DESIGN AND VALIDATION OF
CLOUD STORAGE SYSTEMS
USING REWRITING LOGIC

Peter Csaba Olveczky
University of Oslo

(based on joint work with Si Liu, José Meseguer, and others)

AVAILABILITY

ey Crzil W

by Google

Go glNg
’ P |]
i mastercatd) 75T
= T I

e Data should always be available
— data replicated

AVAILABILITY

ey Gral W

by Google

Google

Norway P I
I (700 VISA
........................ I

e Data should always be available
— data replicated
e Large and growing data
e Facebook (2014): 300 petabytes data; 350M photos uploaded
per day
— data partitioned

REPLICATED SYSTEMS

Figure by Jiaqing Du

CONSISTENCY <— LATENCY

EVENTUAL CONSISTENCY

e Weak consistency OK for some applications

Sy UpdateStaus] Add Photosiideo

2 .n.m..w..‘ Csaba Oiveczky

. fantasicl BIG HUG!

Google

Norway

Google Search I'm Fosling Lucky

EVENTUAL CONSISTENCY

e Weak consistency OK for some applications

e ... but not others:

s AN © @

@ Expedia

Electronic patient registry Electronic medical records

SOME CONSISTENCY MODELS
[CERONE, BERNARDI, GOTSMAN; CONCUR’15]

RA | Read Atomic [6] RA

CC Causal N
consistency [19, 12] CC

PSI Parallel snapshot s
isolation [24, 21] PC PSI

PC Prefix consistency [13] S

SI Snapshot isolation [8] E‘r’_\]I

SER | Serialisability [20] SER

SNAPSHOT ISOLATION

Snapshot isolation: All see consistent data

e If Donald see Benny's post before Kim's post

e then Vlad must also see Benny's post first

SNAPSHOT ISOLATION

Snapshot isolation: All see consistent data

e If Donald see Benny's post before Kim's post

e then Vlad must also see Benny's post first
e Benny and Kim must coordinate

SNAPSHOT ISOLATION

Snapshot isolation: All see consistent data

e If Donald see Benny's post before Kim's post

e then Vlad must also see Benny's post first
e Benny and Kim must coordinate

e Post cannot commit unless global order ensured

WEAKER CONSISTENCY: PSI/NMSI

Benny and Kim can commit independent posts concurrently

| The GENQOCIDE IN WEST PAPUA CARRIED OUT BY INDONESIAN FORCES
AND THAT'S GOING ON WITH THE BLESSING OF THE UN AND WESTERN
NATIONS. SINGE 1969 500,000 PLUS DEAD.

@ Gary Juffa - Political Agitator for the Indigenous @hunjara - Apr 3

Mike Cernovich @ @Cernovich
I'm feeling the vibe of doing short films into subjects the media won't cover.

What's a subject you'd like to see get a 20-25 minute short film on?

Show this thread

Q 1 8 Q 1 &

Peace for West Papua @WestPapuaPeace - 19h

oo Free West Papua Global Day of Action on april 5th 2019 is an undemocratic
action against General Elections in Indonesia.
Please avoid this evil campaign!

CAUSAL CONSISTENCY

Vlad sees reply to Kim's post = Vlad must also see Kim's post

11 #FreeAssange! (tweets by campaign) : Retweeted

Brian Klaas @ @brianklaas - 54m
They murdered his Dad, dismembered his body, orchestrated a cover-up, lied

about the murder, then lied about the cover-up...and now are forcing
Khashoggi's son, who is a captive in his own country, to participate in a photo-
op shaking hands with the prince who murdered his Dad.

-~ Tom Gara & @tomgara

Spare a thought for Khashoggi's son, banned from leaving
Saudi Arabia, who had to go and do this today

) 398 11 46k O sk

FORMAL METHODS FOR CLOUD
STORAGE SYSTEMS

FORMAL METHODS CHALLENGES

e Large and complex distributed systems
e Complex properties

e Correctness and performance critical

10

OUR FRAMEWORK: REWRITING LOGIC AND MAUDE

o Modeling: Rewriting logic
e equational specification defines data types
e rewrite rules define transitions
e OO spec: state multiset of messages and
objects < o : Cl | atty: valy, ... attp: val, >

11

OUR FRAMEWORK: REWRITING LOGIC AND MAUDE

o Modeling: Rewriting logic
e equational specification defines data types
e rewrite rules define transitions
e OO spec: state multiset of messages and
objects < o : Cl | atty: valy, ... attp: val, >
e Correctness analysis: Maude

e simulation, search, LTL model checking

11

OUR FRAMEWORK: REWRITING LOGIC AND MAUDE

o Modeling: Rewriting logic

e equational specification defines data types

e rewrite rules define transitions

e OO spec: state multiset of messages and

objects < o : Cl | atty: valy, ... attp: val, >

e Correctness analysis: Maude

e simulation, search, LTL model checking
e Performance estimation: PVeStA

e parallel statistical model checker
e estimate expected value of expression

11

MAUDE FOR CLOUD STORAGE
SYSTEMS

MODELING

e object-based

e untimed

12

MODELING

e object-based

e untimed

rl [commit-read-only-txn]
< RID : Walter-Replica | committed : TRANSES’,
executing : TRANSES
< TID:Walter-Txn | operations :nil, writeSet :empty, readSet:RS > >
=>
< RID : Walter-Replica | committed : (TRANSES’ < TID : Walter-Txn | >),
executing : TRANSES > .

12

CORRECTNESS ANALYSIS

o Add “history log” to state

e records history of execution
e consistency properties defined on “history”

13

CORRECTNESS ANALYSIS

e Add “history log” to state

e records history of execution
e consistency properties defined on “history”

e Model checking

e single initial states
e all initial states with certain parameters

13

DETAILS: CORRECTNESS ANALYSIS

e Add monitor object
< M : Monitor | clock : Nat, log : Log >

e clock counter to order events globally
e Log:

idixn V> < proxy, issueTime, finishTime, committed, reads, writes >

Rules transformed by adding & updating Monitor

14

ADDING HISTORIES Il

rl [commit-read-only-txn]

< RID : Walter-Replica | committed : TRANSES’,
executing : TRANSES

< TID: Walter-Txn | operations:nil, writeSet : empty, readSet:RS > >

< RID : Walter-Replica | committed : (TRANSES’ < TID : Walter-Txn | >),
executing : TRANSES > .

ii5)

ADDING HISTORIES Il

Example (Transaction Commit Identified)

rl [commit-read-only-txn]
< M : Monitor | clock : C, log : LOG,
(TID |-> < RID, T, VTS, FLAG, READS, WRITES)) >
< RID : Walter-Replica | committed : TRANSES’,
executing : TRANSES
< TID:Walter-Txn | operations:nil, writeSet :empty, readSet:RS > >
=>
< M : Monitor | clock : C + 1, log : LOG,
(TID |-> < RID, T, insert(RID,C,VTS), true, RS, empty >)
< RID : Walter-Replica | committed : (TRANSES’ < TID : Walter-Txn | >),
executing : TRANSES > .

16

DEFINING PROPERTIES

Consistency properties defined on logs in final states

Read Committed
e no aborted data (1st equation)

e no intermediate data (2nd equation)

op rc : Log -> Bool .
eq rc(TID1 |-> <0, T, VT, true, (<X,V> ,RS), WS>,
TID2 |-> <0’,T’,VT’, false,RS’, (<X,V> ,WS’) >, LOG) = false.
eq rc(TID1 |-> <0, T, VT, true, (<X,V> ,RS), WS>,
TID2 |-> <0’,T’,VT’, true,RS’, (<X,V> ,<X,V’>,WS’) >,
LOG) = false if V < V?’
eq rc(LOG) = true [owise]

17

ANALYZING PROPERTIES

Search for bad final state:

search [1] init < m : Monitor | log : empty, clock : 1 >
=>1
C:Configuration < m : Monitor | log : LOG >
such that not rc(LOG)

18

PERFORMANCE ANALYSIS WITH MAUDE

1. (Randomized) simulations

19

PERFORMANCE ANALYSIS WITH MAUDE

1. (Randomized) simulations
2. Probabilistic analysis (using PVeStA)

e statistical model checking

19

DETAILS: STATISTICAL MODEL CHECKING USING PVESTA

e Estimate expected value of expression of a path
e Simulate runs until desired level of confidence reached
e PVeStA: parallel simulations

20

DETAILS: STATISTICAL MODEL CHECKING USING PVESTA

e Estimate expected value of expression of a path
e Simulate runs until desired level of confidence reached
e PVeStA: parallel simulations

e Requires fully probabilistic models
e rewrite model often nonderministic

e multiple rules applicable
e rule applicable to multiple objects

20

DETAILS: PERFORMANCE ESTIMATION USING SMC

Problem 1
Untimed models unsuitable for performance estimation

Problem 2
Nondeterministic models

21

DETAILS: PERFORMANCE ESTIMATION USING SMC

Problem 1
Untimed models unsuitable for performance estimation

Problem 2
Nondeterministic models

Solution:

e assume “actor’ models: actions triggered by messages

21

DETAILS: PERFORMANCE ESTIMATION USING SMC

Problem 1
Untimed models unsuitable for performance estimation

Problem 2
Nondeterministic models

Solution:

e assume “actor’ models: actions triggered by messages

e message delay sampled probabilistically from dense time
interval
e timel!

e prob(two actions enabled in same state) = 0

21

TRANSFORMING UNTIMED TO TIMED PROBABILISTIC

rl [receive-remote-request-prob]
msg request(X, TID, VTS) from RID’ to RID
< RID : Walter-Replica | datastore : DS >
=>
< RID : Walter-Replica | >
msg reply(TID, K, choose(VTS,DS[K])) from RID to RID’

22

TRANSFORMING UNTIMED TO TIMED PROBABILISTIC

crl [receive-remote-request-prob]
{T, msg request(X, TID, VTS) from RID’ to RID}
< RID : Walter-Replica | datastore : DS >
=>
< RID : Walter-Replica | >
[D, msg reply(TID, K, choose(VTS, DS[K])) from RID to RID’]
if D := distr(...) .

23

ANALYZING PERFORMANCE METRICS

e Add (timed) monitor

e Define metric on log (in final states)

op throughput : Configuration -> Float .

eq throughput (REST < M : Monitor | log : LOG >)

= committedNumber (LOG) / totalRunTime(LOG) .

e Run PVESTA to estimate (expected) value of measure with
given confidence levels

24

MAUDE APPLICATIONS

MODELING, ANALYZING, AND EXTENDING MEGASTORE

WITH JON GROV

Megastore:

e Google's wide-area replicated data store

e 3 billion write and 20 billion read transactions daily (2011)

bs
| é_‘/ -
GmMail Googler ... Google

9
by Google _a App Engine

25

MEGASTORE: KEY IDEAS (1)

MegaStore :

*ACID transactions B IgToble GoogleFS
*Indexes, queues *200 MB tablets
*Log replicafion *BMDiff, Zippy
(Paxos in use again) *Fields

*uses Chubby(paxos based)
*to appoint a master server

*Schemas *Chubby(paxos based) again
*Entitiy groups *to elect a master
*to allow the master to slaves
*to permit clients to find the master

(Figure from http://cse708.blogspot.jp/2011/03/megastore-providing-scalable-highly.html)

e Data divided into entity groups
e Peter's email
e Books on formal methods

e Consistency for transactions accessing a single entity group

26

http://cse708.blogspot.jp/2011/03/megastore-providing-scalable-highly.html

OUR WORK

e [Developed and] formalized [our version of the] Megastore
[approach] in Maude

e first (public) formalization/detailed description of Megastore

27

OUR WORK

e [Developed and] formalized [our version of the] Megastore
[approach] in Maude

e first (public) formalization/detailed description of Megastore

e 56 rewrite rules (37 for fault tolerance features)

27

PERFORMANCE ESTIMATION

e Key performance measures:

e average transaction latency
e number of committed/aborted transactions

28

PERFORMANCE ESTIMATION

e Key performance measures:

e average transaction latency
e number of committed/aborted transactions

e Randomly generated transactions (2.5 TPS)

e Network delays:

30% | 30% | 30% | 10%
Madrid <> Paris 10 15 20 50
Madrid +» New York 30 35 40 100
Paris <+ New York 30 35 40 100

28

PERFORMANCE ESTIMATION

Key performance measures:

e average transaction latency
e number of committed/aborted transactions

Randomly generated transactions (2.5 TPS)

Network delays:

30% | 30% | 30% | 10%
Madrid <> Paris 10 15 20 50
Madrid +» New York 30 35 40 100
Paris <+ New York 30 35 40 100

Simulating for 200 seconds:

°
Avg. latency (ms) | Commits | Aborts

Madrid 218 109 38

New York 336 129 16

Paris 331 116 21

28

Megastore-CGC: extending Megastore

29

MOTIVATION

e Some transactions must access multiple entity groups

30

MOTIVATION

e Some transactions must access multiple entity groups

e Our work: Megastore + consistency for transactions accessing
multiple entity groups

30

MOTIVATION

e Some transactions must access multiple entity groups

e Our work: Megastore + consistency for transactions accessing
multiple entity groups

30

PERFORMANCE COMPARISON USING REAL-TIME MAUDE

e Simulating for 1000 seconds (no failures)

e Megastore:

‘ Commits | Aborts | Avg. latency (ms) ‘
Madrid 652 152 126
Paris 704 100 118
New York 640 172 151

e Megastore-CGC:

‘ Commits | Aborts | Val. aborts | Avg.latency (ms)
Madrid 660 144 0 123
Paris 674 115 15 118
New York 631 171 10 150

31

CASE STUDY II: APACHE CASSANDRA

cassandra

Work by Si Liu, Muntasir Raihan Rahman, Stephen Skeirik,

Indranil Gupta, José Meseguer, Son Nguyen, Jatin Ganhotra
(ICFEM'14, QEST'15)

32

APACHE CASSANDRA

e Key-value data store originally developed at Facebook

e Used by Amadeus, Apple, CERN, IBM, Netflix,
Facebook/Instagram, Twitter, ...

e Open source

33

MOTIVATION

1. Formal model from 345K LOC

e experiment with different optimizations/variations
2. Analyze consistency properties
3. Performance evaluation:

e compare PVeStA analyses with real implementations

34

PERFORMANCE ESTIMATION

Formal model + PVeStA Vs. actual implementation
Performance: Strong Consistency

"
"

=
H
e

I
=
14

—+—QUORUM —S—ALL
=4#=0QUORUM - ALL

2
¥

Prob. of satisfying Strong Consistency
@
Prob. of satisfying Strong Consistency

@
o

o 0.5 1 15 2 25 3 35 4 45 os 1 1s 2 25 3 35 “
Issuing latency (time unit) Issuing latency (time unit)
Statistical Model Checker Real-deployed cluster

o

* (X axis =) Issuing Latency = time difference between the given read request
and the latest write request
+ (Y axis =) Probability of a request satisfying that model

85

P-STORE waot1g

P—Store [N. Schiper, P. Sutra, and F. Pedone; IEEE SRDS'10]

e Replicated and partitioned data store
e Serializability

e Atomic multicast orders concurrent transactions

36

ANALYZING P-STORE

Find all reachable final states from init3:

Maude> (search init3 =>! C:Configuration

Solution 1

C:Configuration --> ...

< cl : Client | pendingTrans : tl, txns :

< ¢2 : Client | pendingTrans : t2, txns

< rl : PStoreReplica | aborted : none,
committed : < t1

< r2 : PStoreReplica | aborted : none,

committed : < t2 :

e sites validate transactions
e but client never gets result

o)

emptyTransList >
emptyTransList >

: Transaction |

Transaction |

37

ANALYZING P-STORE (CONT.)

Solution 5
< rl : PStoreReplica | aborted : none, committed : none,
submitted : < t1 : Tramsaction | ... >,

< r2 : PStoreReplica | aborted : none,

committed : < t2 : Tramsaction| ... >

e Host does not validate t1 even when needed info known

38

P-STORE SUMMARY

Algorithm A,
A Genuine Certification Protocol - Code of site s

1: Initialization

2: Votes « 0

3: function ApplyUpdates(1)

4: foreach V(k,v) € T.up : k € Items(s) do

5: let ts be Version(k,s)

6: wrlk,v,ts + 1] {write to the database}

7: function Certify(T)

8: return V(k, ts) € T.rs s.t. k € Items(s) : ts = Version(k, s)

9: To submit transaction T° {Task 1}

10: A-MCast(T) to Replicas(T) {Executing — Submitted} oo

e “P-Store verified”
11: When receive(VOTE, T'id, vote) from s’ {Task 2}
12: Votes « Votes U (T.id, s', vote) .
e 3 significant errors found

13: When A-Deliver(T) {Task 3}

14: if T is local then f . d f .
15: if Certify(T) then

e arlsUpaatesl) e one confusing definition
17: commit T' {Subminefi — Committed}

5 ae T {Submited = Aborted) e key assumption missing
20: if 3(k, -) € T.rs : k € Items(s) then

21: Votes + Votes U (T.id, s, Centify(T))

22: send(VOTE, T'.id, Certify(T")) to all s’ in WReplicas(T) s.t.

s’ ¢ group(s)
23 if s € WReplicas(T) then
24: wait until 3VQ € VQ(T) :
Vs’ € VQ: (T.id,s’, -) € Votes

25: if Vs' € VQ: (T.id,s’,yes) € Votes then

26: ApplyUpdates(T)

27: commit T' {Submitted — Committed}

28: else abort T° {Submitted — Aborted}

29: ifse WReplm(T) then send T”’s outcome to Prozy(T)

Algorithm A,
A Genume Cemﬁcauon Protocol - Code of site s

39

ROLA: UPDATE ATOMIC TRANSACTIONS fase1s

40

REMEMBER CONSISTENCY MODELS
[CERONE, BERNARDI, GOTSMAN; CONCUR’15]

RA
CC

Read Atomic [6]
Causal

consistency [19, 12]

PSI

Parallel snapshot
isolation [24, 21]

PC

Prefix consistency [13]

SI

Snapshot isolation [8]

SER

Serialisability [20]

RA
M
CC
PC PSI
SI
M
SER

41

NEW CONSISTENCY MODEL

read atomic + no lost updates + causal consistency

42

NEW CONSISTENCY MODEL

read atomic + no lost updates + causal consistency

read atomic + no lost updates

42

ROLA

ROLA: new distributed transactions providing UA (= RA + NLU)

e faster than other designs providing RA+NLU?
o Walter (PSI)

43

PERFORMANCE COMPARISON: AVERAGE LATENCY

Avg. Latency (103 time unit)

Avg. Latency (103 time unit)

Workload on 25 Partitions with Uniform Distribution

Workload on 25 Partitions with 90% Read-only Txns

16 T T T T T T T T T 14 T T T
w0 3 ROLA(s0keys) +=| & = a a
ROLA (100 keys) ¢ F
i ROLA (200keys) B | E 1 [
(10 AT Walter (50 keys) 2 g -
8 \ Walter (100 keys) =4~ - = - —————
s Walter (200 keys) 5 | £ 0.6 [g e
. O § 04
2 02 ROLA (uniform) =+ Walter (uniform) &~ _|
2 R | ROLAiph % Walter (zip) <
0 0
0 50 100 150 200
Percentage of Read-only Txns Number of Keys
Workload on 100 Keys with Zipf Distribution Workload on 100 Keys with Uniform Distribution
1.4 T T T T T T T — T T T T
a6 e — z 12 \ ROLA (10 par) —+
: H\;\\A S ROLA (30 par) %
1 £ ROLA (50 par) £+
o~ > 8 Walter (10 par) -
08 = S
\ s ol Walter (30 par) ==
06 [i i & ~g g
M S ¥ s Walter (50 par) “¥~
04 5 4
[_LROLA (10 par) =+ ROLA (50 par) B+ Walter (30 par) =4 _| I 4
02 2 2
ROLA (30 par) %=~ Walter (10 par) Walter (50 par) > < ﬁ i - i . # 2
0
10 20 30 40 50 60 70 8 90 100 0 10 20 30 40 50 60 70 80 90 100

Percentage of Read-only Txns

Percentage of Read-only Txns

OTHER DATA STORES

e RAMP (UC Berkeley), Jessy (NMSI), Walter (PSI)
e Extensive performance estimation using PVeStA

e same trends as original simulations
e casy to explore many more scenarios

45

GENERALIZING

GENERALIZING FROM CASE STUDIES

CAT tool

Maude framework for specifying DTSs
automatically adds monitoring mechanism

9 consistency properties formalized

generates all initial states up to given bounds

model checks properties

46

GENERALIZING FROM CASE STUDIES

CAT tool

e Maude framework for specifying DTSs

e automatically adds monitoring mechanism

e O consistency properties formalized

e generates all initial states up to given bounds

e model checks properties

TACAS'19 talk!

46

CAT ANALYSIS RESULTS

DTS Models model checked

° expected

violations found

Maude Model

Consistency Property

Y
@]

Y
>

(@)
wn

UA

NMSI

PSI

n

SER

SSER

RAMP-F

X

RAMP-F+4+1PW

RAMP-F+FC

RAMP-F-2PC

RAMP-S

RAMP-S+1PW

RAMP-S-2PC

Faster

ROLA

Jessy

Walter

P-Store

NS X

NO_WAIT

SNENENENENENENENENENENENEN

NEN RN RN RN N I ESENPIENENEN

NSNS X[XXX [X]X]X]|X

NSNS X[XXX [X][X]X]|X

NI X[XX X[X[X[X[X][X]|X]|X

NN X[XX X[X[X[X[X]X]|X]|X

X|IX[X[X[X[X]|X[X[X][X]|X]|X

47

SUMMARY

SUMMARY

e Developed Maude models of large industrial data stores
e Google's Megastore (from brief description)
e Apache Cassandra (from 345K LOC)
e P-Store and RAMP (academic)

48

SUMMARY

e Developed Maude models of large industrial data stores

e Google's Megastore (from brief description)
e Apache Cassandra (from 345K LOC)
e P-Store and RAMP (academic)

e Designed own transactional data stores

e Megastore-CGC
e variation of Cassandra
e ROLA

48

SUMMARY

e Developed Maude models of large industrial data stores
e Google's Megastore (from brief description)
e Apache Cassandra (from 345K LOC)
e P-Store and RAMP (academic)

e Designed own transactional data stores

e Megastore-CGC
e variation of Cassandra
e ROLA

e Automatic model checking analysis of consistency properties

48

SUMMARY

Developed Maude models of large industrial data stores

e Google's Megastore (from brief description)
e Apache Cassandra (from 345K LOC)
e P-Store and RAMP (academic)

Designed own transactional data stores

e Megastore-CGC
e variation of Cassandra
e ROLA

Automatic model checking analysis of consistency properties

Maude/PVeStA performance estimation close to real
implementations

e “trends’ /“curves” similar to implementations/simulations

48

	Consistency -3mu Latency
	Formal Methods for Cloud Storage Systems
	Maude for Cloud Storage Systems
	Maude Applications
	Generalizing
	Summary

