Teaching Formal Methods for Software
Engineering — Ten Principles

Antonio Cerone!  Markus Roggenbach?  Bernd-Holger Schlingloff®
Gerardo Schneider*  Siraj Ahmed Shaikh®

tUnited Nations University — UNU-IIST, Macau SAR China
2Swansea University, Wales, United Kingdom
3Humboldt University and Fraunhofer FOKUS, Berlin, Germany
#University of Gothenburg, Sweden

5Coventry University, United Kingdom

Prague, April 7th, 2019



Motivation

Formal Methods are one means in Software Engineering that can help
ensure that a computer system meets its requirements.

The use of Formal Methods in Verification and Validation is wide and
includes techniques such as static analysis, formal testing, model
checking, runtime verification, and theorem proving.

In many engineering-based application areas of computer science, e.g., in
the railway domain, Formal Methods have meanwhile reached a level of
maturity that already enables the compilation of a so-called body of
knowledge.

In Computer Science education, however, Formal Methods often play a
minor role only.



Some common questions

Typical questions raised in curriculum discussions include:

- Which of the many Formal Methods shall be taught? Will the
material taught be accessible to mainstream students?

- Will a Formal Methods course be attractive to students?
- Are there teachable case studies beyond the toy example level?

- Can students be involved in real projects where they can apply
Formal Methods?



This effort

We propose a constructive and positive response to such questions by
writing a book “Formal Methods for Software Engineering — Languages,
Methods, Application Domains”.

We adopted some principles in the writing of this book.

We also share some experience of teaching the book contents at summer
schools associated with the SEFM conference series, and at different
universities.



SEFM Summer School 2008 (Cape Town)




SEFM Summer School 2008 (Cape Town) (2)




The Ten Principles

~N o B~ W

10

The field of Formal Methods is too large to gain encyclopaedic
knowledge — choose representatives

Formal Methods are more than pure/poor Mathematics — focus on
Engineering

Formal Methods need tools — make them available

Modelling versus programming — work out the differences

Tools teach the method — use them

Formal Methods need lab classes — create a stable platform

Formal Methods are best taught by examples — choose from a
domain familiar to the target group

Each Formal Method consists of syntax, semantics and algorithms -
focus uniformly on these key ingredients

Formal Methods have several dimensions — use a taxonomy
Formal Methods are fun — shout it out loud!



Principle 1

Principle 1: The field of Formal Methods is too large to gain
encyclopaedic knowledge — choose representatives

The variety of Formal Methods is overwhelming. This might leave a
beginner lost in the field.

We recommend teaching a non-representative selection of methods with
a solid introduction to each of them.

This is feasible given that concepts studied, say, in the context of process
algebra, are also to be found in temporal logics, which again are closely
connected to automata theory, and are applied, e.g., in testing.



Principle 2

Principle 2: Formal Methods are more than pure/poor
Mathematics — focus on Engineering

Over the last several years Formal Methods has become more of an

engineering discipline.

Many CS students quit because they cannot see the relevance of their
first years’ Mathematics to the engineering problems they want to solve.

Thus, we encourage to motivate the introduction of Formal Methods by
engineering challenges.



Principle 2 (2)

We see Formal Methods as part of Software Engineering curriculum.

The use of Formal Methods in software development should not be
constrained to a specific process or a life cycle model. It can be used
with traditional as well as agile models.

Moreover, Formal Methods should not constitute separate phases, but
should rather be integrated as part of the general validation activities.
Thus, teaching Formal Methods should frequently resort to other topics
in Software Engineering.



Principle 3

Principle 3: Formal Methods need tools — make them available

Formal Methods need tool support in order to become applicable for
demonstrating convincing case studies.

Tools for simulation of behaviour and visualisation of state space or
traces are essential to allow students to understand the behaviour
associated with their models.

Moreover, software systems are fundamentally different to mathematical
theories.



Principle 3 (2)

Number of axioms Number of axioms when applying Formal Methods is
by magnitude much larger than those involved in
mathematical theories.

Ownership and interest Software code is often more restricted than
mathematical theories. Therefore, proofs related to
software are studied by few. Consequently, tools play the
role of “proof checkers” for quality control in Formal
Methods.

Change of axiomatic basis Software requirements change frequenty.
Design steps involving Formal Methods often need to be
repeated several times. Mathematical theories, however,
are much more stable. Consequently, tools are needed to
help manage such change.



Principles 4 and 5

...please read the paper...



Principle 6

Principle 6: Formal Methods need lab classes — create a stable
platform

Carefully designed lab classes can be enormously motivating for students
Apart from offering hands-on experience, lab classess provide students
with a sense of achievement: students use Formal Methods with a

concrete, visible effect on their screen — rather than being lost or even
frustrated in some semantical detail.

To minimise teaching effort, we propose working with frozen versions of
tools compiled on a live-CD.

A live-CD helps circumvent any installation problems (which do occur!).



Principle 6 (2)

Demonstrating the Uniform Candy Distribution puzzle.

[Lab sheet for the process algebra CSP]
1.

. Double clicking on the process Children allows one to expand

Entering the command probe starts the simulator ProBe from a
terminal. The simulator opens in a GUI.

One loads the file childrensPuzzle.csp by choosing the File
option. This launches a new window.

the process as shown in the lectures.

Following any execution branch eventually yields a state where
all three children hold 4 candies.

In the lab students explore and experience that (1) the system has many
different execution paths and that (2) these paths are infinite.



Principle 6 (3)

Once the students have tried the tool, we can then change the example
(for example change the number of children, i.e., processes, involved in
the puzzle). Only then students should be asked to use their own
examples.

| Chilciren

a0
¢ 07-» Chile, 243 000 .. J CHIAEZ,431...|1.. Jo 202 3> Chilcip, AR+ 13

c.02
IJiI—ChiId(D,2 A1 e 2 %> Childdp, 2+ 300 1. Je 206072 % » Childép, fllG2-+x )3
.21
IJEI—ChiId(D,E 3l JEChilck2,4 3. ). JChilcie 1,233
.21

Such an approach separates learning the (basic) functions of the tool,
dealing with mistakes and error messages (when changing the example),
and mastering the method (when working out an own example from
scratch).



Principles 7, 8 and 9

...please read the paper...



Principle 10

Principle 10: Formal Methods are fun — shout it out loud!

Psychology tells us that the human learning capacity is highest when we
enjoy what we are doing.




Reflections

We put our principles to test by teaching the material at three
international summer schools.

We have also used the material in several classes at our home institutions.

Some feedback from the students include
» “The school opened up new ways of thinking.”

> (The school helped in) “showing that theory comes from practice
and vice versa, but practice is the goal.”

> (I liked) “the practical applications of Formal Methods.”
> (The required) “hands-on exercises were very good.”



SEFM Summer School 2012 (Thessaloniki)




SEFM Summer School 2012 (Thessaloniki) (2)




Reflections (2)

Even though we dedicated quite a large portion (around one third) of the
available time to lab classes, according to the participants they could
have played an even bigger role. Some “Suggestions for Improvements”
included

» “More practical sessions with the tools.”
» “More on applications, especially security.”

» “More lab lessons.”

There is good feedback, and importantly, appreciation for practical
hands-on sessions.



What next?

The challenge of Software Engineering has been acknowledged for
decades now; the notion of software crisis has been related to the debate
on software industry since early days.

Safe to presume the state of the industry will continue this course unless
methods and practices are addressed.

Our work is motivated by the very challenge.

The book is due out. Watch this space!



Thank You



