validation/DJINN
VERIFICATION

REFINES

REFINES

REFINES

TRANSLATION

TRANSLATION

Figure: The FORMEDICIS
development chain

Massa Marittina (Mery et. al.) 56

Current Summary

1 Context and Problems

2 Correctness by Construction

3 Event-B

4 First steps in HMI using Event-B
Using refinement-based methodology
MPIA in Event-B

5 Second step in HMI using Pivot Modelling Language

6 FLUID

7 Modelling Framework
ICO and PetShop CASE Tools

8 MPIA Case Study

9 Development of MPIA
MPIA in FLUID
MPIA FLUID Model in Event-B
MPIA FLUID Model in PetShop

10 Discussion

11 Conclusion and Future Work
Massa Marittina (Mery et. al.) 57

Conclusion

• Development of a new language, FLUID, including formal
semantics for specifying and analysing HMIs.

• A new framework for developing HMIs addressed the key
challenges related to interaction behaviour, properties,
nominal and non-nominal scenarios.

• Introduction of domain specific HMI concepts (i.e. enabled,
visible, active) using TAGS.

• Use of formal methods for designing and developing the HMIs
to cover, particularly in

• functional and perceived requirements
• stepwise formal development
• verification of the required safety properties
• task analysis
• nominal and non-nominal scenarios validation

• Demonstrate the use of our modelling language and
development framework in MPIA case study.

Massa Marittina (Mery et. al.) 57

Future Work

• Development of a set of resources (domain specific tags) for
defining HMI concepts.

• Mine a methodology for,

• Modelling, designing and analysing a bag of patterns (e.g.
refinement, proof patterns, simulation, animation etc.).

• Developing refinement strategies for FLUID language.

• Development of tools to automate the translation strategies
from FLUID models to several other target modelling
language (i.e djnn, ICO).

• Produce source code from formal models for implementation
purpose.

Massa Marittina (Mery et. al.) 58

Massa Marittina (Mery et. al.) 59

	Context and Problems
	Correctness by Construction
	Event-B
	First steps in HMI using Event-B
	Using refinement-based methodology
	MPIA in Event-B

	Second step in HMI using Pivot Modelling Language
	FLUID
	Modelling Framework
	ICO and PetShop CASE Tools

	MPIA Case Study
	Development of MPIA
	MPIA in FLUID
	MPIA FLUID Model in Event-B
	MPIA FLUID Model in PetShop

	Discussion
	Conclusion and Future Work

