
Modelling by Patterns for
Correct-by-Construction Process

Dominique Méry
Telecom Nancy,Université de Lorraine

dominique.mery@loria.fr

IFIP

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 1/77

Summary

1 Correctness by Construction

2 Distributed Algorithms

3 Discrete Models in Event B

4 The Inductive Paradigm

5 The Call-as-Event Paradigm

6 The Service-as-Event Paradigm

7 The Self-Healing P2P based Protocol

8 Conclusion

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 2/77

Current Summary

1 Correctness by Construction

2 Distributed Algorithms

3 Discrete Models in Event B

4 The Inductive Paradigm

5 The Call-as-Event Paradigm

6 The Service-as-Event Paradigm

7 The Self-Healing P2P based Protocol

8 Conclusion

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 3/77

Correctness by Construction

Correctness by Construction is a method of building software -based
systems with demonstrable correctness for security- and
safety-critical applications.

Correctness by Construction advocates a step-wise refinement

process from specification to code using tools for checking and
transforming models.

Correctness by Construction is an approach to software/system
construction

I starting with an abstract model of the problem.
I progressively adding details in a step-wise and checked fashion.
I each step guarantees and proves the correctness of the new concrete

model with respect to requirements

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 3/77

The Cleanroom Method as CbC

The Cleanroom method, developed by Harlan Mills and his
colleagues at IBM and elsewhere, attempts to do for software what
cleanroom fabrication does for semiconductors: to achieve quality by
keeping defects out during fabrication.

In semiconductors, dirt or dust that is allowed to contaminate a
chip as it is being made cannot possibly be removed later.

But we try to do the equivalent when we write programs that are
full of bugs, and then attempt to remove them all using debugging.

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 4/77

The Cleanroom Method as CbC

The Cleanroom method, then, uses a number of techniques to develop
software carefully, in a well-controlled way, so as to avoid or eliminate as
many defects as possible before the software is ever executed. Elements
of the method are:

specification of all components of the software at all levels;

stepwise refinement using constructs called ”box structures”;

verification of all components by the development team;

statistical quality control by independent certification testing;

no unit testing, no execution at all prior to certification testing.

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 5/77

Critical System Development Life-Cycle Methodology

refinement
safety

assessment

Informal Requirements

Formal Specification

Formal Verification

Formal Validation

Real Time Animation

Code Generation Acceptance Testing

integration

Error Correction

Error Correction

Domain Feedback

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 6/77

Overview of Methodology

Informal Requirements: Restricted form of natural language.

Formal Specification: Modeling language like Event-B , Z, ASM,
VDM, TLA+. . .

Formal Verification: Theorem Prover Tools like PVS, Z3, SAT, SMT
Solver. . .

Formal Validation: Model Checker Tools like ProB, UPPAAL ,
SPIN, SMV . . .

Real-time Animation: Our proposed approach . . . Real-Time
Animator . . .

Code Generation: Our proposed approach . . . EB2ALL: EB2C,
EB2C++, EB2J, EB2C# . . .

Acceptance Testing: Failure Mode, Effects and Critically
analysis(FMEA and FMEA), System Hazard Analyses(SHA)

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 7/77

Case Studies

Colin Boyd and Anish Mathuria. Protocols Authentication and Key
Establisment. Springer 2003.

C. C. Marquezan and L. Z. Granville. Self-* and P2P for Network
Management - Design Principles and Case Studies. Springer Briefs
in Computer Science. Springer, 2012.

Pacemaker Challenge Contribution

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 8/77

Current Summary

1 Correctness by Construction

2 Distributed Algorithms

3 Discrete Models in Event B

4 The Inductive Paradigm

5 The Call-as-Event Paradigm

6 The Service-as-Event Paradigm

7 The Self-Healing P2P based Protocol

8 Conclusion

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 9/77

Distributed Algorithms: first steps in verification

First steps in a new world by proving the mutual exclusion algorithm of
Ricart and Agrawala using a sopund and semantically complete temporal
proof system and a graphical notation called proof lattice

Ricart, Glenn; Agrawala, Ashok K. (1 January
1981). ”An optimal algorithm for mutual exclu-
sion in computer networks”. Communications of
the ACM. 24 (1): 917.

Definition of sound and semantically complete temporal proof
system.

Annotations and proofs were not machine-assisted.

How to explain why the algorithm was correct?

Carvalho and Roucairol published an improvement of the RA
algorithm using some kind of abstraction and simplification.

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 9/77

Distributed Algorithms: first steps in verification

First steps in a new world by proving the mutual exclusion algorithm of
Ricart and Agrawala using a sopund and semantically complete temporal
proof system and a graphical notation called proof lattice

Ricart, Glenn; Agrawala, Ashok K. (1 January
1981). ”An optimal algorithm for mutual exclu-
sion in computer networks”. Communications of
the ACM. 24 (1): 917.

Definition of sound and semantically complete temporal proof
system.

Annotations and proofs were not machine-assisted.

How to explain why the algorithm was correct?

Carvalho and Roucairol published an improvement of the RA
algorithm using some kind of abstraction and simplification.

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 9/77

Distributed Algorithms: first steps in verification

First steps in a new world by proving the mutual exclusion algorithm of
Ricart and Agrawala using a sopund and semantically complete temporal
proof system and a graphical notation called proof lattice

Ricart, Glenn; Agrawala, Ashok K. (1 January
1981). ”An optimal algorithm for mutual exclu-
sion in computer networks”. Communications of
the ACM. 24 (1): 917.

Definition of sound and semantically complete temporal proof
system.

Annotations and proofs were not machine-assisted.

How to explain why the algorithm was correct?

Carvalho and Roucairol published an improvement of the RA
algorithm using some kind of abstraction and simplification.

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 9/77

Verifying Distributed Algorithms: lessons learnt

Discovering the correct annotation:
I local annotation but global state
I communications: synchronous, asynchronous,

coordination, lossy, unsecure, . . .
I Programming model versus execution model

(UNITY)
I Hidden assumptions or implicit assumptions

Replaying the proof process

Discovering why the distributed system is working

Explaining in an abstract and simple way why it is
working

Crocos was an integrated environment for interactive
verification of SDL specifications (CAV 1992) using
Isabelle and Concerto

Discovering why the distributed process is correct by
a simple abstraction.

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 10/77

Verifying Distributed Algorithms: lessons learnt

Discovering the correct annotation:

I local annotation but global state
I communications: synchronous, asynchronous,

coordination, lossy, unsecure, . . .
I Programming model versus execution model

(UNITY)
I Hidden assumptions or implicit assumptions

Replaying the proof process

Discovering why the distributed system is working

Explaining in an abstract and simple way why it is
working

Crocos was an integrated environment for interactive
verification of SDL specifications (CAV 1992) using
Isabelle and Concerto

Discovering why the distributed process is correct by
a simple abstraction.

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 10/77

Verifying Distributed Algorithms: lessons learnt

Discovering the correct annotation:
I local annotation but global state

I communications: synchronous, asynchronous,
coordination, lossy, unsecure, . . .

I Programming model versus execution model
(UNITY)

I Hidden assumptions or implicit assumptions

Replaying the proof process

Discovering why the distributed system is working

Explaining in an abstract and simple way why it is
working

Crocos was an integrated environment for interactive
verification of SDL specifications (CAV 1992) using
Isabelle and Concerto

Discovering why the distributed process is correct by
a simple abstraction.

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 10/77

Verifying Distributed Algorithms: lessons learnt

Discovering the correct annotation:
I local annotation but global state
I communications: synchronous, asynchronous,

coordination, lossy, unsecure, . . .

I Programming model versus execution model
(UNITY)

I Hidden assumptions or implicit assumptions

Replaying the proof process

Discovering why the distributed system is working

Explaining in an abstract and simple way why it is
working

Crocos was an integrated environment for interactive
verification of SDL specifications (CAV 1992) using
Isabelle and Concerto

Discovering why the distributed process is correct by
a simple abstraction.

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 10/77

Verifying Distributed Algorithms: lessons learnt

Discovering the correct annotation:
I local annotation but global state
I communications: synchronous, asynchronous,

coordination, lossy, unsecure, . . .
I Programming model versus execution model

(UNITY)

I Hidden assumptions or implicit assumptions

Replaying the proof process

Discovering why the distributed system is working

Explaining in an abstract and simple way why it is
working

Crocos was an integrated environment for interactive
verification of SDL specifications (CAV 1992) using
Isabelle and Concerto

Discovering why the distributed process is correct by
a simple abstraction.

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 10/77

Verifying Distributed Algorithms: lessons learnt

Discovering the correct annotation:
I local annotation but global state
I communications: synchronous, asynchronous,

coordination, lossy, unsecure, . . .
I Programming model versus execution model

(UNITY)
I Hidden assumptions or implicit assumptions

Replaying the proof process

Discovering why the distributed system is working

Explaining in an abstract and simple way why it is
working

Crocos was an integrated environment for interactive
verification of SDL specifications (CAV 1992) using
Isabelle and Concerto

Discovering why the distributed process is correct by
a simple abstraction.

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 10/77

Verifying Distributed Algorithms: lessons learnt

Discovering the correct annotation:
I local annotation but global state
I communications: synchronous, asynchronous,

coordination, lossy, unsecure, . . .
I Programming model versus execution model

(UNITY)
I Hidden assumptions or implicit assumptions

Replaying the proof process

Discovering why the distributed system is working

Explaining in an abstract and simple way why it is
working

Crocos was an integrated environment for interactive
verification of SDL specifications (CAV 1992) using
Isabelle and Concerto

Discovering why the distributed process is correct by
a simple abstraction.

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 10/77

Verifying Distributed Algorithms: lessons learnt

Discovering the correct annotation:
I local annotation but global state
I communications: synchronous, asynchronous,

coordination, lossy, unsecure, . . .
I Programming model versus execution model

(UNITY)
I Hidden assumptions or implicit assumptions

Replaying the proof process

Discovering why the distributed system is working

Explaining in an abstract and simple way why it is
working

Crocos was an integrated environment for interactive
verification of SDL specifications (CAV 1992) using
Isabelle and Concerto

Discovering why the distributed process is correct by
a simple abstraction.

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 10/77

Verifying Distributed Algorithms: lessons learnt

Discovering the correct annotation:
I local annotation but global state
I communications: synchronous, asynchronous,

coordination, lossy, unsecure, . . .
I Programming model versus execution model

(UNITY)
I Hidden assumptions or implicit assumptions

Replaying the proof process

Discovering why the distributed system is working

Explaining in an abstract and simple way why it is
working

Crocos was an integrated environment for interactive
verification of SDL specifications (CAV 1992) using
Isabelle and Concerto

Discovering why the distributed process is correct by
a simple abstraction.

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 10/77

Verifying Distributed Algorithms: lessons learnt

Discovering the correct annotation:
I local annotation but global state
I communications: synchronous, asynchronous,

coordination, lossy, unsecure, . . .
I Programming model versus execution model

(UNITY)
I Hidden assumptions or implicit assumptions

Replaying the proof process

Discovering why the distributed system is working

Explaining in an abstract and simple way why it is
working

Crocos was an integrated environment for interactive
verification of SDL specifications (CAV 1992) using
Isabelle and Concerto

Discovering why the distributed process is correct by
a simple abstraction.

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 10/77

Verifying Distributed Algorithms: lessons learnt

Discovering the correct annotation:
I local annotation but global state
I communications: synchronous, asynchronous,

coordination, lossy, unsecure, . . .
I Programming model versus execution model

(UNITY)
I Hidden assumptions or implicit assumptions

Replaying the proof process

Discovering why the distributed system is working

Explaining in an abstract and simple way why it is
working

Crocos was an integrated environment for interactive
verification of SDL specifications (CAV 1992) using
Isabelle and Concerto

Discovering why the distributed process is correct by
a simple abstraction.

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 10/77

Distributed Algorithms: using proof assistant

Marco Devillers, W. O. David Griffioen, Judi
Romijn, Frits W. Vaandrager: Verification of a
Leader Election Protocol: Formal Methods Ap-
plied to IEEE 1394. Formal Methods in System
Design 16(3): 307-320 (2000)

Using the PVS proof assistant

Modelling in I/O automata

Proofs difficult to read.

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 11/77

Distributed Algorithms: using proof assistant

Marco Devillers, W. O. David Griffioen, Judi
Romijn, Frits W. Vaandrager: Verification of a
Leader Election Protocol: Formal Methods Ap-
plied to IEEE 1394. Formal Methods in System
Design 16(3): 307-320 (2000)

Using the PVS proof assistant

Modelling in I/O automata

Proofs difficult to read.

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 11/77

Distributed Algorithms: using proof assistant

Marco Devillers, W. O. David Griffioen, Judi
Romijn, Frits W. Vaandrager: Verification of a
Leader Election Protocol: Formal Methods Ap-
plied to IEEE 1394. Formal Methods in System
Design 16(3): 307-320 (2000)

Using the PVS proof assistant

Modelling in I/O automata

Proofs difficult to read.

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 11/77

Distributed Algorithms: using proof assistant

Marco Devillers, W. O. David Griffioen, Judi
Romijn, Frits W. Vaandrager: Verification of a
Leader Election Protocol: Formal Methods Ap-
plied to IEEE 1394. Formal Methods in System
Design 16(3): 307-320 (2000)

Using the PVS proof assistant

Modelling in I/O automata

Proofs difficult to read.

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 11/77

Scenario for the leader election protocol

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 12/77

The leader election

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 13/77

Scenario for the leader election protocol

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 14/77

Scenario for the leader election protocol

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 14/77

Scenario for the leader election protocol

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 14/77

Scenario for the leader election protocol

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 14/77

Scenario for the leader election protocol

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 14/77

Scenario for the leader election protocol

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 14/77

Scenario for the leader election protocol

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 14/77

Scenario for the leader election protocol

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 14/77

Scenario for the leader election protocol

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 14/77

Scenario for the leader election protocol

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 14/77

Scenario for the leader election protocol

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 14/77

Scenario for the leader election protocol

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 14/77

The leader election

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 15/77

Distributed Algorithms: quest for verification

Marco Devillers, W. O. David Griffioen, Judi
Romijn, Frits W. Vaandrager: Verification of a
Leader Election Protocol: Formal Methods Ap-
plied to IEEE 1394. Formal Methods in System
Design 16(3): 307-320 (2000)

Jean-Raymond Abrial, Dominique Cansell, Do-
minique Méry: A Mechanically Proved and Incre-
mental Development of IEEE 1394 Tree Identify
Protocol. Formal Asp. Comput. 14(3): 215-227
(2003)

Main inductive property: a forest is converging to a tree.

. . . but it should exist eventually a tree.

Knowledges over graphs should be somewhere modelled.

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 16/77

Distributed Algorithms: quest for verification

Marco Devillers, W. O. David Griffioen, Judi
Romijn, Frits W. Vaandrager: Verification of a
Leader Election Protocol: Formal Methods Ap-
plied to IEEE 1394. Formal Methods in System
Design 16(3): 307-320 (2000)

Jean-Raymond Abrial, Dominique Cansell, Do-
minique Méry: A Mechanically Proved and Incre-
mental Development of IEEE 1394 Tree Identify
Protocol. Formal Asp. Comput. 14(3): 215-227
(2003)

Main inductive property: a forest is converging to a tree.

. . . but it should exist eventually a tree.

Knowledges over graphs should be somewhere modelled.

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 16/77

Distributed Algorithms: quest for verification

Marco Devillers, W. O. David Griffioen, Judi
Romijn, Frits W. Vaandrager: Verification of a
Leader Election Protocol: Formal Methods Ap-
plied to IEEE 1394. Formal Methods in System
Design 16(3): 307-320 (2000)

Jean-Raymond Abrial, Dominique Cansell, Do-
minique Méry: A Mechanically Proved and Incre-
mental Development of IEEE 1394 Tree Identify
Protocol. Formal Asp. Comput. 14(3): 215-227
(2003)

Main inductive property: a forest is converging to a tree.

. . . but it should exist eventually a tree.

Knowledges over graphs should be somewhere modelled.

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 16/77

Distributed Algorithms: quest for verification

Marco Devillers, W. O. David Griffioen, Judi
Romijn, Frits W. Vaandrager: Verification of a
Leader Election Protocol: Formal Methods Ap-
plied to IEEE 1394. Formal Methods in System
Design 16(3): 307-320 (2000)

Jean-Raymond Abrial, Dominique Cansell, Do-
minique Méry: A Mechanically Proved and Incre-
mental Development of IEEE 1394 Tree Identify
Protocol. Formal Asp. Comput. 14(3): 215-227
(2003)

Main inductive property: a forest is converging to a tree.

. . .

but it should exist eventually a tree.

Knowledges over graphs should be somewhere modelled.

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 16/77

Distributed Algorithms: quest for verification

Marco Devillers, W. O. David Griffioen, Judi
Romijn, Frits W. Vaandrager: Verification of a
Leader Election Protocol: Formal Methods Ap-
plied to IEEE 1394. Formal Methods in System
Design 16(3): 307-320 (2000)

Jean-Raymond Abrial, Dominique Cansell, Do-
minique Méry: A Mechanically Proved and Incre-
mental Development of IEEE 1394 Tree Identify
Protocol. Formal Asp. Comput. 14(3): 215-227
(2003)

Main inductive property: a forest is converging to a tree.

. . . but it should exist eventually a tree.

Knowledges over graphs should be somewhere modelled.

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 16/77

Distributed Algorithms: quest for verification

Marco Devillers, W. O. David Griffioen, Judi
Romijn, Frits W. Vaandrager: Verification of a
Leader Election Protocol: Formal Methods Ap-
plied to IEEE 1394. Formal Methods in System
Design 16(3): 307-320 (2000)

Jean-Raymond Abrial, Dominique Cansell, Do-
minique Méry: A Mechanically Proved and Incre-
mental Development of IEEE 1394 Tree Identify
Protocol. Formal Asp. Comput. 14(3): 215-227
(2003)

Main inductive property: a forest is converging to a tree.

. . . but it should exist eventually a tree.

Knowledges over graphs should be somewhere modelled.

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 16/77

Guidelines for a Modelling Language

How to Solve It by Pólya

If you can’t solve a problem, then there is an easier problem you can
solve: find it. or If you cannot solve the proposed problem, try to solve
first some related problem. Could you imagine a more accessible related
problem?.

patterns are a key concept for solving problems;

Moreover, another key concept is the refinement of models handling
the complex nature of such systems: the refinement is used for
constructing models or patterns.

Revisit a list of patterns which can be used for developing programs
or systems using the refinement and the proof as a mean to check
the whole process.

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 17/77

Paradigms for Modelling Systems

Our aim is to help users, mainly students, to learn how to use the
refinement relationship when developing software-based systems.

Paradigm

A paradigm is a distinct set of patterns, including theories, research
methods, postulates, and standards for what constitutes legitimate
contributions to designing programs.

Pattern

A pattern for modelling in Event-B is a set (project) of contexts and
machines that have parameters as sets, constants, variables . . .

The Inductive Paradigm

The Call-as-Event Paradigm

The Service -as-Event Paradigm

The Composition/Decomposition Paradigm

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 18/77

Triptych of Software/System Engineering

Software/System development ideally proceeds in three phases according
to Dines Børner::

D,S ⇒ R

First, a phase of domain engineering D: an analysis of the
application domain leads to a description of that domain.

Second, a phase of requirements engineering R: an analysis of
the domain description leads to a prescription of requirements to
software for that domain.

Third, a phase of software/system design S: an analysis of the
requirements prescription leads to software for that domain.

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 19/77

Triptych of Software/System Engineering

Software/System development ideally proceeds in three phases according
to Dines Børner::

D,S ⇒ R

Pre/Post Specification

R: pre/post.

D: integers, reals, . . .

S: algorithm, program, . . .

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 19/77

Triptych of Software/System Engineering

Software/System development ideally proceeds in three phases according
to Dines Børner::

D,S ⇒ R

Pre/Post Specification

R: pre/post.

D: integers, reals, . . .

S: algorithm, program, . . .

Semantical relationship

Verification by induction principle

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 19/77

Triptych of Software/System Engineering

Software/System development ideally proceeds in three phases according
to Dines Børner::

D,S ⇒ R

System Modelling

R: safety properties in Event-B

D: theories, context in Event-B

S: machines for reactive systems

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 19/77

Triptych of Software/System Engineering

Software/System development ideally proceeds in three phases according
to Dines Børner::

D,S ⇒ R

System Modelling

R: safety properties in Event-B

D: theories, context in Event-B

S: machines for reactive systems

Checking proof obligations

Refinement of models

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 19/77

Triptych of Software/System Engineering

Software/System development ideally proceeds in three phases according
to Dines Børner::

D,S ⇒ R

First, a phase of domain engineering D: an analysis of the
application domain leads to a description of that domain.

Second, a phase of requirements engineering R: an analysis of
the domain description leads to a prescription of requirements to
software for that domain.

Third, a phase of software/system design S: an analysis of the
requirements prescription leads to software for that domain.

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 19/77

Current Summary

1 Correctness by Construction

2 Distributed Algorithms

3 Discrete Models in Event B

4 The Inductive Paradigm

5 The Call-as-Event Paradigm

6 The Service-as-Event Paradigm

7 The Self-Healing P2P based Protocol

8 Conclusion

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 20/77

Modelling systems in Event-B

MACHINE

m
SEES

c
VARIABLES

x
INVARIANT

I(x)
THEOREMS

Q(x)
INITIALISATION

Init(x)
EVENTS

. . . e
END

c defines the static environment for the proofs
related to m: sets, constants, axioms, theorems Γ(m).

Γ(m) ` ∀x ∈ V alues : Init(x)⇒ I(x)

∀e :
Γ(m) ` ∀x, x′, u ∈ V alues : I(x) ∧R(u, x, x′)⇒ I(x′)

Γ(m) ` ∀x ∈ V alues : I(x)⇒ Q(x)

e
any
u

where
G(x, u)

then
x : |(R(u, x, x′))

end

or e is observed x
e−→ x′

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 20/77

Modelling systems in Event-B

MACHINE

m
SEES

c
VARIABLES

x
INVARIANT

I(x)
THEOREMS

Q(x)
INITIALISATION

Init(x)
EVENTS

. . . e
END

c defines the static environment for the proofs
related to m: sets, constants, axioms, theorems Γ(m).

Γ(m) ` ∀x ∈ V alues : Init(x)⇒ I(x)

∀e :
Γ(m) ` ∀x, x′, u ∈ V alues : I(x) ∧R(u, x, x′)⇒ I(x′)

Γ(m) ` ∀x ∈ V alues : I(x)⇒ Q(x)

e
any
u

where
G(x, u)

then
x : |(R(u, x, x′))

end

or e is observed x
e−→ x′

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 20/77

Modelling systems in Event-B

MACHINE

m
SEES

c
VARIABLES

x
INVARIANT

I(x)
THEOREMS

Q(x)
INITIALISATION

Init(x)
EVENTS

. . . e
END

c defines the static environment for the proofs
related to m: sets, constants, axioms, theorems Γ(m).

Γ(m) ` ∀x ∈ V alues : Init(x)⇒ I(x)

∀e :
Γ(m) ` ∀x, x′, u ∈ V alues : I(x) ∧R(u, x, x′)⇒ I(x′)

Γ(m) ` ∀x ∈ V alues : I(x)⇒ Q(x)

e
any
u

where
G(x, u)

then
x : |(R(u, x, x′))

end

or e is observed x
e−→ x′

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 20/77

Modelling systems in Event-B

MACHINE

m
SEES

c
VARIABLES

x
INVARIANT

I(x)
THEOREMS

Q(x)
INITIALISATION

Init(x)
EVENTS

. . . e
END

c defines the static environment for the proofs
related to m: sets, constants, axioms, theorems Γ(m).

Γ(m) ` ∀x ∈ V alues : Init(x)⇒ I(x)

∀e :
Γ(m) ` ∀x, x′, u ∈ V alues : I(x) ∧R(u, x, x′)⇒ I(x′)

Γ(m) ` ∀x ∈ V alues : I(x)⇒ Q(x)

e
any
u

where
G(x, u)

then
x : |(R(u, x, x′))

end

or e is observed x
e−→ x′

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 20/77

Modelling systems in Event-B

MACHINE

m
SEES

c
VARIABLES

x
INVARIANT

I(x)
THEOREMS

Q(x)
INITIALISATION

Init(x)
EVENTS

. . . e
END

c defines the static environment for the proofs
related to m: sets, constants, axioms, theorems Γ(m).

Γ(m) ` ∀x ∈ V alues : Init(x)⇒ I(x)

∀e :
Γ(m) ` ∀x, x′, u ∈ V alues : I(x) ∧R(u, x, x′)⇒ I(x′)

Γ(m) ` ∀x ∈ V alues : I(x)⇒ Q(x)

e
any
u

where
G(x, u)

then
x : |(R(u, x, x′))

end

or e is observed x
e−→ x′

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 20/77

Modelling systems in Event-B

MACHINE

m
SEES

c
VARIABLES

x
INVARIANT

I(x)
THEOREMS

Q(x)
INITIALISATION

Init(x)
EVENTS

. . . e
END

c defines the static environment for the proofs
related to m: sets, constants, axioms, theorems Γ(m).

Γ(m) ` ∀x ∈ V alues : Init(x)⇒ I(x)

∀e :
Γ(m) ` ∀x, x′, u ∈ V alues : I(x) ∧R(u, x, x′)⇒ I(x′)

Γ(m) ` ∀x ∈ V alues : I(x)⇒ Q(x)

e
any
u

where
G(x, u)

then
x : |(R(u, x, x′))

end

or e is observed x
e−→ x′

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 20/77

Modelling systems in Event-B

MACHINE

m
SEES

c
VARIABLES

x
INVARIANT

I(x)
THEOREMS

Q(x)
INITIALISATION

Init(x)
EVENTS

. . . e
END

c defines the static environment for the proofs
related to m: sets, constants, axioms, theorems Γ(m).

Γ(m) ` ∀x ∈ V alues : Init(x)⇒ I(x)

∀e :
Γ(m) ` ∀x, x′, u ∈ V alues : I(x) ∧R(u, x, x′)⇒ I(x′)

Γ(m) ` ∀x ∈ V alues : I(x)⇒ Q(x)

e
any
u

where
G(x, u)

then
x : |(R(u, x, x′))

end

or e is observed x
e−→ x′

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 20/77

Event B Structure and Proofs

CONTEXT MACHINE
ctxt id 2 machine id 2

EXTENDS REFINES
ctxt id 1 machine id 1

SETS SEES
s ctxt id 2

CONSTANTS VARIABLES
c v

AXIOMS INVARIANTS
A(s, c) I(s, c, v)

THEOREMS THEOREMS
Tc(s, c) Tm(s, c, v)

END VARIANT
V (s, c, v)

EVENTS
EVENT e

any x
where G(s, c, v, x)
then

v : |BA(s, c, v, x, v′)
end

END

Invariant A(s, c) ∧ I(s, c, v)
preservation ∧G(s, c, v, x)

∧BA(s, c, v, x, v′)
⇒I(s, c, v′)

Event A(s, c) ∧ I(s, c, v)
feasibility ∧G(s, c, v, x)

⇒∃v′.BA(s, c, v, x, v′)
Variant A(s, c) ∧ I(s, c, v)
modelling ∧G(s, c, v, x)
progress ∧BA(s, c, v, x, v′)

⇒V (s, c, v′) < V (s, c, v)
Theorems A(s, c) ⇒ Tc(s, c)

A(s, c) ∧ I(s, c, v)
⇒Tm(s, c, v)

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 21/77

Election in One Shot: Building a Spanning Tree

MACHINE

ELECTION
SEES GRAPH
VARIABLES rt, ts, ok
INVARIANT

rt ∈ ND
ts ∈ ND↔ND
ok ∈ BOOL
ok = TRUE

⇒spanning (rt, ts, gr)

INITIALISATION Init(x)
EVENT election =̂
when
ok = FALSE

then
rt, ts : |(spanning (rt′, ts′, gr))
ok := TRUE

endEND

CONTEXT GRAPH
(ax1) gr ⊆ ND ×ND
(ax2) gr = gr−1

(ax3) dom (gr) = ND
(ax4) id (ND) ∩ gr = ∅

(ax5) ∀p ·

p ⊆ ND ∧
p ⊆ t−1 [p]
=⇒
p = ∅

(Th1)fn ∈ ND → (ND 7→ND)
∀(r, t)·

r ∈ ND ∧
t ∈ ND 7→ND
=⇒
(t = fn(r) ⇔ spanning (r, t, gr))

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 22/77

Election in One Shot: Building a Spanning Tree

MACHINE

ELECTION
SEES GRAPH
VARIABLES rt, ts, ok
INVARIANT

rt ∈ ND
ts ∈ ND↔ND
ok ∈ BOOL
ok = TRUE

⇒spanning (rt, ts, gr)

INITIALISATION Init(x)
EVENT election =̂
when
ok = FALSE

then
rt, ts : |(spanning (rt′, ts′, gr))
ok := TRUE

endEND

CONTEXT GRAPH
(ax1) gr ⊆ ND ×ND
(ax2) gr = gr−1

(ax3) dom (gr) = ND
(ax4) id (ND) ∩ gr = ∅

(ax5) ∀p ·

p ⊆ ND ∧
p ⊆ t−1 [p]
=⇒
p = ∅

(Th1)fn ∈ ND → (ND 7→ND)
∀(r, t)·

r ∈ ND ∧
t ∈ ND 7→ND
=⇒
(t = fn(r) ⇔ spanning (r, t, gr))

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 22/77

Election in One Shot: Building a Spanning Tree

MACHINE

ELECTION
SEES GRAPH
VARIABLES rt, ts, ok
INVARIANT

rt ∈ ND
ts ∈ ND↔ND
ok ∈ BOOL
ok = TRUE

⇒spanning (rt, ts, gr)

INITIALISATION Init(x)
EVENT election =̂
when
ok = FALSE

then
rt, ts : |(spanning (rt′, ts′, gr))
ok := TRUE

endEND

CONTEXT GRAPH
(ax1) gr ⊆ ND ×ND
(ax2) gr = gr−1

(ax3) dom (gr) = ND
(ax4) id (ND) ∩ gr = ∅

(ax5) ∀p ·

p ⊆ ND ∧
p ⊆ t−1 [p]
=⇒
p = ∅

(Th1)fn ∈ ND → (ND 7→ND)
∀(r, t)·

r ∈ ND ∧
t ∈ ND 7→ND
=⇒
(t = fn(r) ⇔ spanning (r, t, gr))

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 22/77

Scenario for the leader election protocol

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 23/77

Scenario for the leader election protocol

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 23/77

Current Summary

1 Correctness by Construction

2 Distributed Algorithms

3 Discrete Models in Event B

4 The Inductive Paradigm

5 The Call-as-Event Paradigm

6 The Service-as-Event Paradigm

7 The Self-Healing P2P based Protocol

8 Conclusion

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 24/77

The Iterative Pattern

ALGOPC

ALGO

PREALGO

COMPUTING

PREPOST pre/post specification

algorithm

C0

formalisation

translation

verification

SEES

SEES

SEES

SEES

REFINES

REFINES

REFINES

REFINES

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 24/77

General context C0

CONTEXT C0
SETS

U
CONSTANTS

x, v, d0, f,D
AXIOMS

axm1 : x ∈ N
axm25 : D ⊆ U
axm24 : f ∈ D→D
axm23 : d0 ∈ D
axm2 : v ∈ N→D
axm3 : v(0) = d0
axm4 : ∀n·n ∈ N⇒ v(n+ 1) = f(v(n))
th1 : Q(d0, d) ≡ (d = v(x))

the sequence v
expresses the
post-condition
Q(d0, d) with the
precondition P (d0).

Q(d0, d) is
equivalent to
d = v(x).

The theorem th1
should be proved in
the context C0. he

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 25/77

General PREPOST Machine

MACHINE PREPOST
SEES C0
variables
r

invariants
inv1 : r ∈ D

EVENTS

initialisation
begin
act1 : r :∈ D

end
EVENT computing
begin
act1 : r := v(x)

end
end

The theorem th1 is validating
the definition of the result r to
compute.

The event computing is
expressing the contract of the
given problem.

it by a very simple problem that
is the computation of the
function n2 using the addition
operator.

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 26/77

First Refinement COMPUTING: Inductive Computation

EVENT INITIALISATION
begin
act1 : r :∈ D
act3 : vv := {0 7→ d0}
act5 : k := 0

end

INITIALISATION is
initializing the vari-
ables with respect to
the initial values of
the sequences of the
context.

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 27/77

First Refinement COMPUTING: Inductive Computation

EVENT computing
REFINES computing,
when
grd1 : x ∈ dom(vv)

then
act1 : r := vv(x)

end
END

computing is imply
observing that the re-
sult is computed sim-
ulating the sequence
vv.

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 27/77

First Refinement COMPUTING: Inductive Computation

EVENT step
when
grd1 : x /∈ dom(vv)

then
act2 : vv(k + 1) := f(vv(k))
act4 : k := k + 1

end

step is simulating the
computation of the
values of the sequence
vv as a model compu-
tation.

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 27/77

The Iterative Pattern

ALGOPC

ALGO

PREALGO

COMPUTING

PREPOST pre/post specification

algorithm

C0

formalisation

translation

verification

SEES

SEES

SEES

SEES

REFINES

REFINES

REFINES

REFINES

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 28/77

Completing the machines

PREALGO: adding new variables for pointing out the necessary
values to store cvv

ALGO: hiding the model variables storing the unnecessary values of
sequence vv

ALGOPC; adding control variable c

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 29/77

The Iterative Pattern

ALGOPC

ALGO

PREALGO

COMPUTING

PREPOST pre/post specification

algorithm

C0

formalisation

translation

verification

SEES

SEES

SEES

SEES

REFINES

REFINES

REFINES

REFINES

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 30/77

Translation of Event-B Models

Listing 1: Function derived from pattern for the sequence v

t y p e (D) f (i n t x)
{ i n t r , k , cv , or , ok , ocv ;

r =0;k=0; cv =0; o r =0; ok=k ; ocv=cv ;
whi le (k<x)

{
ok=k ; ocv=cv ;
k=ok +1;
cv=f (ocv) ;

}
r=cv ; return (r) ; }

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 31/77

Translation of Event-B Models

Comments

The produced algorithm can be now checked using another proof
environment as for instance Frama-C.

The inductive property of the invariant is clearly verified and is easily
derived from the Event-B machines.

The verification is not required, since the system is correct by
construction but it is a checking of the process itself

the project called ITERATIVE-PATTERN;

the project is the pattern itself

The invariants of the Event-B models can be reused in the
verification using Frama-C, for instance, and the verification of the
resulting algorithm is a confirmation of the translation.

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 31/77

Translation of Event-B Models

Listing 2: Function derived from pattern power3
#i n c l u d e <l i m i t s . h>
/∗@ r e q u i r e s 0 <= x ;

r e q u i r e s x∗x∗x <= INT MAX ;
en s u r e s \ r e s u l t ==x∗x∗x ;

∗/
i n t power3 (i n t x)
{ i n t r , ocz , cz , cv , cu , ocv , cw , ocw , ct , oct , ocu , k , ok ;

cz =0; cv =0;cw=1; c t =3; cu =0; ocw=cw ; ocz=cz ;
o c t=c t ; ocv=cv ; ocu=cu ; k=0; ok=k ;

/∗@ loop i n v a r i a n t cz == k∗k∗k ;
@ loop i n v a r i a n t cu == k ;
@ loop i n v a r i a n t cv+ct==3∗(cu+1)∗(cu+1);
@ loop i n v a r i a n t cz+cv+cw==3∗(cu+1)∗(cu+1)∗(cu+1);
@ loop i n v a r i a n t cv== 3∗cu∗cu ;
@ loop i n v a r i a n t cw == 3∗cu+1;
@ loop i n v a r i a n t k <= x ;
@ loop a s s i g n s ct , oct , cu , ocu , cz , ocz , k , cv , cw , r , ok ;
@ loop a s s i g n s ocv , ocw ;∗/

w h i l e (k<x)
{

ocz=cz ; ok=k ; ocv=cv ; ocw=cw ; o c t=c t ; ocu=cu ;
cz=ocz+ocv+ocw ;
cv=ocv+o c t ;
c t=o c t +6;
cw=ocw+3;
cu=ocu +1;
k=ok+1;}

r=cz ; r e t u r n (r) ;}

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 31/77

Translation of Event-B Models

Summary for proof obligations

Name Total Automatic Interactive
ex-induction 40 36 4

C0 2 0 2
PREPOST 4 4 0

COMPUTING 16 14 2
PREALGO 9 9 0

ALGO 6 6 0
ALGOPC 3 3 0

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 31/77

Translation of Event-B Models

Summary

The loop invariant is inductive but Frama-C does not prove it
completely.

Not the case with the RODIN platform which is able to discharge
the whole set of proof obligations.

However, the Event-B model is using auxiliary knowledge over
sequences used for defining the computing process.

The most difficult theorem is to prove that ∀n ∈ N : zn = n ∗ n ∗ n.

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 31/77

The Iterative Pattern

ALGOPC

ALGO

PREALGO

COMPUTING

PREPOST pre/post specification

algorithm

C0

formalisation

translation

verification

SEES

SEES

SEES

SEES

REFINES

REFINES

REFINES

REFINES

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 32/77

Current Summary

1 Correctness by Construction

2 Distributed Algorithms

3 Discrete Models in Event B

4 The Inductive Paradigm

5 The Call-as-Event Paradigm

6 The Service-as-Event Paradigm

7 The Self-Healing P2P based Protocol

8 Conclusion

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 33/77

The recursive pattern

ALGOREC

PREPOST pre/post specification

algorithm

C0

formalisation

translation

verification

SEES

SEES

REFINES

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 33/77

The refinement diagram

start ∧ x ∈ N

start ∧ x ∈ N start ∧ x ∈ N

end ∧ x ∈ N ∧ r = u(x)

end ∧ r = u(0)

reccall ∧ tr = u(x− 1)

end ∧ r = u(x)

x = 0 x 6= 0

P(0,r): x = 0

P(x-1,tr): x 6= 0

P(x,r): x 6= 0

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 34/77

Ideas for producing algorithms

EVENT rec%PROC(h(x),y)%P(y) is simply simulating the recursive
call of the same function.

The invariant is defined in a simpler way by analysing the inductive
structure and a control variable is introduced for structuring the
inductive computation.

EVENT
e

where
` = `1
g`1,`2

(x)

then
` := `2
x := f`1,`2

(x)

end

EVENT
rec%PROC(h(x),y)%P(y)

any y
where
` = `1
g`1,`2

(x, y)

then
` := `2
x := f`1,`2

(x, y)

end

EVENT
call%APROC(h(x),y)%P(y)

any y
where
` = `1
g`1,`2

(x, y)

then
` := `2
x := f`1,`2

(x, y)

end

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 35/77

The computation of the function x2

variables
r, c, tr

invariants
inv1 : r ∈ N
inv2 : c = end⇒ r = n ∗ n
inv3 : c = callrec⇒ n 6= 0
inv4 : c = callrec⇒ tr = (n− 1) ∗ (n− 1)
inv5 : c ∈ C
inv6 : tr ∈ N
inv7 : c = end⇒ r = n ∗ n
inv8 : c = end ∧ n 6= 0
⇒tr = (n− 1) ∗ (n− 1) ∧ r = tr + 2 ∗ (n− 1) + 1
inv9 : c = callrec⇒ n ∗ n = tr + 2 ∗ (n− 1) + 1

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 36/77

The computation of the function x2

EVENT INITIALISATION
begin
act1 : r := 0
act2 : c := start
act3 : tr :∈ N

end
EVENT square0
REFINES square(n;r)
when
grd1 : c = start
grd2 : n = 0

then
act1 : c := end
act2 : r := 0

end

EVENT squaren
REFINES square(n;r)
when
grd1 : c = callrec

then
act1 : r := tr + 2 ∗ (n− 1) + 1
act2 : c := end

end
EVENT rec%square(n-1;tr)
when
grd1 : c = start
grd2 : n 6= 0

then
act1 : c := callrec
act2 : tr := (n− 1) ∗ (n− 1)

end

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 36/77

Summary for proof obligations

Summary for proof obligations

Name Total Automatic Interactive
cae-square 34 32 2

square0 3 2 1
specquare 2 2 0

square 29 28 1

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 37/77

The recursive pattern

ALGOREC

PREPOST pre/post specification

algorithm

C0

formalisation

translation

verification

SEES

SEES

REFINES

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 38/77

Comments

Proofs are easier and simpler

Invariant is simple to find

Translation is automatic

Students are not happy with it and tools are not always set for this
verification.

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 39/77

Current Summary

1 Correctness by Construction

2 Distributed Algorithms

3 Discrete Models in Event B

4 The Inductive Paradigm

5 The Call-as-Event Paradigm

6 The Service-as-Event Paradigm

7 The Self-Healing P2P based Protocol

8 Conclusion

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 40/77

Conclusion

Paradigm for planning refinements:

I The Service -as-Event Paradigm: the distributed pattern
I The Composition/Decomposition Paradigm: mechanisms-based

pattern.

Graphical notation: the refinement diagram

Possibly combining the Visidia model and the refinement process
(http://rimel.loria.fr and http://visidia.labri.fr)

Teaching why and how distributed algorithms are working: the
parachutist process

Next

Transformation of Event-B models into programming, Dynamic
networks

Probabilistic assumptions

Atlas of correct-by-construction distributed algorithms

Hybrid modelling for CPS

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 40/77

Conclusion

Paradigm for planning refinements:

I The Service -as-Event Paradigm: the distributed pattern
I The Composition/Decomposition Paradigm: mechanisms-based

pattern.

Graphical notation: the refinement diagram

Possibly combining the Visidia model and the refinement process
(http://rimel.loria.fr and http://visidia.labri.fr)

Teaching why and how distributed algorithms are working: the
parachutist process

Next

Transformation of Event-B models into programming, Dynamic
networks

Probabilistic assumptions

Atlas of correct-by-construction distributed algorithms

Hybrid modelling for CPS

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 40/77

Conclusion

Paradigm for planning refinements:

I The Service -as-Event Paradigm: the distributed pattern
I The Composition/Decomposition Paradigm: mechanisms-based

pattern.

Graphical notation: the refinement diagram

Possibly combining the Visidia model and the refinement process
(http://rimel.loria.fr and http://visidia.labri.fr)

Teaching why and how distributed algorithms are working: the
parachutist process

Next

Transformation of Event-B models into programming, Dynamic
networks

Probabilistic assumptions

Atlas of correct-by-construction distributed algorithms

Hybrid modelling for CPS

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 40/77

Conclusion

Paradigm for planning refinements:

I The Service -as-Event Paradigm: the distributed pattern
I The Composition/Decomposition Paradigm: mechanisms-based

pattern.

Graphical notation: the refinement diagram

Possibly combining the Visidia model and the refinement process
(http://rimel.loria.fr and http://visidia.labri.fr)

Teaching why and how distributed algorithms are working: the
parachutist process

Next

Transformation of Event-B models into programming, Dynamic
networks

Probabilistic assumptions

Atlas of correct-by-construction distributed algorithms

Hybrid modelling for CPS

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 40/77

Conclusion

Paradigm for planning refinements:

I The Service -as-Event Paradigm: the distributed pattern
I The Composition/Decomposition Paradigm: mechanisms-based

pattern.

Graphical notation: the refinement diagram

Possibly combining the Visidia model and the refinement process
(http://rimel.loria.fr and http://visidia.labri.fr)

Teaching why and how distributed algorithms are working: the
parachutist process

Next

Transformation of Event-B models into programming, Dynamic
networks

Probabilistic assumptions

Atlas of correct-by-construction distributed algorithms

Hybrid modelling for CPS

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 40/77

Conclusion

Paradigm for planning refinements:

I The Service -as-Event Paradigm: the distributed pattern
I The Composition/Decomposition Paradigm: mechanisms-based

pattern.

Graphical notation: the refinement diagram

Possibly combining the Visidia model and the refinement process
(http://rimel.loria.fr and http://visidia.labri.fr)

Teaching why and how distributed algorithms are working: the
parachutist process

Next

Transformation of Event-B models into programming, Dynamic
networks

Probabilistic assumptions

Atlas of correct-by-construction distributed algorithms

Hybrid modelling for CPS
IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 40/77

Case studies

Sequential algorithms using the iterative pattern

Recursive algorithms using the recursive pattern

Distributed algorithms: protocols, leader election, self-stability,
spanning tree, snapshot, mutual exclusion, cryptographic protocols,
. . .

C. C. Marquezan and L. Z. Granville. Self-* and P2P for Network
Management - Design Principles and Case Studies. Springer Briefs
in Computer Science. Springer, 2012.

Distributed algorithms in the local computation model with LABRI
in Visidia: naming, spanning, election . . . (visidia.labri.fr)

http://eb2all.loria.fr

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 41/77

Case studies

Sequential algorithms using the iterative pattern

Recursive algorithms using the recursive pattern

Distributed algorithms: protocols, leader election, self-stability,
spanning tree, snapshot, mutual exclusion, cryptographic protocols,
. . .

C. C. Marquezan and L. Z. Granville. Self-* and P2P for Network
Management - Design Principles and Case Studies. Springer Briefs
in Computer Science. Springer, 2012.

Distributed algorithms in the local computation model with LABRI
in Visidia: naming, spanning, election . . . (visidia.labri.fr)

http://eb2all.loria.fr

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 41/77

Case studies

Sequential algorithms using the iterative pattern

Recursive algorithms using the recursive pattern

Distributed algorithms: protocols, leader election, self-stability,
spanning tree, snapshot, mutual exclusion, cryptographic protocols,
. . .

C. C. Marquezan and L. Z. Granville. Self-* and P2P for Network
Management - Design Principles and Case Studies. Springer Briefs
in Computer Science. Springer, 2012.

Distributed algorithms in the local computation model with LABRI
in Visidia: naming, spanning, election . . . (visidia.labri.fr)

http://eb2all.loria.fr

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 41/77

Case studies

Sequential algorithms using the iterative pattern

Recursive algorithms using the recursive pattern

Distributed algorithms: protocols, leader election, self-stability,
spanning tree, snapshot, mutual exclusion, cryptographic protocols,
. . .

C. C. Marquezan and L. Z. Granville. Self-* and P2P for Network
Management - Design Principles and Case Studies. Springer Briefs
in Computer Science. Springer, 2012.

Distributed algorithms in the local computation model with LABRI
in Visidia: naming, spanning, election . . . (visidia.labri.fr)

http://eb2all.loria.fr

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 41/77

Case studies

Sequential algorithms using the iterative pattern

Recursive algorithms using the recursive pattern

Distributed algorithms: protocols, leader election, self-stability,
spanning tree, snapshot, mutual exclusion, cryptographic protocols,
. . .

C. C. Marquezan and L. Z. Granville. Self-* and P2P for Network
Management - Design Principles and Case Studies. Springer Briefs
in Computer Science. Springer, 2012.

Distributed algorithms in the local computation model with LABRI
in Visidia: naming, spanning, election . . . (visidia.labri.fr)

http://eb2all.loria.fr

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 41/77

Case studies

Sequential algorithms using the iterative pattern

Recursive algorithms using the recursive pattern

Distributed algorithms: protocols, leader election, self-stability,
spanning tree, snapshot, mutual exclusion, cryptographic protocols,
. . .

C. C. Marquezan and L. Z. Granville. Self-* and P2P for Network
Management - Design Principles and Case Studies. Springer Briefs
in Computer Science. Springer, 2012.

Distributed algorithms in the local computation model with LABRI
in Visidia: naming, spanning, election . . . (visidia.labri.fr)

http://eb2all.loria.fr

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 41/77

Case studies

Sequential algorithms using the iterative pattern

Recursive algorithms using the recursive pattern

Distributed algorithms: protocols, leader election, self-stability,
spanning tree, snapshot, mutual exclusion, cryptographic protocols,
. . .

C. C. Marquezan and L. Z. Granville. Self-* and P2P for Network
Management - Design Principles and Case Studies. Springer Briefs
in Computer Science. Springer, 2012.

Distributed algorithms in the local computation model with LABRI
in Visidia: naming, spanning, election . . . (visidia.labri.fr)

http://eb2all.loria.fr

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 41/77

Publications for the talk

Dominique Méry: Refinement-Based Guidelines for Algorithmic Systems. Int. J. Software
and Informatics 3(2-3): 197-239 (2009)

Nazim Benassa, Dominique Méry: Cryptographic Protocols Analysis in Event B. Ershov
Memorial Conference 2009: 282-293

Nazim Benassa, Dominique Méry: Proof-Based Design of Security Protocols. CSR 2010:
25-36

Dominique Méry, Neeraj Kumar Singh: A generic framework: from modeling to code. ISSE
7(4): 227-235 (2011)

Dominique Méry, Neeraj Kumar Singh: Formal Specification of Medical Systems by
Proof-Based Refinement. ACM Trans. Embedded Comput. Syst. 12(1): 15:1-15:25 (2013)

Manamiary Bruno Andriamiarina, Dominique Méry, Neeraj Kumar Singh: Revisiting
snapshot algorithms by refinement-based techniques. Comput. Sci. Inf. Syst. 11(1):
251-270 (2014)

Manamiary Bruno Andriamiarina, Dominique Méry, Neeraj Kumar Singh: Analysis of Self-
and P2P Systems Using Refinement. ABZ 2014: 117-123

Yamine At Ameur, Dominique Méry: Making explicit domain knowledge in formal system
development. Sci. Comput. Program. 121: 100-127 (2016)

Dominique Méry: Playing with state-based models for designing better algorithms. Future
Generation Comp. Syst. 68: 445-455 (2017)

Dominique Méry, Michael Poppleton: Towards an integrated formal method for verification
of liveness properties in distributed systems: with application to population protocols.
Software and System Modeling 16(4): 1083-1115 (2017)

Dominique Méry: Modelling by Patterns for Correct-by-Construction Process. ISoLA (1)
2018: 399-423

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 42/77

IFIP Meeting WG1.3, Prague, Czech Republic (Dominique Méry) 43/77

	Correctness by Construction
	Distributed Algorithms
	Discrete Models in Event B
	The Inductive Paradigm
	The Call-as-Event Paradigm
	The Service-as-Event Paradigm
	The Self-Healing P2P based Protocol
	Conclusion

