
PALS: Virtual Synchrony
for Cyber-Physical Systems

Peter Ölveczky

University of Oslo

IFIP WG 1.3, Berlin, September 4, 2017

Based on work with Lui Sha and José Meseguer (UIUC); Kyungmin Bae
(POSTECH); Steve Miller and Darren Cofer (Rockwell Collins); and others

Peter Ölveczky (University of Oslo) PALS: Virtual Synchrony for CPSs IFIP WG 1.3, Berlin, 2017 1 / 41

Motivation: Which Cabinet is Active?

Peter Ölveczky (University of Oslo) PALS: Virtual Synchrony for CPSs IFIP WG 1.3, Berlin, 2017 2 / 41

Motivation (II)

Hard to design
I race conditions, network delays, execution times, clock skews

Hard to model check
I state space explosion due to asynchrony
I (impossible with explicit-state techniques?)

Peter Ölveczky (University of Oslo) PALS: Virtual Synchrony for CPSs IFIP WG 1.3, Berlin, 2017 3 / 41

Virtually Synchronous CPSs

Many CPSs virtually synchronous

http://www.cvel.clemson.edu/auto/systems/auto-systems.html

Peter Ölveczky (University of Oslo) PALS: Virtual Synchrony for CPSs IFIP WG 1.3, Berlin, 2017 4 / 41

http://www.cvel.clemson.edu/auto/systems/auto-systems.html

Virtually Synchronous CPSs

Many CPSs virtually synchronous

http://articles.sae.org/10234/Peter Ölveczky (University of Oslo) PALS: Virtual Synchrony for CPSs IFIP WG 1.3, Berlin, 2017 4 / 41

http://articles.sae.org/10234/

Virtually Synchronous CPSs

Many CPSs virtually synchronous

https://web-material3.yokogawa.com/image_8434.jpg

Peter Ölveczky (University of Oslo) PALS: Virtual Synchrony for CPSs IFIP WG 1.3, Berlin, 2017 4 / 41

https://web-material3.yokogawa.com/image_8434.jpg

CPSs

Time synchronization well understood (IEEE 1588, etc.)

Bounded network delays

Peter Ölveczky (University of Oslo) PALS: Virtual Synchrony for CPSs IFIP WG 1.3, Berlin, 2017 5 / 41

Formal Patterns [Meseguer, Sha, . . .]

Formal patterns:

Formalized and verified “design patterns”

P a theory transformation

〈theory, params〉 7→ P(theory, params)

Peter Ölveczky (University of Oslo) PALS: Virtual Synchrony for CPSs IFIP WG 1.3, Berlin, 2017 6 / 41

PALS Formal Pattern [Cofer, Miller, Sha et al; Meseguer & Ölveczky]

PALS: “physically asynchronous, logically synchronous”

reduce design and verification of a virtually synchronous
CPS to its synchronous design

Transformation (SD, Γ)→ PALS(SD, Γ)

SD: synchronous design
Γ: bounds on network delay, execution time, clock skew

PALS(SD, Γ): corresponding distributed asynchronous design

Correct by construction

SD |= ϕ if and only if PALS(SD, Γ) |= ϕ∗

Peter Ölveczky (University of Oslo) PALS: Virtual Synchrony for CPSs IFIP WG 1.3, Berlin, 2017 7 / 41

PALS Formal Pattern [Cofer, Miller, Sha et al; Meseguer & Ölveczky]

PALS: “physically asynchronous, logically synchronous”

reduce design and verification of a virtually synchronous
CPS to its synchronous design

Transformation (SD, Γ)→ PALS(SD, Γ)

SD: synchronous design
Γ: bounds on network delay, execution time, clock skew

PALS(SD, Γ): corresponding distributed asynchronous design

Correct by construction

SD |= ϕ if and only if PALS(SD, Γ) |= ϕ∗

Peter Ölveczky (University of Oslo) PALS: Virtual Synchrony for CPSs IFIP WG 1.3, Berlin, 2017 7 / 41

PALS Formal Pattern [Cofer, Miller, Sha et al; Meseguer & Ölveczky]

PALS: “physically asynchronous, logically synchronous”

reduce design and verification of a virtually synchronous
CPS to its synchronous design

Transformation (SD, Γ)→ PALS(SD, Γ)

SD: synchronous design
Γ: bounds on network delay, execution time, clock skew

PALS(SD, Γ): corresponding distributed asynchronous design

Correct by construction

SD |= ϕ if and only if PALS(SD, Γ) |= ϕ∗

Peter Ölveczky (University of Oslo) PALS: Virtual Synchrony for CPSs IFIP WG 1.3, Berlin, 2017 7 / 41

PALS Details I: Synchronous Model

Ensemble SD of state machines

M1

M3

M2

all machines perform a transition in lockstep

Peter Ölveczky (University of Oslo) PALS: Virtual Synchrony for CPSs IFIP WG 1.3, Berlin, 2017 8 / 41

PALS Details II: Asynchronous Model

Distributed implementation PALS(SD, Γ) adds a “wrapper” around each
state machine, with

input buffer stores messages arrived during the round

output buffer holds outgoing messages until they can be sent

Formalized in Real-Time Maude

Peter Ölveczky (University of Oslo) PALS: Virtual Synchrony for CPSs IFIP WG 1.3, Berlin, 2017 9 / 41

PALS Details III: Some Assumptions

External clock synchronization
I difference between “local clock” time and “real” (global) clock time is

always less than ε

Local clock: cj : R≥0 → R≥0

I monotonic and piecewise continuous
I |cj(x)− x | < ε for all “real” times x

Time for (processing input + executing transition + generating
output) ∈ [αmin, αmax] with 0 ≤ αmin ≤ αmax

Message transmission time ∈ [µmin, µmax] with 0 ≤ µmin ≤ µmax

Peter Ölveczky (University of Oslo) PALS: Virtual Synchrony for CPSs IFIP WG 1.3, Berlin, 2017 10 / 41

PALS Details IV: Optimal PALS Period

The smallest possible period T is

µmax + 2 · ε+ max(2 · ε− µmin, αmax)

Peter Ölveczky (University of Oslo) PALS: Virtual Synchrony for CPSs IFIP WG 1.3, Berlin, 2017 11 / 41

PALS Details V: Correctness I

A state in PALS(SD, Γ) is stable iff all input buffers are full, all
output buffers are empty, and there are no messages in transit

The function sync maps stable states in PALS(SD, Γ) to states in SD

Can define Kripke structures (SDce , L) for SD (with environment
constraint ce) and (PALS(SD, Γ), L′) in the expected way

Peter Ölveczky (University of Oslo) PALS: Virtual Synchrony for CPSs IFIP WG 1.3, Berlin, 2017 12 / 41

PALS Details VI: Main Correctness Result

Theorem

Given a formula ϕ ∈ CTL∗(AP), and a state predicate stable 6∈ AP characterizing
stable states, there is a formula ϕstable ∈ CTL∗ \ {©}(AP ∪ {stable}) defined as
follows:

astable = a, for a ∈ AP
(¬ϕ)stable = ¬ (ϕstable)

(ϕ1 ∧ ϕ2)stable = ϕ1stable
∧ ϕ2stable

(ϕ1 U ϕ2)stable = (stable → ϕ1stable
) U (stable ∧ ϕ2stable

)
(©ϕ)stable = stable U (¬stable ∧ (¬stable U (stable ∧ ϕstable)))
(∀ ϕ)stable = ∀ ϕstable

such that for each reachable stable state s in PALS(SD, Γ) we have

(PALS(SD, Γ), L′), s |= ϕstable ⇐⇒ (SDce , L), sync(s) |= ϕ,

where L′ : TPALS(SD,Γ)GlobalSystem
→ P(AP ∪ {stable}) is a labeling function

satisfying L′(s) = L(sync(s)) ∪ {stable} when s is a stable state, and
stable 6∈ L′(s) otherwise.
Peter Ölveczky (University of Oslo) PALS: Virtual Synchrony for CPSs IFIP WG 1.3, Berlin, 2017 13 / 41

Case Study I: Which Cabinet is Active?

Peter Ölveczky (University of Oslo) PALS: Virtual Synchrony for CPSs IFIP WG 1.3, Berlin, 2017 14 / 41

Case Study II: Requirements of Active Standby

R1: Both sides should agree on which side is active (provided neither side
has failed, the availability of a side has not changed, and the pilot has
not made a manual selection).

R2: A side that is not fully available should not be the active side if the
other side is fully available (again, provided neither side has failed, the
availability of a side has not changed, and the pilot has not made a
manual selection).

R3: The pilot can always change the active side (except if a side is failed
or the availability of a side has changed).

R4: If a side is failed the other side should become active.

R5: The active side should not change unless the availability of a side
changes, the failed status of a side changes, or manual selection is
selected by the pilot.

Peter Ölveczky (University of Oslo) PALS: Virtual Synchrony for CPSs IFIP WG 1.3, Berlin, 2017 15 / 41

Case Study III: Analysis

Verified synchronous design using LTL model checking in Maude

properties do not hold

verified modified properties

Peter Ölveczky (University of Oslo) PALS: Virtual Synchrony for CPSs IFIP WG 1.3, Berlin, 2017 16 / 41

Case Study IV: Comparison

Simplified asynchronous model in Real-Time Maude

execution times 0; perfect clocks
I no message delay
I message delay 0 or 1

Model Max.msg.dly # states ex.time

Synchr. n/a 185 0.1 sec.
Asynchr. 0 3,047,832 1249 sec.
Asynchr. 1 aborted

Peter Ölveczky (University of Oslo) PALS: Virtual Synchrony for CPSs IFIP WG 1.3, Berlin, 2017 17 / 41

Multirate Systems [Bae, Meseguer, Ölveczky]

Components may have different frequencies

Commercial airplane
I aileron controllers 30-100 Hz
I rudder controller 30-50 Hz
I must synchronize to turn aircraft

Peter Ölveczky (University of Oslo) PALS: Virtual Synchrony for CPSs IFIP WG 1.3, Berlin, 2017 18 / 41

Multirate Systems [Bae, Meseguer, Ölveczky]

Components may have different frequencies
Commercial airplane

I aileron controllers 30-100 Hz
I rudder controller 30-50 Hz
I must synchronize to turn aircraft

Peter Ölveczky (University of Oslo) PALS: Virtual Synchrony for CPSs IFIP WG 1.3, Berlin, 2017 18 / 41

Multirate PALS

Multirate PALS: extends PALS to multirate hierarchical control systems

Controller period multiple of faster periods

Synchronous model:
I all components must perform in lock-step
I “slow down” fast components

Peter Ölveczky (University of Oslo) PALS: Virtual Synchrony for CPSs IFIP WG 1.3, Berlin, 2017 19 / 41

Multirate PALS

Multirate PALS: extends PALS to multirate hierarchical control systems

Controller period multiple of faster periods

Synchronous model:
I all components must perform in lock-step
I “slow down” fast components

Peter Ölveczky (University of Oslo) PALS: Virtual Synchrony for CPSs IFIP WG 1.3, Berlin, 2017 19 / 41

Multirate PALS

Multirate PALS: extends PALS to multirate hierarchical control systems

Controller period multiple of faster periods

Synchronous model:
I all components must perform in lock-step
I “slow down” fast components

12 12

6 + env6 4 3 3 + env3

env12

rate=2 rate=3 rate=4 rate=4

Peter Ölveczky (University of Oslo) PALS: Virtual Synchrony for CPSs IFIP WG 1.3, Berlin, 2017 19 / 41

Details: Multirate PALS Synchronous Model

Fast components perform k “internal transitions” in one step
I reads/produces k-tuples of inputs/outputs

Slow components read/produce single values

Input adaptors transform k-tuples to/from single values

Peter Ölveczky (University of Oslo) PALS: Virtual Synchrony for CPSs IFIP WG 1.3, Berlin, 2017 20 / 41

Details: Multirate PALS Synchronous Model

Fast components perform k “internal transitions” in one step
I reads/produces k-tuples of inputs/outputs

Slow components read/produce single values

Input adaptors transform k-tuples to/from single values

Peter Ölveczky (University of Oslo) PALS: Virtual Synchrony for CPSs IFIP WG 1.3, Berlin, 2017 20 / 41

Multirate PALS II

Formalized multirate synchronous and asynchronous models

synchronous design |= Φ
iff

(“stable-state”) asynchronous design |= Φ

Peter Ölveczky (University of Oslo) PALS: Virtual Synchrony for CPSs IFIP WG 1.3, Berlin, 2017 21 / 41

Case Study: Turning an Airplane [with J. Krisiloff]

Peter Ölveczky (University of Oslo) PALS: Virtual Synchrony for CPSs IFIP WG 1.3, Berlin, 2017 22 / 41

Turning an Airplane (I)

Move ailerons to roll airplane

3.4 Aircraft Dynamics 129

Fig. 3.23 Rolling moment due to rate of roll.

on the other wing is decreased and a rolling moment is thus generated. The rolling
moment due to the rate of roll, p, acts in the opposite sense to the direction of rolling
and is equal to Lpp where Lp is the rolling moment derivative due to rate of roll.

Yawing moment derivative due to rate of roll Np. The rate of roll which increases
the lift on the outer part of one wing and reduces it on the other also creates a
differential drag effect. The increase in lift is accompanied by an increase in drag in
the forward direction and the decrease in lift on the other wing by a corresponding
reduction in drag. A yawing moment is thus produced by the rate of roll, p, which
is equal to Npp where Np is the yawing moment derivative due to rate of roll.

Yawing moment derivative due to rate of yaw Nr . The rate of yaw, r , produces
a tangential velocity component equal to lf r where lf is the distance between the
aerodynamic centre of the fin and the yaw axis through the CG. The resulting change
in the effective fin incidence angle, lf r/VT , produces a lift force which exerts a
damping moment about the CG opposing the rate of yaw. The yawing moment due
to the rate of yaw is equal to Nrr where Nr is the yawing moment derivative due to
rate of yaw.

Rolling moment derivative due to rate of yaw Lr . When the aircraft yaws, the
angular velocity causes one wing to experience an increase in velocity relative to
the airstream and the other wing a decrease. The lift on the leading wing is thus
increased and the trailing wing decreased thereby producing a rolling moment. The
rolling moment derivative due to rate of yaw is denoted by Lr and the rolling mo-
ment due to rate of yaw is equal to Lrr .

Lateral control derivatives due to ailerons and rudder. The ailerons and rudder
are illustrated in Figure 3.15. The angle through which the ailerons are deflected
differentially from their position in steady trimmed flight is denoted by ξ and the

3.6 Lateral Control 149

Fig. 3.33 Forces acting in a turn.

Z sin ! = mVT "̇

Vertical component of the lift force is Z cos !. Equating this to the aircraft weight
gives

Z cos ! = mg

from which

tan ! = VT "̇

g
(3.66)

Thus the acceleration towards the centre of the turn is g tan !.
Referring to the inset vector diagram in Figure 3.33, the normal acceleration

component is thus equal to g sec !. Thus a 60◦ banked turn produces a centripetal
acceleration of 1.73g and a normal acceleration of 2g. At a forward speed of 100 m/s
(200 knots approx.) the corresponding rate of turn would be 10.4◦/s.

The lift required from the wings increases with the normal acceleration and the
accompanying increase in drag requires additional engine thrust if the forward speed
is to be maintained in the turn. The ability to execute a high g turn thus requires a
high engine thrust/aircraft weight ratio.

To execute a coordinated turn with no sideslip requires the operation of all three
sets of control surfaces, that is the ailerons and the tailplane (or elevator) and to a
lesser extent the rudder. It is also necessary to operate the engine throttle(s) to con-
trol the engine thrust. The pilot first pushes the stick sideways to move the ailerons
so that the aircraft rolls, the rate of roll being dependent on the stick movement. The
rate of roll is arrested by centralising the stick when the desired bank angle for the
rate of turn has been achieved. The pilot also pulls back gently on the stick to pitch
the aircraft up to increase the wing incidence and hence the wing lift to stop loss

Peter Ölveczky (University of Oslo) PALS: Virtual Synchrony for CPSs IFIP WG 1.3, Berlin, 2017 23 / 41

Turning an Airplane (II)

Rolling causes adverse yaw

sideslip in wrong direction

use rudder to avoid this3.4 Aircraft Dynamics 127

Fig. 3.21 Lateral forces.

Side force derivative due to sideslip velocity Yv . The change in sideslip velocity,
v, during a disturbance changes the incidence angle, β, of the aircraft’s velocity
vector, VT , (or relative wind) to the vertical surfaces of the aircraft comprising the
fin and fuselage sides (see Figure 3.21). The change in incidence angle v/VT results
in a sideways lifting force being generated by these surfaces. The net side force from
the fuselage and fin combined is equal to Yvv where Yv is the sideforce derivative
due to the sideslip velocity.

Yawing moment derivative due to sideslip velocity Nv . The side force on the fin
due to the incidence, β, resulting from the sideslip velocity, v, creates a yawing
moment about the CG which tends to align the aircraft with the relative wind in a
similar manner to a weathercock (refer to Figure 3.21).

The main function of the fin is to provide this directional stability (often referred
to as weathercock stability). This yawing moment is proportional to the sideslip ve-
locity and is dependent on the dynamic pressure, fin area, fin lift coefficient and the
fin moment arm, the latter being the distance between the aerodynamic centre of the
fin and the yaw axis through the CG. However, the aerodynamic lateral forces acting
on the fuselage during side-slipping also produce a yawing moment which opposes
the yawing moment due to the fin and so is destabilising. The net yawing moment
due to sideslip is thus dependent on the combined contribution of the fin and fusel-
age. The fin area and moment arm, known as the fin volume, is thus sized to provide

Peter Ölveczky (University of Oslo) PALS: Virtual Synchrony for CPSs IFIP WG 1.3, Berlin, 2017 24 / 41

Case Study: Turning an Airplane (II)

Turning control algorithm:

Pilot selects direction

Controller moves ailerons and rudders to make optimal turn

Pilot console
(600ms)

The Airplane Turning Control System (60ms)

Main controller
(60ms)

Left wing subcontroller (15ms)

Rudder subcontroller (20ms)

Right wing subcontroller (15ms)

goalψ

ψ

goalL

αL

goalV

αV

goalR

αR

Peter Ölveczky (University of Oslo) PALS: Virtual Synchrony for CPSs IFIP WG 1.3, Berlin, 2017 25 / 41

Case Study: Turning an Airplane (II)

Turning control algorithm:

Pilot selects direction

Controller moves ailerons and rudders to make optimal turn

Pilot console
(600ms)

The Airplane Turning Control System (60ms)

Main controller
(60ms)

Left wing subcontroller (15ms)

Rudder subcontroller (20ms)

Right wing subcontroller (15ms)

goalψ

ψ

goalL

αL

goalV

αV

goalR

αR

Peter Ölveczky (University of Oslo) PALS: Virtual Synchrony for CPSs IFIP WG 1.3, Berlin, 2017 25 / 41

Case Study: Turning an Airplane (II)

Turning control algorithm:

Pilot selects direction

Controller moves ailerons and rudders to make optimal turn

Pilot console
(600ms)

The Airplane Turning Control System (60ms)

Main controller
(60ms)

Left wing subcontroller (15ms)

Rudder subcontroller (20ms)

Right wing subcontroller (15ms)

goalψ

ψ

goalL

αL

goalV

αV

goalR

αR

Peter Ölveczky (University of Oslo) PALS: Virtual Synchrony for CPSs IFIP WG 1.3, Berlin, 2017 25 / 41

Model Checking

Pilot wants to turn plane 60◦

Desired properties:
I yaw angle always < 1.0◦

I goal direction reached within reasonable time
I plane stable when goal direction reached

Peter Ölveczky (University of Oslo) PALS: Virtual Synchrony for CPSs IFIP WG 1.3, Berlin, 2017 26 / 41

Analysis

Real-Time Maude analysis: textbook algorithm does not achieve safe
turn

We designed and analyzed modified algorithm

Peter Ölveczky (University of Oslo) PALS: Virtual Synchrony for CPSs IFIP WG 1.3, Berlin, 2017 27 / 41

Model Checking Performance (3000 ms bound)

Synchronous model: 364 states

Asynchronous model: 420,288 states
I perfect clocks
I no network delays

Peter Ölveczky (University of Oslo) PALS: Virtual Synchrony for CPSs IFIP WG 1.3, Berlin, 2017 28 / 41

Model-Based Development with PALS [Bae, 0̈lveczky, Meseguer,

Al-Nayeem]

Goal:

Make PALS design and verification methodology available to
domain-specific modeling

Peter Ölveczky (University of Oslo) PALS: Virtual Synchrony for CPSs IFIP WG 1.3, Berlin, 2017 29 / 41

Background: AADL

AADL: Industry standard for embedded systems modeling

US Army, Honeywell, Airbus, Boeing, Dassault Aviation, EADS, ESA,
Rockwell-Collins, Ford, Lockheed Martin, Raytheon, Toyota,
U. S. Navy, . . .

OSATE: Eclipse plug-ins for AADL

Peter Ölveczky (University of Oslo) PALS: Virtual Synchrony for CPSs IFIP WG 1.3, Berlin, 2017 30 / 41

Model-Based Development with PALS

Goal:

Use PALS design and verification methodology in
domain-specific modeling

1 Model synchronous design SD in (Multirate) Synchronous AADL

2 Verify SD using SynchAADL2Maude OSATE plugin

Peter Ölveczky (University of Oslo) PALS: Virtual Synchrony for CPSs IFIP WG 1.3, Berlin, 2017 31 / 41

Multirate Synchronous AADL Modeling Language

Model synchronous designs
I no need for hardware components

Language design choices:
I use subset of AADL
I constructs should have same meaning as in AADL
I new property set MR-SynchAADL (rates, input adaptors, etc.)

Peter Ölveczky (University of Oslo) PALS: Virtual Synchrony for CPSs IFIP WG 1.3, Berlin, 2017 32 / 41

Multirate Synchronous AADL Modeling Language

Model synchronous designs
I no need for hardware components

Language design choices:
I use subset of AADL
I constructs should have same meaning as in AADL
I new property set MR-SynchAADL (rates, input adaptors, etc.)

Peter Ölveczky (University of Oslo) PALS: Virtual Synchrony for CPSs IFIP WG 1.3, Berlin, 2017 32 / 41

Details: Multirate Synchronous AADL

AADL subset:
I hierarchical system, process, thread (and data) components
I ports and connections
I thread behavior in behavior annex
I periodic dispatch
I data ports
I “delayed” connections

MR-SynchAADL properties

Peter Ölveczky (University of Oslo) PALS: Virtual Synchrony for CPSs IFIP WG 1.3, Berlin, 2017 33 / 41

Formal Semantics of Multirate Synchronous AADL

Formal semantics in Real-Time Maude
I simulation, reachability analysis
I LTL and timed CTL model checking

Peter Ölveczky (University of Oslo) PALS: Virtual Synchrony for CPSs IFIP WG 1.3, Berlin, 2017 34 / 41

The SynchAADL2Maude Tool

OSATE/Eclipse plug-in for Multirate Synchronous AADL

Checks if model valid Multirate Synchronous AADL model

Real-Time Maude LTL model checking within OSATE
I automatic synthesis of Real-Time Maude model
I easy to define LTL formulas (XML, predefined propositions)
I fairly intuitive counterexamples

Predefined atomic propositions:

component name | boolean expression

Peter Ölveczky (University of Oslo) PALS: Virtual Synchrony for CPSs IFIP WG 1.3, Berlin, 2017 35 / 41

Active standby verification in SynchAADL2Maude

Model #States Time

SynchAADL 203 0.6 s

Synch. 185 0.1 s
Asynch. (0) 3047832 1249 s
Asynch. (1) n/a n/a

Peter Ölveczky (University of Oslo) PALS: Virtual Synchrony for CPSs IFIP WG 1.3, Berlin, 2017 36 / 41

Model Checking the Airplane Turn

Desired properties:

yaw angle always < 1.0◦

goal direction (60) reached within reasonable time

plane stable when goal direction reached

formula safeYaw: turnCtrl.mainCtrl.ctrlProc.ctrlThread |

abs(currYaw) < 1.0;

requirement safety: [] safeYaw;

requirement safeTurn: safeYaw U (stable /\ reachGoal) in time <= 7200;

formula stable: turnCtrl.mainCtrl.ctrlProc.ctrlThread |

abs(currRol) < 0.5 and abs(currYaw) < 0.5;

formula reachGoal: turnCtrl | abs(curr_dr - 60.0) < 0.5;

Peter Ölveczky (University of Oslo) PALS: Virtual Synchrony for CPSs IFIP WG 1.3, Berlin, 2017 37 / 41

Model Checking the Airplane Turn

Desired properties:

yaw angle always < 1.0◦

goal direction (60) reached within reasonable time

plane stable when goal direction reached

formula safeYaw: turnCtrl.mainCtrl.ctrlProc.ctrlThread |

abs(currYaw) < 1.0;

requirement safety: [] safeYaw;

requirement safeTurn: safeYaw U (stable /\ reachGoal) in time <= 7200;

formula stable: turnCtrl.mainCtrl.ctrlProc.ctrlThread |

abs(currRol) < 0.5 and abs(currYaw) < 0.5;

formula reachGoal: turnCtrl | abs(curr_dr - 60.0) < 0.5;

Peter Ölveczky (University of Oslo) PALS: Virtual Synchrony for CPSs IFIP WG 1.3, Berlin, 2017 37 / 41

The SynchAADL2Maude Tool

Peter Ölveczky (University of Oslo) PALS: Virtual Synchrony for CPSs IFIP WG 1.3, Berlin, 2017 38 / 41

The SynchAADL2Maude Tool

Peter Ölveczky (University of Oslo) PALS: Virtual Synchrony for CPSs IFIP WG 1.3, Berlin, 2017 38 / 41

The SynchAADL2Maude Tool

Peter Ölveczky (University of Oslo) PALS: Virtual Synchrony for CPSs IFIP WG 1.3, Berlin, 2017 38 / 41

What about Hybrid CPSs?

PALS abstracts away the time an event takes place
I cannot be abstracted away in hybrid systems
I sampling continuous environment + commands to environment

F depends on local clocks

Nontrivial continuous behaviors
I ODE
I coupled environments

Peter Ölveczky (University of Oslo) PALS: Virtual Synchrony for CPSs IFIP WG 1.3, Berlin, 2017 39 / 41

What about Hybrid CPSs?

PALS abstracts away the time an event takes place
I cannot be abstracted away in hybrid systems
I sampling continuous environment + commands to environment

F depends on local clocks

Nontrivial continuous behaviors
I ODE
I coupled environments

Peter Ölveczky (University of Oslo) PALS: Virtual Synchrony for CPSs IFIP WG 1.3, Berlin, 2017 39 / 41

Hybrid PALS [Bae, Ölveczky, Kong, Gao, Clarke]

Include time when sensing and actuating local environment

Abstracts from
I asynchronous communication
I network delays
I execution times
I message buffering

Symbolically encode all possible local clocks

Formal analysis problems encoded in SMT
I satisfiability decidable up to given precision δ > 0

Case studies:
I airplane turn
I networked water tank controllers
I networked thermostat controllers

Peter Ölveczky (University of Oslo) PALS: Virtual Synchrony for CPSs IFIP WG 1.3, Berlin, 2017 40 / 41

Hybrid PALS [Bae, Ölveczky, Kong, Gao, Clarke]

Include time when sensing and actuating local environment

Abstracts from
I asynchronous communication
I network delays
I execution times
I message buffering

Symbolically encode all possible local clocks

Formal analysis problems encoded in SMT
I satisfiability decidable up to given precision δ > 0

Case studies:
I airplane turn
I networked water tank controllers
I networked thermostat controllers

Peter Ölveczky (University of Oslo) PALS: Virtual Synchrony for CPSs IFIP WG 1.3, Berlin, 2017 40 / 41

Conclusions

PALS reduces design and verification of distributed CPSs to designing
and verifying underlying synchronous designs

I abstracts away clock skews, network delays, execution times,
asynchronous communication, buffering, timeouts, ...

I enables explicit-state model checking

Makes model checking of distributed CPSs feasible

Efficiency demonstrated on nontrivial avionics systems

Synchronous AADL: model and verify synchronous designs using
AADL inside OSATE

Extended to multi-rate and hybrid CPSs

Peter Ölveczky (University of Oslo) PALS: Virtual Synchrony for CPSs IFIP WG 1.3, Berlin, 2017 41 / 41

Conclusions

PALS reduces design and verification of distributed CPSs to designing
and verifying underlying synchronous designs

I abstracts away clock skews, network delays, execution times,
asynchronous communication, buffering, timeouts, ...

I enables explicit-state model checking

Makes model checking of distributed CPSs feasible

Efficiency demonstrated on nontrivial avionics systems

Synchronous AADL: model and verify synchronous designs using
AADL inside OSATE

Extended to multi-rate and hybrid CPSs

Peter Ölveczky (University of Oslo) PALS: Virtual Synchrony for CPSs IFIP WG 1.3, Berlin, 2017 41 / 41

Conclusions

PALS reduces design and verification of distributed CPSs to designing
and verifying underlying synchronous designs

I abstracts away clock skews, network delays, execution times,
asynchronous communication, buffering, timeouts, ...

I enables explicit-state model checking

Makes model checking of distributed CPSs feasible

Efficiency demonstrated on nontrivial avionics systems

Synchronous AADL: model and verify synchronous designs using
AADL inside OSATE

Extended to multi-rate and hybrid CPSs

Peter Ölveczky (University of Oslo) PALS: Virtual Synchrony for CPSs IFIP WG 1.3, Berlin, 2017 41 / 41

Conclusions

PALS reduces design and verification of distributed CPSs to designing
and verifying underlying synchronous designs

I abstracts away clock skews, network delays, execution times,
asynchronous communication, buffering, timeouts, ...

I enables explicit-state model checking

Makes model checking of distributed CPSs feasible

Efficiency demonstrated on nontrivial avionics systems

Synchronous AADL: model and verify synchronous designs using
AADL inside OSATE

Extended to multi-rate and hybrid CPSs

Peter Ölveczky (University of Oslo) PALS: Virtual Synchrony for CPSs IFIP WG 1.3, Berlin, 2017 41 / 41

Conclusions

PALS reduces design and verification of distributed CPSs to designing
and verifying underlying synchronous designs

I abstracts away clock skews, network delays, execution times,
asynchronous communication, buffering, timeouts, ...

I enables explicit-state model checking

Makes model checking of distributed CPSs feasible

Efficiency demonstrated on nontrivial avionics systems

Synchronous AADL: model and verify synchronous designs using
AADL inside OSATE

Extended to multi-rate and hybrid CPSs

Peter Ölveczky (University of Oslo) PALS: Virtual Synchrony for CPSs IFIP WG 1.3, Berlin, 2017 41 / 41

