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e Data should always be available
— data replicated
e Large and growing data
e Facebook (2014): 300 petabytes data; 350M photos uploaded
per day
— data partitioned




REPLICATED SYSTEMS

Figure by Jiaqing Du
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EVENTUAL CONSISTENCY

e Weak consistency OK for some applications
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EVENTUAL CONSISTENCY

e Weak consistency OK for some applications

e ... but not others:

s AN © @

@ Expedia

Electronic patient registry Electronic medical records



SOME CONSISTENCY MODELS
[CERONE, BERNARDI, GOTSMAN; CONCUR’15]

RA | Read Atomic [6] RA

CC Causal N
consistency [19, 12] CC

PSI Parallel snapshot s
isolation [24, 21] PC PSI

PC Prefix consistency [13] S

SI Snapshot isolation [8] E‘r’_\]I

SER | Serialisability [20] SER




SNAPSHOT ISOLATION

Snapshot isolation: All see consistent data

e If Donald see Benny's post before Kim's post

e then Vlad must also see Benny's post first
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SNAPSHOT ISOLATION

Snapshot isolation: All see consistent data

e If Donald see Benny's post before Kim's post

e then Vlad must also see Benny's post first
e Benny and Kim must coordinate

e Post cannot commit unless global order ensured



WEAKER CONSISTENCY: PSI/NMSI

Benny and Kim can commit independent posts concurrently

| The GENQOCIDE IN WEST PAPUA CARRIED OUT BY INDONESIAN FORCES
AND THAT'S GOING ON WITH THE BLESSING OF THE UN AND WESTERN
NATIONS. SINGE 1969 500,000 PLUS DEAD.

@ Gary Juffa - Political Agitator for the Indigenous @hunjara - Apr 3

Mike Cernovich @ @Cernovich
I'm feeling the vibe of doing short films into subjects the media won't cover.

What's a subject you'd like to see get a 20-25 minute short film on?

Show this thread

Q 1 8 Q 1 &

Peace for West Papua @WestPapuaPeace - 19h

oo Free West Papua Global Day of Action on april 5th 2019 is an undemocratic
action against General Elections in Indonesia.
Please avoid this evil campaign!



CAUSAL CONSISTENCY

Vlad sees reply to Kim's post = Vlad must also see Kim's post

11 #FreeAssange! (tweets by campaign) : Retweeted

Brian Klaas @ @brianklaas - 54m
They murdered his Dad, dismembered his body, orchestrated a cover-up, lied

about the murder, then lied about the cover-up...and now are forcing
Khashoggi's son, who is a captive in his own country, to participate in a photo-
op shaking hands with the prince who murdered his Dad.

-~ Tom Gara & @tomgara

Spare a thought for Khashoggi's son, banned from leaving
Saudi Arabia, who had to go and do this today
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FORMAL METHODS FOR CLOUD
STORAGE SYSTEMS



FORMAL METHODS CHALLENGES

e Large and complex distributed systems
e Complex properties

e Correctness and performance critical
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OUR FRAMEWORK: REWRITING LOGIC AND MAUDE

o Modeling: Rewriting logic
e equational specification defines data types
e rewrite rules define transitions
e OO spec: state multiset of messages and
objects < o : Cl | atty: valy, ... attp: val, >
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OUR FRAMEWORK: REWRITING LOGIC AND MAUDE

o Modeling: Rewriting logic

e equational specification defines data types

e rewrite rules define transitions

e OO spec: state multiset of messages and

objects < o : Cl | atty: valy, ... attp: val, >

e Correctness analysis: Maude

e simulation, search, LTL model checking
e Performance estimation: PVeStA

e parallel statistical model checker
e estimate expected value of expression

11



MAUDE FOR CLOUD STORAGE
SYSTEMS



MODELING

e object-based

e untimed
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MODELING

e object-based

e untimed

rl [commit-read-only-txn]
< RID : Walter-Replica | committed : TRANSES’,
executing : TRANSES
< TID:Walter-Txn | operations :nil, writeSet :empty, readSet:RS > >
=>
< RID : Walter-Replica | committed : (TRANSES’ < TID : Walter-Txn | >),
executing : TRANSES > .

12



CORRECTNESS ANALYSIS

o Add “history log” to state

e records history of execution
e consistency properties defined on “history”
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CORRECTNESS ANALYSIS

e Add “history log” to state

e records history of execution
e consistency properties defined on “history”

e Model checking

e single initial states
e all initial states with certain parameters

13



DETAILS: CORRECTNESS ANALYSIS

e Add monitor object
< M : Monitor | clock : Nat, log : Log >

e clock counter to order events globally
e Log:

idixn V> < proxy, issueTime, finishTime, committed, reads, writes >

Rules transformed by adding & updating Monitor

14



ADDING HISTORIES Il

rl [commit-read-only-txn]

< RID : Walter-Replica | committed : TRANSES’,
executing : TRANSES

< TID: Walter-Txn | operations:nil, writeSet : empty, readSet:RS > >

< RID : Walter-Replica | committed : (TRANSES’ < TID : Walter-Txn | >),
executing : TRANSES > .

ii5)



ADDING HISTORIES Il

Example (Transaction Commit Identified)

rl [commit-read-only-txn]
< M : Monitor | clock : C, log : LOG,
(TID |-> < RID, T, VTS, FLAG, READS, WRITES)) >
< RID : Walter-Replica | committed : TRANSES’,
executing : TRANSES
< TID:Walter-Txn | operations:nil, writeSet :empty, readSet:RS > >
=>
< M : Monitor | clock : C + 1, log : LOG,
(TID |-> < RID, T, insert(RID,C,VTS), true, RS, empty >)
< RID : Walter-Replica | committed : (TRANSES’ < TID : Walter-Txn | >),
executing : TRANSES > .

16



DEFINING PROPERTIES

Consistency properties defined on logs in final states

Read Committed
e no aborted data (1st equation)

e no intermediate data (2nd equation)

op rc : Log -> Bool .
eq rc(TID1 |-> <0, T, VT, true, ( <X,V> ,RS), WS>,
TID2 |-> <0’,T’,VT’, false,RS’, ( <X,V> ,WS’) >, LOG) = false.
eq rc(TID1 |-> <0, T, VT, true, ( <X,V> ,RS), WS>,
TID2 |-> <0’,T’,VT’, true,RS’, ( <X,V> ,<X,V’>,WS’) >,
LOG) = false if V < V?’
eq rc(LOG) = true [owise]
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ANALYZING PROPERTIES

Search for bad final state:

search [1] init < m : Monitor | log : empty, clock : 1 >
=>1
C:Configuration < m : Monitor | log : LOG >
such that not rc(LOG)

18



PERFORMANCE ANALYSIS WITH MAUDE

1. (Randomized) simulations
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PERFORMANCE ANALYSIS WITH MAUDE

1. (Randomized) simulations
2. Probabilistic analysis (using PVeStA)

e statistical model checking

19



DETAILS: STATISTICAL MODEL CHECKING USING PVESTA

e Estimate expected value of expression of a path
e Simulate runs until desired level of confidence reached
e PVeStA: parallel simulations
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DETAILS: STATISTICAL MODEL CHECKING USING PVESTA

e Estimate expected value of expression of a path
e Simulate runs until desired level of confidence reached
e PVeStA: parallel simulations

e Requires fully probabilistic models
e rewrite model often nonderministic

e multiple rules applicable
e rule applicable to multiple objects
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DETAILS: PERFORMANCE ESTIMATION USING SMC

Problem 1
Untimed models unsuitable for performance estimation

Problem 2
Nondeterministic models
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DETAILS: PERFORMANCE ESTIMATION USING SMC

Problem 1
Untimed models unsuitable for performance estimation

Problem 2
Nondeterministic models

Solution:

e assume “actor’ models: actions triggered by messages

e message delay sampled probabilistically from dense time
interval
e timel!

e prob(two actions enabled in same state) = 0

21



TRANSFORMING UNTIMED TO TIMED PROBABILISTIC

rl [receive-remote-request-prob]
msg request(X, TID, VTS) from RID’ to RID
< RID : Walter-Replica | datastore : DS >
=>
< RID : Walter-Replica | >
msg reply(TID, K, choose(VTS,DS[K])) from RID to RID’

22



TRANSFORMING UNTIMED TO TIMED PROBABILISTIC

crl [receive-remote-request-prob]
{T, msg request(X, TID, VTS) from RID’ to RID}
< RID : Walter-Replica | datastore : DS >
=>
< RID : Walter-Replica | >
[D, msg reply(TID, K, choose(VTS, DS[K])) from RID to RID’]
if D := distr(...) .

23



ANALYZING PERFORMANCE METRICS

e Add (timed) monitor

e Define metric on log (in final states)

op throughput : Configuration -> Float .

eq throughput (REST < M : Monitor | log : LOG >)

= committedNumber (LOG) / totalRunTime(LOG) .

e Run PVESTA to estimate (expected) value of measure with
given confidence levels

24



MAUDE APPLICATIONS



MODELING, ANALYZING, AND EXTENDING MEGASTORE

WITH JON GROV

Megastore:

e Google's wide-area replicated data store

e 3 billion write and 20 billion read transactions daily (2011)

bs
| é_‘/ -
GmMail Googler ... Google

9
by Google _a App Engine

25



MEGASTORE: KEY IDEAS (1)

MegaStore :

*ACID transactions B IgToble GoogleFS
*Indexes, queues *200 MB tablets
*Log replicafion *BMDiff, Zippy
(Paxos in use again) *Fields

*uses Chubby(paxos based)
*to appoint a master server

*Schemas *Chubby(paxos based) again
*Entitiy groups *to elect a master
*to allow the master to slaves
*to permit clients to find the master

(Figure from http://cse708.blogspot.jp/2011/03/megastore-providing-scalable-highly.html)

e Data divided into entity groups
e Peter's email
e Books on formal methods

e Consistency for transactions accessing a single entity group

26


http://cse708.blogspot.jp/2011/03/megastore-providing-scalable-highly.html

OUR WORK

e [Developed and] formalized [our version of the] Megastore
[approach] in Maude

e first (public) formalization/detailed description of Megastore
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OUR WORK

e [Developed and] formalized [our version of the] Megastore
[approach] in Maude

e first (public) formalization/detailed description of Megastore

e 56 rewrite rules (37 for fault tolerance features)
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PERFORMANCE ESTIMATION

e Key performance measures:

e average transaction latency
e number of committed/aborted transactions
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e Key performance measures:

e average transaction latency
e number of committed/aborted transactions

e Randomly generated transactions (2.5 TPS)

e Network delays:
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PERFORMANCE ESTIMATION

Key performance measures:

e average transaction latency
e number of committed/aborted transactions

Randomly generated transactions (2.5 TPS)

Network delays:

30% | 30% | 30% | 10%
Madrid <> Paris 10 15 20 50
Madrid +» New York 30 35 40 100
Paris <+ New York 30 35 40 100

Simulating for 200 seconds:

°
Avg. latency (ms) | Commits | Aborts

Madrid 218 109 38

New York 336 129 16

Paris 331 116 21

28



Megastore-CGC: extending Megastore

29



MOTIVATION

e Some transactions must access multiple entity groups
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MOTIVATION

e Some transactions must access multiple entity groups

e Our work: Megastore + consistency for transactions accessing
multiple entity groups
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MOTIVATION

e Some transactions must access multiple entity groups

e Our work: Megastore + consistency for transactions accessing
multiple entity groups
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PERFORMANCE COMPARISON USING REAL-TIME MAUDE

e Simulating for 1000 seconds (no failures)

e Megastore:

‘ Commits | Aborts | Avg. latency (ms) ‘
Madrid 652 152 126
Paris 704 100 118
New York 640 172 151

e Megastore-CGC:

‘ Commits | Aborts | Val. aborts | Avg.latency (ms)
Madrid 660 144 0 123
Paris 674 115 15 118
New York 631 171 10 150

31



CASE STUDY II: APACHE CASSANDRA

cassandra

Work by Si Liu, Muntasir Raihan Rahman, Stephen Skeirik,

Indranil Gupta, José Meseguer, Son Nguyen, Jatin Ganhotra
(ICFEM'14, QEST'15)

32



APACHE CASSANDRA

e Key-value data store originally developed at Facebook

e Used by Amadeus, Apple, CERN, IBM, Netflix,
Facebook/Instagram, Twitter, ...

e Open source

33



MOTIVATION

1. Formal model from 345K LOC

e experiment with different optimizations/variations
2. Analyze consistency properties
3. Performance evaluation:

e compare PVeStA analyses with real implementations

34



PERFORMANCE ESTIMATION

Formal model + PVeStA Vs. actual implementation
Performance: Strong Consistency

"
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Prob. of satisfying Strong Consistency
@
Prob. of satisfying Strong Consistency

@
o

o 0.5 1 15 2 25 3 35 4 45 os 1 1s 2 25 3 35 “
Issuing latency (time unit) Issuing latency (time unit)
Statistical Model Checker Real-deployed cluster

o

* (X axis =) Issuing Latency = time difference between the given read request
and the latest write request
+ (Y axis =) Probability of a request satisfying that model

85



P-STORE waot1g

P—Store [N. Schiper, P. Sutra, and F. Pedone; IEEE SRDS'10]

e Replicated and partitioned data store
e Serializability

e Atomic multicast orders concurrent transactions

36



ANALYZING P-STORE

Find all reachable final states from init3:

Maude> (search init3 =>! C:Configuration

Solution 1

C:Configuration --> ...

< cl : Client | pendingTrans : tl, txns :

< ¢2 : Client | pendingTrans : t2, txns

< rl : PStoreReplica | aborted : none,
committed : < t1

< r2 : PStoreReplica | aborted : none,

committed : < t2 :

e sites validate transactions
e but client never gets result

o)

emptyTransList >
emptyTransList >

: Transaction |

Transaction |

37



ANALYZING P-STORE (CONT.)

Solution 5
< rl : PStoreReplica | aborted : none, committed : none,
submitted : < t1 : Tramsaction | ... >,

< r2 : PStoreReplica | aborted : none,

committed : < t2 : Tramsaction| ... >

e Host does not validate t1 even when needed info known

38



P-STORE SUMMARY

Algorithm A,
A Genuine Certification Protocol - Code of site s

1: Initialization

2:  Votes « 0

3: function ApplyUpdates(1)

4:  foreach V(k,v) € T.up : k € Items(s) do

5: let ts be Version(k,s)

6: wrlk,v,ts + 1] {write to the database}

7: function Certify(T)

8: return V(k, ts) € T.rs s.t. k € Items(s) : ts = Version(k, s)

9: To submit transaction T° {Task 1}

10:  A-MCast(T) to Replicas(T) {Executing — Submitted} oo

e “P-Store verified”
11: When receive(VOTE, T'id, vote) from s’ {Task 2}
12:  Votes « Votes U (T.id, s', vote) .
e 3 significant errors found

13: When A-Deliver(T) {Task 3}

14:  if T is local then f . d f .
15: if Certify(T) then

e arlsUpaatesl) e one confusing definition
17: commit T' {Subminefi — Committed}

5 ae T {Submited = Aborted) e key assumption missing
20: if 3(k, -) € T.rs : k € Items(s) then

21: Votes + Votes U (T.id, s, Centify(T))

22: send(VOTE, T'.id, Certify(T")) to all s’ in WReplicas(T) s.t.

s’ ¢ group(s)
23 if s € WReplicas(T) then
24: wait until 3VQ € VQ(T) :
Vs’ € VQ: (T.id,s’, -) € Votes

25: if Vs' € VQ: (T.id,s’,yes) € Votes then

26: ApplyUpdates(T)

27: commit T' {Submitted — Committed}

28: else abort T° {Submitted — Aborted}

29: ifse WReplm(T) then send T”’s outcome to Prozy(T)

Algorithm A,
A Genume Cemﬁcauon Protocol - Code of site s

39



ROLA: UPDATE ATOMIC TRANSACTIONS fase1s

40



REMEMBER CONSISTENCY MODELS
[CERONE, BERNARDI, GOTSMAN; CONCUR’15]

RA
CC

Read Atomic [6]
Causal

consistency [19, 12]

PSI

Parallel snapshot
isolation [24, 21]

PC

Prefix consistency [13]

SI

Snapshot isolation [8]

SER

Serialisability [20]

RA
M
CC
PC PSI
SI
M
SER

41



NEW CONSISTENCY MODEL

read atomic + no lost updates + causal consistency

42



NEW CONSISTENCY MODEL

read atomic + no lost updates + causal consistency

read atomic + no lost updates

42



ROLA

ROLA: new distributed transactions providing UA (= RA + NLU)

e faster than other designs providing RA+NLU?
o Walter (PSI)

43



PERFORMANCE COMPARISON: AVERAGE LATENCY

Avg. Latency (103 time unit)

Avg. Latency (103 time unit)

Workload on 25 Partitions with Uniform Distribution

Workload on 25 Partitions with 90% Read-only Txns
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OTHER DATA STORES

e RAMP (UC Berkeley), Jessy (NMSI), Walter (PSI)
e Extensive performance estimation using PVeStA

e same trends as original simulations
e casy to explore many more scenarios

45



GENERALIZING



GENERALIZING FROM CASE STUDIES

CAT tool

Maude framework for specifying DTSs
automatically adds monitoring mechanism

9 consistency properties formalized

generates all initial states up to given bounds

model checks properties
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GENERALIZING FROM CASE STUDIES

CAT tool

e Maude framework for specifying DTSs

e automatically adds monitoring mechanism

e O consistency properties formalized

e generates all initial states up to given bounds

e model checks properties

TACAS'19 talk!
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CAT ANALYSIS RESULTS

DTS Models model checked

° expected

violations found

Maude Model

Consistency Property
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Y
>

(@)
wn

UA

NMSI

PSI

n

SER
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X

RAMP-F+4+1PW

RAMP-F+FC

RAMP-F-2PC

RAMP-S

RAMP-S+1PW

RAMP-S-2PC

Faster

ROLA

Jessy

Walter

P-Store

NS X

NO_WAIT
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NEN RN RN RN N I ESENPIENENEN

NSNS X[ XXX [X]X]X]|X

NSNS X[ XXX [X][X]X]|X

NI X[ XX X[ X[ X[X[X][X]|X]|X

NN X[ XX X[ X[ X[X[X]X]|X]|X

X|IX[X[X[X[X]|X[X[X][X]|X]|X
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SUMMARY

Developed Maude models of large industrial data stores

e Google's Megastore (from brief description)
e Apache Cassandra (from 345K LOC)
e P-Store and RAMP (academic)

Designed own transactional data stores

e Megastore-CGC
e variation of Cassandra
e ROLA

Automatic model checking analysis of consistency properties

Maude/PVeStA performance estimation close to real
implementations

e “trends’ /“curves” similar to implementations/simulations

48
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