

Morphisms and Transformations of Potentially Inconsistent Graphs

Reiko Heckel, University of Leicester

Joint work with Fernando Orejas and Maryam Ghaffari Saadat

Ground Attributed Graph Transformation

L, R attributed over **X** with constraints

- $\Phi_L = \Phi_R = \{s.bw > x, s.bw' = s.bw x, e.a' = e.a + x\}$
- Match m: L \rightarrow G satisfies D $\models \Phi_G \rightarrow m(\Phi_L)$
- → Rule constraints satisfied by G's attributes

Ground symbolic graphs $SG = (G, \Phi)$

- G attributed over vars X
- \mathbf{x} constraints $\mathbf{\Phi} = \{\mathbf{x} = \mathbf{d}, ...\}$ with
 - vars x in X,
 - constants d in Σ-algebra D
- Invariant a1+a2<4</p>

Symbolic Attributed Graph Transformation

L, R attributed over **X** with constraints

- $\Phi_L = \Phi_R = \{s.bw > x, s.bw' = s.bw x, e.a' = e.a + x\}$
- Match m: L \rightarrow G satisfies D $\models \Phi_G \rightarrow m(\Phi_L)$
- → Rule constraints entailed by G's constraints

(General) symbolic graphs $SG = (G, \Phi)$

- G attributed over vars X
- **★** FO constraints **Φ** with
 - free vars in X and
 - constants from Σalgebra D

Sem(SG) = set of attr. graphs satisfying Φ

Symbolic Attributed Graph Transformation with Narrowing

L, R attributed over **X** with constraints

- $\Phi \mathsf{L} = \{\}$
- $\bullet \quad \Phi_R = \{bw'=bw-x, bw'>0, e.a'=e.a+x\} \cup \Phi_L$
- Match m: L \rightarrow G satisfies D $\models \Phi_G \rightarrow m(\Phi_L)$
- Derived constraints $\Phi_G \cup m_i(\Phi_R)$ consistent
- → L's constraints entailed by G's constraints
- → R's constraints added to H, if consistent

(General) symbolic graphs $SG = (G, \Phi)$

- G attributed over vars X
- **★** FO constraints **Φ** with
 - free vars in X and
 - constants from Σalgebra D

Sem(SG) = set of attr. graphs satisfying Φ

Symbolic Attributed Graph Transformation with Narrowing

But: would like to

- decouple attribute handling from graph transformation, eg use external tool
- abstract representation of states with common graphs structure
- delay non-det. choices, retaining confluence

(General) symbolic graphs $SG = (G, \Phi)$

- G attributed over vars X
- FO constraints Φ with
 - free vars in X and
 - constants from Σalgebra D

Sem(SG) = set of attr. graphs satisfying Φ

{S1.bw>0, a1=3, a2=0, S2.bw>0, a1+a2<4}

Potentially Inconsistent Graph

 H_1

S1:Srv

bw > 0

C:Clt

S2:Srv

bw > 0

a1 = 3

a2 = 0

Transformation

L, R attributed over **X** with constraints

- ΦL, ΦR as before
- Match m: L → G satisfies D ⊨ Ψ_G → m(Φ_L) for consistent subset Ψ_G of Φ_G
- → L's constraints entailed by cons. weak. of G's
- → R's constraints added to H, pot. inconsistent

PIGs = symbolic graphs
PIG =
$$(G, \Phi)$$

Pot(PIG) = all (G, Ψ) s.t. Ψ is max consist subset of Φ

Sem(PIG) = U Sem(G, Ψ) (G, Ψ) in Pot(PIG)

Any thoughts on ...

- ***** Consistent notion of deduction?
 - $\Phi \vdash_{\mathsf{C}} \varphi$ iff $\Phi \vdash \varphi$ s.t. all formulas in the proof are consistent
 - See e.g. (Hunter & Nuseibeh 1998) on Inconsistency Management
- Institutions, categorical logic for paraconsistency?
 - Is there a notion of morphism to get satisfaction condition, pushouts, etc?
- Precedents in state-based formal specifications, e.g., Z, B, ...?

And now for the formal stuff...

- ***** Morphisms
- ***** Pushouts
- ***** Institutions
- ***** Local Church-Rosser