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The quickest background, 1

* Distributed systems replicate their state over different nodes in
order to satisty non-functional requirements.

= Strong consistency (every request receives the most recent
update) of replicated data is in conflict with availability (every
request is eventually executed) and tolerance to network
partitions (the system operates even in the presence of failures
that temporarily prevent communication among components).

* CAP theorem: it is impossible to simultaneously achieve strong
Consistency, Availability and Partition tolerance [GL2002].



T'he quickest background, 11

* Weak consistency: replicas may (temporarily) exhibit
discrepancies (every request receives a correct update).

* How are the data specified? States, state transitions and
returned values should account for the different views
that a data item may simultaneously have.

* In the end, consistency has to be eventually guaranteed (if
no new updates are made to a data item, eventually all
accesses to that item will return the most recent update).
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Replicated Data Types

op : VIS x ARB - RVAL
+ VISibility: A partial order of operations over a replica
+ ARBitration: A total order of such operations

+ Return VALue: The value returned by the last operation

[BURCKHARDT, GOTSMAN,YANG, ZAWIRSKI 2015]
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Understanding RD'T's

* Implementing RTDs means to provide a communication mechanism
among replicas, to ensure its compatibility wrt. the behaviour of the
operations and to guarantee that some global properties (e.g. eventual
convergence of replicas) are preserved.

< But first...

« Is it possible to get a traditional presentation of RTDs?
 Is there any implicit assumption on the arbitrations?

« Are RDTs compositional? I.e., are arbitrations of larger visibility
orders explained in terms of smaller ones?
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Recovering RD'T's: saturation
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Recovering RD'T's: determinism
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deterministic: empty intersection even forgetting the value component

RTDs have chosen the
second path, thus e.g.
forbidding write failures
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Recovering RDT's: coherence
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Recovering RD'T's: the theorem

+ There is a one-to-one correspondence between RTDs and
saturated, deterministic, and coherent specifications

....which is bad for RDTs

both saturation and determinism are bad!!
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From specifications to transition systems
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From specifications to transition systems

(COMP)

4
(G1,Plg, ) = (G1,Py)  P'EP®P)

(Gy LIGy,P) 5 (G UGy, P')

an abstract transition system against which
to compare (by asynchronous simulation)
those of actual implementations...



Implementing a specification

“ Proposed implementation of RDTs [Burckhardt et al.].
« Each replica propagates its state to the other replicas.

» It is assumed that all replicas have the same behaviour.
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an LTS for a counter

L=Rx(R—N)
L ={(inc,o0k)} U ({rd} x N) |

(READ) (INC)

k = z"sed()m(v)v(s) inc,ok
r ) — ¢ L
- xax, ) (r,v) (ryv[r—v(r)+1])




an L.T'S for a counter

(SEND) (RCV)
(r,v) SR (r,v) 2N o v v )

Vs.max{v,vi}(s) =max{v(s),vi(s)}

the resulting LTS is correct wrt. the abstract LTS
(via a suitable simulation)



an LTS for multple counters

(SEND) (RCV)
send,(r,v) rcv, (rg, Vi)

(r,v) > (r,v) (r,v) ML (r,max{v, v}
(PARL) (COMM)

/

o1 — 0_/1 G send,O‘) 6,1 ) rc:v,()‘> 0_,2

/ T

61/lo2 = ooz c1/|o2 = oi/0;

the resulting LTS is still correct wrt. the abstract LTS
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Conclusions & future works

+ We provided a denotationally-flavoured characterisation of

a well-accepted definition of replicated data types

+ thus making explicit some implicit assumptions

» ...& a mechanism for proving correctness of implementations

+ We are looking for a categorical presentation

» ...in order to get operators for composing specifications

+ We plan to recast guarantee properties via the abstract LTS



