B
, J
\ " /

Divina |

*
: Antonio | S rRad
/ Houesd
>) C
t 4

Cacho Cristofani Producciones

g .

o -

—_———

LOgET "A ‘

-
———

1 e

-

e =
P A

Joint work with Hernan Melgratti & Christian Roldan

On the semantics of | ... o
o . University of Pisa
replicated data types

The quickest background, 1

* Distributed systems replicate their state over different nodes in
order to satisty non-functional requirements.

= Strong consistency (every request receives the most recent
update) of replicated data is in conflict with availability (every
request is eventually executed) and tolerance to network
partitions (the system operates even in the presence of failures
that temporarily prevent communication among components).

* CAP theorem: it is impossible to simultaneously achieve strong
Consistency, Availability and Partition tolerance [GL2002].

T'he quickest background, 11

* Weak consistency: replicas may (temporarily) exhibit
discrepancies (every request receives a correct update).

* How are the data specified? States, state transitions and
returned values should account for the different views
that a data item may simultaneously have.

* In the end, consistency has to be eventually guaranteed (if
no new updates are made to a data item, eventually all
accesses to that item will return the most recent update).

register r =

Are

gister

.
.
.
.
.
.
*
*
.
LR
. " " a
«* ., .
. .o
.
*
.
.
.
.
.
-
]
L]
L]
L]
]
‘I
"
-
-
.
.
.
.
.
.
.
.
.
.
N .
N .
., . *
" aagwnsr *
.
.
.
.
.
-
L]

L e e —

]

.

" a g agasn®

]

register r =

Are

gister

" .
"N .

]
LR

.*
.
.
.
.
.
.
.
G
.
.
.
.
.
.
. "
"
.
.
.
.
.
.
.
.
.
.
.
.
‘e
.

L e e —

]

.

" a g agasn®

]

A register

LI A]
. " "

registerr =

wr(l) 7

.

-
-
.
.
_0 .
r_ L]
4 L]
L]
L2
L2
L4
e .
.
.
-
-
-
.
.
.
L]
L]
L2
-
*
*
*
*
*
*

e

A register

registerr = :

TR

. L
. * LIS *
. LR

wr(1) |

.

ans®

e ==

A register

registerr =7

. " "N

wr(1)

.
L] .

—_—
’) 3
’) 3
!

|

|

’

""""
(Y A

] .
L]
.......

‘‘‘‘

] .
......
" momnw

-
.

A register

registerr =7

. " "N

wr(1)

.
L] .

—_—
’) 3
’) 3
!

|

|

’

""""
(Y A

] .
L]
.......

‘‘‘‘

] .
......
" momnw

-
.

A register

registerr="7 e

.......

wr(1)

\ R2 r=1

rd —

The result depends on™. |
the visible operations - RS g

b .
., .
LI B

A register

registerr =7 L y

3
.............

wr(l) ot BT

] .
L]
.......

registerr="7

wr(1)

A register

""""
(Y A

. " "N

‘‘‘‘

] .
......
LR)

registerr="7

wr(1)

A register

""""
(Y A

. " "N

‘‘‘‘

] .
......
LR)

registerr="7

wr(1)

A register

""""
(Y A

. " "N

‘‘‘‘

] .
......
LR)

A register

register r = ? ...l he result depends
e 0N the-relative order
~— of visible operations

Rl r=1

wr(1)
—

r=0 R4

—_—

.
LI .t

Replicated Data Types

op : VIS x ARB - RVAL
+ VISibility: A partial order of operations over a replica
+ ARBitration: A total order of such operations

+ Return VALue: The value returned by the last operation

[BURCKHARDT, GOTSMAN,YANG, ZAWIRSKI 2015]

A register

* Two operations

> I'd(_,_) =7
« wrik)(— - ok

A register

CRC LI

* . .
...........
........

* Two operations

o rd(_’_) = ? G
» wrk)(_,_) = ok o
G | e e

wIr

1)

VISibility

wr(2)”

A register

......
. "

CRC LI

TR

. ..

. .

wr(1) wr(2)

VISibility

(Y
~—r

N
N

N
H

e i N

N
~—

ARBitration

A register

......
. "

CRC LI

TR

. ..

. .

register

......
. "

rd -

CRC LI

TR

. ..

. .

rd

wr(1)

wr(2)

wr(1)
| =2
wr(2)

A register

......
. "

rd -

CRC LI

TR

. ..

. .

wr(1)
rd| wr(1) wr(2) | =2
wr(2)
wr(2)
rd | wr(1) wr(2) | =1
wr(1)
T — ——

A register

......
. "

rd -

CRC LI

TR

. ..

. .

A register

e\ e
rd| wr(1) wr(2) | =2
wr(2)

wr(2)
rd | wr(1) wr(2) | =1

|
|

Last-write-wins

Understanding RD'T's

* Implementing RTDs means to provide a communication mechanism
among replicas, to ensure its compatibility wrt. the behaviour of the
operations and to guarantee that some global properties (e.g. eventual
convergence of replicas) are preserved.

< But first...

« Is it possible to get a traditional presentation of RTDs?
 Is there any implicit assumption on the arbitrations?

« Are RDTs compositional? I.e., are arbitrations of larger visibility
orders explained in terms of smaller ones?

Internalising values

(wr(1),0k) (wr(2),0k)

T ————

Internalising values

<Wr(1), ok)

rd

\

(

(wr(2),0k)

wr(l) wr(2)

E—

wr‘(l) \

wr(2) /

0 —

=2

‘

Internalising values

rd

<Wr(1), ok)

(

(wr(2),0k)

wr(l) wr(2)

E—

wr‘(l) \

wr(2) /

Internalising values

[wr(1)
rd | wr(1) wr(2) ‘ =2
\ wr(2))
(wr(1),0k)
(wr(1),0k) (wr(2),0k) |
S \ / =< (wr(2),0k)
(rd,2) |
(rd,2)

A specification goes
from configurations
to sets of arbitrations

(

\

Internalising values

wr(
rd | wr(1) wr(2) ‘ =2
wr(

1)) (
rd | wr(1) wr(2)

2)/

L —

|

S L —

N/

(rd,0)

(wr(1),0k) (wr(2),0k))

A specification goes
from configurations
to sets of arbitrations

Recovering RD'T's: saturation

[wr(1)
rd | wr(1) wr(2) ‘ =2
\ wr(2))
(wr(1),0k)
(wr(1),0k) (wr(2),0k) |
S N ={ (wr(2),0k)
(rd,2) |
(rd,2)

A specification goes
from configurations
to sets of arbitrations

Recovering RD'T's: saturation

(1))

wr(
rd | wr(1) wr(2) ‘ =2
wr(

\ 2))

(wr(1),0k) (wr(1),0k) (rd,2)
(wr(1),0k) (wr(2),0k)) | | |
N/ —{ (@r(2),0k) (rd,2) (wr(1),0k

(rd,?2)) | | |
(rd,2) (wr(2),0k) (wr(2),ok)

A specification goes
from configurations
to sets of arbitrations

Recovering RD'T's: determinism

N/

(wr(1),0k
S \ /
(rd,1) J

rd2

r(2), 0k)) ((wr(1),0k) (wr(2),0k))
s

R — R R — EEEEE——

Recovering RD'T's: determinism

N/
(rd,1) J

rd2

(wr(1),0k) (wr(2),ok) (wr(1),0k) (wr(2),0k))
S \ / S

R —

E——

value-deterministic: empty intersection (after removing the last event)

Recovering RD'T's: determinism

N/
(rd,1) J

rd2

(wr(1),0k) (wr(2),ok) (wr(1),0k) (wr(2),0k))
S \ / S

R —

E——

value-deterministic: empty intersection (after removing the last event)

deterministic: empty intersection even forgetting the value component

Recovering RD'T's: determinism

(wr(1),0k) (wr(2),o0k) (wr(1),0k) (wr(2),o0k))
S \ / S N/
(rd,2) (rd,1) J

T —

e E——

value-deterministic: empty intersection (after removing the last event)

deterministic: empty intersection even forgetting the value component

RTDs have chosen the
second path, thus e.g.
forbidding write failures

Recovering RDT's: coherence

or(1). 0
or(2).9
(rd,2)

(wr(2), ok)

X |
(wr(3), ok)

r

(wr(1),ok)

<wr<1|>,ok> ‘

(wr(2), ok)

(wr(3), ok) |
(rd,2) |

B ——

Recovering RDT's: coherence

or(1).0
or(2).9
(rd,2)

(wr(2), ok)

X |
(wr(3), ok)

r

(wr(1),ok)

(Wr(ll), ok)

(wr(2), ok)

(wr(3), ok)
(rd, 2)

\

/

Recovering RDT's: coherence

or(1). 0
or(2).9
(rd,2)

| er(t)ok) - (wr(1),ok) ‘
(wr(2),0k) (wr(2),0k) (wr(2),ok)
%Y | = | | >
(wr(3),0k) (rd|,2) (Wr(3|),ok)
\ (wr(3),0k) (rd,2)
V6. S(G) = X S(G|__-)

eckg

Admissible arbitrations
never increases when
extending the visibility

Recovering RD'T's: the theorem

+ There is a one-to-one correspondence between RTDs and
saturated, deterministic, and coherent specifications

Recovering RD'T's: the theorem

+ There is a one-to-one correspondence between RTDs and
saturated, deterministic, and coherent specifications

....which is bad for RDTs

Recovering RD'T's: the theorem

+ There is a one-to-one correspondence between RTDs and
saturated, deterministic, and coherent specifications

....which is bad for RDTs

both saturation and determinism are bad!!

Recovering RD'T's: the theorem

+ There is a one-to-one correspondence between RTDs and
saturated, deterministic, and coherent specifications

....which is bad for RDTs

both saturation and determinism are bad!!

((inc, ok)) r (inc,ok) \ ((inc,fail)) ((inc,fail) \
C3 I (8 S B T ’ = ¢

(rd, 1) (rd, L) (rd, L)

\ / \ /

value-deterministic, yet not deterministic

From specifications to transition systems

(G,P) PeS(G)

states

From specifications to transition systems

<G, P> P e S(G) states

14
(G,P) = (G',P") transitions

From specifications to transition systems

(COMP)

4
(G1,Plg,) = (G1,Py) P'EP®P)

(Gy LIGy,P) 5 (G UGy, P')

an abstract transition system against which
to compare (by asynchronous simulation)
those of actual implementations...

Implementing a specification

“ Proposed implementation of RDTs [Burckhardt et al.].
« Each replica propagates its state to the other replicas.

» It is assumed that all replicas have the same behaviour.

counter c =

A counter

LI]

. "
«* ., .
. e

G
L] . *

L e e —

]

.

" a g agasn®

]

counterc=5

A counter

. " "N

Ri=1
Ry =1
R;=2
Rs =

.
. .

P
«®

Ri=1
Ry =1
R;=2
Rs =

.
LAV

LI
»
L]
L]

.
llll

.
.
P

Ri=1
Rz =
R;=2
Rs=1

]
L]
LI

LI I
L]
]

Ri =
R: =
R3;=2
Rs=1

.
.

counterc="7

. " "N

R;=2

.
L] .

P
«®

Ri=2
Ry =1
R;=2
Rs =

.
]

A counter

LI
»
L]
L]

‘‘‘‘

R —

R2 =
R3 =2 R4
Ris=1

A R-=1
R =

R;=2
R3 Ri=1

. .

LRI]

.

4
counterc =)

n=1

R;

A counter

. " "N

R;=2

.
L] .

""""
(Y A

Ri=2
Ry =1
R;=2
Rs =

L] .
L] -
......

‘‘‘‘

R —

R2 =
R3 =2 R4
Ris=1

A R-=1
R; =

R R;=2
3 | R=1

. .

LRI]

an LTS for a counter

L=Rx(R—N)
L ={(inc,o0k)} U ({rd} x N) |

(READ) (INC)

k = z"sed()m(v)v(s) inc,ok
r) — ¢ L
- xax,) (r,v) (ryv[r—v(r)+1])

an L.T'S for a counter

(SEND) (RCV)
(r,v) SR (r,v) 2N o v v)

Vs.max{v,vi}(s) =max{v(s),vi(s)}

the resulting LTS is correct wrt. the abstract LTS
(via a suitable simulation)

an LTS for multple counters

(SEND) (RCV)
send,(r,v) rcv, (rg, Vi)

(r,v) > (r,v) (r,v) ML (r,max{v, v}
(PARL) (COMM)

/

o1 — 0_/1 G send,O‘) 6,1) rc:v,()‘> 0_,2

/ T

61/lo2 = ooz c1/|o2 = oi/0;

the resulting LTS is still correct wrt. the abstract LTS

Conclusions & future works

Conclusions & future works

+ \We provided a denotationally-flavoured characterisation of
a well-accepted definition of replicated data types

+ thus making explicit some implicit assumptions

Conclusions & future works

+ We provided a denotationally-flavoured characterisation of

a well-accepted definition of replicated data types

+ thus making explicit some implicit assumptions

+ ...& a mechanism for proving correctness of implementations

Conclusions & future works

+ We provided a denotationally-flavoured characterisation of

a well-accepted definition of replicated data types

+ thus making explicit some implicit assumptions

+ ...& a mechanism for proving correctness of implementations

+ We are looking for a categorical presentation

+ ...in order to get operators for composing specifications

Conclusions & future works

+ We provided a denotationally-flavoured characterisation of

a well-accepted definition of replicated data types

+ thus making explicit some implicit assumptions

» ...& a mechanism for proving correctness of implementations

+ We are looking for a categorical presentation

» ...in order to get operators for composing specifications

+ We plan to recast guarantee properties via the abstract LTS

