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Upper and Lower Bounds for Fixpoints

Let f : L→ L be a monotone function over a complete lattice L.
By Knaster-Tarski it has a least fixpoint µf and a greatest fixpoint
νf .

Any pre-fixpoint (` ∈ L with f (`) v `) is an upper bound for µf
and any post-fixpoint (` ∈ L with ` v f (`)) is a lower bound for
νf .

Challenge

Can we find suitable witnesses guaranteeing that ` ∈ L is a lower
bound for µf or an upper bound for νf ?

Applications: termination probability, behavioural distances,
bisimilarity . . .
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Aims of Working Group 1.3

To support and promote the systematic development of
the fundamental mathematical theory of systems specifi-
cation. To investigate the theory of formal models for
systems specification, development, transformation and
verification.

; fixpoints as a fundamental mathematical technique for system
verification (reachability analysis, dataflow analysis,
model-checking, . . . )
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Fixpoint Theory

Solution techniques

The Knaster-Tarski theorem guarantees the existence of least
and greatest fixpoints for monotone functions

We have the following proof rules for upper and lower bounds:

f (`) v `
µf v `

` v f (`)

` v νf

Kleene iteration: whenever f is (co-)continuous

µf =
⊔

i∈N f i (⊥) (least fixpoint)

νf =
d

i∈N f i (>) (greatest fixpoint)
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Fixpoint Theory

Fix(f )

Post(f )
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If f is not (co-)continuous:

; Kleene iteration over the ordinals
(beyond ω)
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Fixpoint Theory

The following proof rules (based on Kleene iteration) provide
guarantees for the opposite bounds. By i we denote some ordinal.

` v f i (⊥)

` v µf
f i (>) v `
νf v `

This is related to ranking functions that are e.g. used in
termination analysis.

Problems: there is no straightforward witness that guarantees
these bounds, (ordinals are involved)

Our aim: provide proof rules of the form

` v f (`) + extra conditions

` v µf
f (`) v ` + extra conditions

νf v `
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Termination Probability

What is the probability of terminating from state x?

x tyz
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Termination Probability

Markov chain

(X ,T , (px)x∈X\T ) where

X is the finite state space,

T ⊆ X are the terminal states and

px : X → [0, 1] is a probability distribution

Termination probability as least fixpoint

Termination probability given by µf where f : [0, 1]X → [0, 1]X and
for a : X → [0, 1], x ∈ X :

f (a)(x) =

{
1 if x ∈ T∑

y∈X px(y) · a(y) otherwise
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Termination Probability

What is the probability of terminating from state x?

x tyz
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Termination Probability

What is the probability of terminating from state x?
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Least fixpoint, giving the termination probability for x
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Termination Probability

What is the probability of terminating from state x?
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A different fixpoint, not providing a lower bound for the termation
probability of x
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Termination Probability

We can not trust a fixpoint or pre-fixpoint to give us a lower
bound on the termination probability (given by a least fixpoint).

. Can we detect those fixpoints that are not least fixpoints?
Where is the culprit?

In the example: y and z convince each other incorrectly (!) that
they have termination probability 1 ; vicious cycle
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Termination Probability

Idea: compute the set of states that still has some “wiggle room”
or “slack”. That is, those states that can say:

“If all my successors would reduce their value by δ, I could
also reduce my value by δ.”

This can be computed as a greatest fixpoint on a finite set P(X )
(instead of the infinite lattice that we considered before).

If the function is sufficiently well-behaved and this set (= greatest
fixpoint) is empty
⇒ we know that we have reached the least fixpoint (respectively a
pre-fixpoint below the least fixpoint).
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Abstractions for Determining the “Wiggle Room”

We use Galois connections (pairs of abstraction and concretization)
in order to determine the “wiggle room” or “slack” of a fixpoint.

Requirements

The lattice is of the form L = MX (set of functions of the form
X →M), where

X finite

M is a totally ordered lattice living in a group (inverses: we
can add and subtract!)

We will now consider the dual problems: given f : MX →MX and
a : X →M

assume that f (a) = a. Is a the greatest fixpoint?

assume that f (a) v a. Is a above the greatest fixpoint?
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Abstractions for Determining the “Wiggle Room”

P(X ) MX

αa,θ

γa,θ

αa,θ(Y ) = a + θY

γa,θ(b) = {x ∈ X | a(x) + θ v b(x)}

where for Y ⊆ X , θ ∈M, θY : X →M with

θY (x) =

{
θ if x ∈ Y
0 otherwise

[To be more precise:

MX should be replaced by {b : X →M | a v b v a + θ}
f restricts to this set whenever f (a + θ) v f (a) + θ
(Condition 1)

]
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Abstractions for Determining the “Wiggle Room”

a =

x1 x2 x3 x4 x5 x6

θ = (a is the “baseline”)

αa,θ : Y = {x1, x3, x4} 7→

x1 x2 x3 x4 x5 x6

γa,θ : b =

x1 x2 x3 x4 x5 x6

7→ Y = {x1, x3, x4}
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Abstractions for Determining the “Wiggle Room”

Galois connection

〈αa,θ, γa,θ〉 satisfy the properties of a Galois connection:

αa,θ, γa,θ are monotone

idP(X ) ⊆ γa,θ ◦ αa,θ

αa,θ ◦ γa,θ v idMX
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Galois Connections and Fixpoints

A C

α

γ

f # = γ ◦ f ◦ α f

We have νf # = γ(νf ) whenever

γ ◦ f v f # ◦ γ = γ ◦ f ◦ α ◦ γ
(equivalent to α ◦ γ ◦ f v f ◦ α ◦ γ)

(see also [Cousot/Cousot], [Bonchi/Ganty/Giacobazzi/Pavlovic])
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Galois Connections and Fixpoints

In our setting:

P(X ) MX

αa,θ

γa,θ

f #a,θ = γa,θ ◦ f ◦ αa,θ f

Whenever f (a) = a, a 6= νf for a : X →M
⇒ ∃θ = 0 ∃x ∈ X : a(x) + θ v νf (x)

⇒ ∅ 6= γa,θ(νf ) = νf #a,θ

Contraposition: If νf #a,θ = ∅, then a = νf .
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Galois Connections and Fixpoints

Unfortunately, we do not know this θ. But things work fine if we
require that for each fixpoint a there exists θa such that for each δ:

αa,θa ◦ γa,δ ◦ f v f ◦ αa,θa ◦ γa,δ
Since we want a proof rule for pre-fixpoints, we need the following
requirement (Condition 2):

αf (a),θa ◦ γf (a),δ ◦ f v f ◦ αa,θa ◦ γa,δ

P(X ) MX

αa,δ

γa,δ

f #a,θa f
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Proof Rule

Proof rule

f (a) v a νf #a,θa = ∅
νf v a

This proof rule is sound and complete in the following sense:

Let b : X →M with νf v b. Then there exists a : X →M such
that a v b, f (a) v a and νf #a = ∅.
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Proof Rule

The function f # = f #a,θa can usually be defined directly on P(X )
and can hence be computed efficiently. In the case of termination
probability:

f #(Y ) = {x ∈ Y | x 6∈ T ,Q(x) ⊆ Y ∩ Pa}

where

Pa = {x ∈ X | a(x) > 0}
θa = min{a(x) | x ∈ X , x ∈ Pa}
Q(x) = {y ∈ X | px(y) > 0} for x ∈ X\T .

f #(Y ) contains those states of Y that are non-terminating
and whose successors are in Y and have values larger than
0 (i.e. they have the potential for reduction or “slack”).
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Applications

Despite the restrictions, this approach provides witnesses for:

lower bounds of termination probabilities

lower bounds for maximal paths

non-bisimilarity of states

lower bounds for behavioural distances

It can be used to iterate to νf from below (and to iterate to µf
from above):

Perform Kleene iteration starting from ⊥ until a fixpoint a is
reached. Test whether it is the greatest fixpoint.

If it is not, continue with a′ = a + (θa)
νf #a,θa

.

This method was developed for the special case of behavioural
metrics by [Fu] and [Bacci, Bacci,Larsen, Mardare, Tang, van
Breugel]. It gave us the inspiration to look for a generalization.
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Future Work

Is it possible to lift some of the restrictions? In particular: is it
possible to handle partial (instead of total) orders?

Does it make sense to generalize the Galois connection?

Compositionality: if f , g satisfy the requirements, does the
same hold for f ◦ g?
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