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Contribution to System Speci�cation or Modeling

• The work contributes to the theory of Graph
Transformation Systems (GTS).

• GTS provide formal foundations of declarative
techniques for speci�cation, modeling and analysis of
systems, preferably when:

• The state is logically and/or physically distributed: it can
be abstracted to a graph.

• The dynamics is determined by local changes: they can be
described declaratively as rules.
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Contribution to System Speci�cation or Modeling (2)

• Locality of transformations, described by rules, enables
parallelism.

• Rule-based speci�cations introduce various levels of
non-determinism in the system’s behaviour:

• selection of a rule
• selection of a match where to apply the rule

• Intrinsic non-determinism of the modeled system could
be mixed with the one arising from the rule-based
speci�cation of functional transformations.

• Analysis of conditions for independence and for
potential con�icts among transformations becomes
fundamental for the analysis of such systems.
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Parallel independence vs. con�icts

Since (linear) graph transformation is resource-conscious,
“con�uence” is “strict con�uence”.

Parallel Independence
of Transformations

G

H1 H1

H

ρ1 ρ2

ρ2 ρ1

Con�ict
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Motivations of the present talk

• Con�icts capture important information about behaviour

• Critical Pair Analysis (CPA) can be used to verify
con�uence of (sub)sets of rules

• CPA requires enumerating all “potential con�icts”
• Two main issues:

• Reducing as much as possible the set of critical pairs to
be analyzed

• To identify the “root causes” of con�icts in a precise way

• “Root causes” are the resources for which the
transformation compete
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Overview of previous results

Con�ict

Con�ict
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Critical Pair
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Critical Pair

Initial
Con�ict

represented
by unique
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Available for: Adhesive Categories SetS GraphT
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Overview of our results in context

Con�ict

Con�ict
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Background: The dpo Approach

Rule: ρ = L
l
� K

r
� R

Match: m : L� G
Transformation: G ρ,m

=⇒ H

L K R

G D H

m

l r

k nPO

g h
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New Perspective on Parallel Independence

• Previous work based on the standard condition for
parallel independence

R1 K1 L1 L2 K2 R2

H1 D1 G D2 H2

n1

l1r1

k1 m1 q12m2q21 k2

l2 r2

n2

g1h1 g2 h2

• Recently: essential condition for parallel independence
(Corradini et al. 2018)

• Equivalent to standard condition

• Goal: review characterization of con�icts under new light
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Background: Adhesive Categories

Subobjects behave like subsets

Lemma (Lack and Sobocinski 2005)
In adhesive categories, Sub(X) is distributive lattice

Containment existence of mono
Intersection pullback

Union pushout over intersection
Top is X

Bottom usually “empty”, if exists

I

A B

U

X

a∩b

a ba∪b
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Background: Set-Valued Functor Categories

• Some results not proven for all adhesive categories

• We use categories SetS of functors S→ Set with
natural transformations as arrows
(essentially presheaves)

• Generalizes graphs and graph structures

Graph = SetG G = V E
s

t

• Limits, colimits, monos and epis are pointwise
• Always adhesive
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Outline

1. Characterize con�ict between transformations
2. Useful properties of the characterization
3. Compare with con�ict reasons of Lambers, Ehrig, and
Orejas (2008)

4. Relate to initial con�icts
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Essential Condition of Parallel Independence

Corradini et al. (2018)

H1
t1⇐= G t2=⇒ H2

K1L2 L1L2 L1K2

R1 K1 L1 L2 K2 R2

H1 D1 G D2 H2

q12

p2p1

q21

n1

l1r1

k1 m1 m2 k2

l2 r2

n2

g1h1 g2 h2

• Both morphisms iso⇒ parallel independence
• Either morphism not iso⇒ con�ict
• K1L2→ L1L2 not iso⇒ t1 disables t2
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Example: Con�ict
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Determining the Root Cause

• Useful concept: initial pushout over f : X→ Y
B X

C Y

b

f f

c

• “Categorical diff” for a morphism

• Context c : C� Y contains “modi�ed stuff”
• Boundary b : B� C contains “points of contact”
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Example: Initial Pushout
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Con�ict and Disabling Essences

De�nition

Given transformations (t1, t2) : H1
ρ1,m1⇐= G ρ2,m2

=⇒ H2:

• Disabling essence for (t1, t2) is c1 ∈ Sub(L1L2)
• Disabling essence for (t2, t1) is c2 ∈ Sub(L1L2)
• Con�ict essence for (t1, t2) is c = c1 ∪ c2

B1 C1

K1L2 L1L2

R1 K1 L1 L2 K2 R2

H1 D1 G D2 H2

b1 c1

q12

p2p1

n1

l1r1

k1 m1 m2 k2

l2 r2

n2

g1h1 g2 h2
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Empty Essences

Recall: bottom subobject generalizes “emptiness”

Consider (t1, t2) : H1
ρ1,m1⇐= G ρ2,m2

=⇒ H2

Theorem
The con�ict essence for (t1, t2) is ⊥ ∈ Sub(L1L2)

if and only if
t1 and t2 are parallel independent.
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Extension

• Same transformation in “larger context”

G H

G H

f

t

f ′

t

≡

L K R

G D H

G D H

m

l

k

r

n

f d

g h

f ′

g h

• Lower pushouts ensure t behaves like t
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Essence Inheritance

In categories of set-valued functors
(also graphs, typed graphs...)

Theorem
If extension diagrams below exist, (t1, t2) and (t1, t2) have the
same disabling and con�ict essences.

H1 G H2

H1 G H2

f

t1 t2

t1 t2

C

L1 C L2

p1◦c p2◦c
∼=

p1◦c p2◦c

Con�icts are preserved and re�ected by extension.
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Disabling Reasons

Essences are not the �rst proposed characterization

Given transformations (t1, t2) : H1
ρ1,m1⇐= G ρ2,m2

=⇒ H2

De�nition (Lambers, Ehrig, and Orejas 2008)
The disabling reason L1 ← S1 → L2 for (t1, t2)

is obtained from
the initial pushout over l1, then pullback of (m1 ◦ cl1,m2).

Con�ict condition:
There is no b∗ making diagram
commute.

Con�ict reason is union of
relevant disabling reasons.

Bl1 Cl1 S1

K1 L1 L2

G

l1

bl1 cl1

o1

s12

b∗

l1

m1 m2
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Comparing Reasons and Essences

• Non-empty reasons exist even with parallel
independence

• Isolated boundary nodes (Lambers, Born, et al. 2018)
• Inheritance also doesn’t hold
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Essence ⊆ Reason

Remark
Con�ict reason determines s ∈ Sub(L1L2).

L1

S L1L2 G

L2

m1

s2

s1

s

p1

p2 m2

Theorem
If c ∈ Sub(L1L2) is disabling essence and s ∈ Sub(L1L2)
disabling reason, then c ⊆ s.
The same holds if c is con�ict essence and s con�ict reason.
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Initial Con�icts

• We now understand individual con�icting
transformations

• We want overview of potential con�icts for rules

• Lambers, Born, et al. (2018) proposed initial con�icts
(w.r.t extension)

J1 I J2

H1 G H2

H1 G H2
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Initial Con�icts

• Initial con�icts are subset of critical pairs, often much
smaller!

• Initial con�icts capture all con�icts⇐⇒ every
transformation pair is extension of some initial
transformation pair

• But: no categorical construction yet
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Constructing Initial Transformation Pairs

Con�ict essences and initial transformation pairs
are closely related (in categories of set-valued functors)

Theorem

Given H1
ρ1,m1⇐= G ρ2,m2

=⇒ H2, the pushout of its con�ict essence
determines its initial transformation pair.

C

R1 K1 L1 L2 K2 R2

J1 E1 I E2 J2

H1 D1 G D2 H2

p1◦c p2◦c

r1 l1

m1

m1

m2

m2

l2 r2
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Overview

Con�ict

Con�ict
Essence

Con�ict
Reason

Critical Pair

Essential
Critical Pair

Initial
Con�ict

represented
by unique

is a

has unique

uniquely determines

represented
by unique is a

is a
represented
by unique

has unique

contained
in

uniquely determines

Available for: Adhesive Categories SetS GraphT

Open Problem: in all adhesive categories?
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Conclusions

• Essential condition allowed powerful characterization for
root causes of con�icts

• Lots of future work!
• Constraints and application conditions
• Compare with notions of granularity (Born et al. 2017)
• Attributed graphs and other adhesive categories
• Sesqui-Pushout and AGREE
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Thank you!
Questions?
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