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Abstract—Visual contracts model the operations of components
or services by pre- and post-conditions formalised as graph
transformation rules. They provide a precise intuitive notation
to support testing, understanding and analysis of software.
However, due to their detailed specification of data states and
transformations, modelling real applications is an error-prone
process. In this paper we propose a dynamic approach to reverse
engineering visual contracts from Java based on tracing the
execution of Java operations. The resulting contracts give an
accurate description of the observed object transformations, their
effects and preconditions in terms of object structures, parameter
and attribute values, and their generalised specification by uni-
versally quantified (multi) objects. While this paper focusses on
the fundamental technique rather than a particular application,
we explore potential uses in our evaluation, including in program
understanding, review of test reports and debugging.

I. INTRODUCTION

Visual Contracts (VCs) provide a precise high-level speci-
fication of the object graph transformations caused by invoca-
tions of operations on a component or service. They link static
models (e.g., class diagrams describing object structures) and
behavioural models (e.g., state machines specifying the order
operations are invoked in) by capturing the preconditions and
effects of operations on a system’s objects.

Visual contracts differ from contracts embedded with code,
such as JML in Java or Contracts in Eiffel, as well as
from model-level contracts in OCL. They are visual, using
UML notation to model complex patterns and transformations
intuitively and concisely, and their executable semantics based
on graph transformation supports model-based oracle and test
case generation [1], [2], run-time monitoring [3], service speci-
fication and matching [4], state space analysis and verification.

However, creating a detailed model in any language is error-
prone. Visual contracts are no exception, and their specifi-
cation of object states and transformations requires a deeper
understanding of a system than models of externally visible
behaviour. This limits their applicability in testing, verification
and program understanding in general.

In this paper we propose a dynamic approach to reverse
engineering visual contracts from sequential Java programs
based on tracing the execution of Java operations. The result-
ing contracts give accurate descriptions of the observed object
transformations, their effects and preconditions in terms of
object structures, parameter and attribute values, and allow
generalisation by multi objects. The restriction to sequential

Java is due to the need to associate each access to a unique
operation invocation.

Given a Java application, the process starts by selecting
the classes and operations within the scope of extraction and
providing a set of test cases for the relevant operations. We
proceed by (A) observing the behaviour under these tests using
AspectJ instrumentation and synthesising contract instances
as pre/post graphs of individual invocations; (B) combining
the instances into higher-level rules by abstracting from non-
essential context; (C) generalising further by introducing multi
objects; and (D) deriving logical constraints over attribute and
parameter values.

First solutions to variants of (A) and (B) were reported
in [5], [6], respectively. Apart from general performance im-
provements in the individual algorithms and their integration
in a prototype tool, the dynamic analysis (A) was extended
by traceability of contract instances to code, recording access
and changes to attribute and parameter values, and producing
contract instances in a format that could be fed into the initial
step (B) of the learning. The latter originally relied on both
positive and negative examples, so had to be adapted to make
do with positive examples only as produced by (A). Support
for operations with parameters was also added. Steps (C) and
(D) extending the learning of basic contracts by multi objects
and attribute constraints are discussed here for the first time,
as is an experiment on the usefulness of visual contracts for
testing and debugging.

Following a general presentation of the notions and tech-
niques of the approach in Sect. II, Sect. III-A describes the
prototype tool implementing them. The evaluation in Sect. III
discusses the scalability of the extraction as well as the
validity of the resulting models and their utility in program
understanding in the context of testing and debugging. Apart
from their use in validation, case studies and experiments are
chosen to exemplify potential applications in this area without
claiming that the present tool could support real-world use.
After discussing Related Work, Sect. V concludes the paper.

II. EXTRACTING VISUAL CONTRACTS

This section gives an overview of the approach using a sim-
ple case study of a Car Rental Service designed to represent a
range of different preconditions and effects of operations over
a complex object-structure, including the creation of objects,
the creation and deletion of links as well as attribute updates



public interface IRental extends Serializable{
public String registerClient(String city, String clientName);
public String makeReservation(String ClientID, String pick−up, String drop−off);
public void cancelReservation(String Reference);
public void cancelClientReservation(String clientID);
public void pickupCar(String Reference);
public void dropoffCar(String Reference);
public Reservation[] showClientReservations(String clientID);
public Client[] showClients (String city);
public Car[] showCars (String city);

}

Listing 1: Interface of a Car Rental Service

and constraints. Basic concepts of graph transformation are
introduced, following [7].

An interface with the relevant operations is given in List-
ing 1. The class diagram in the top left of Figure 1 shows the
selected classes, whose instances will be observed. Classes
and data-valued attributes in the diagram map to classes and
attributes in Java. Associations with cardinality 1 at the target
represent object-valued attributes in their source class and
associations with cardinality ∗ are implemented by containers.

Formally, a class diagram is represented as an attributed
type graph TG, i.e., a distinguished graph defining vertex,
edge, attribute and data types from which object graphs can be
constructed. An object graph over TG is a graph G equipped
with a structure-preserving mapping G→ TG assigning every
element in G its type in TG.

A. Observing Access and Synthesising Contract Instances

We adopt a dynamic approach to extract, for each oper-
ation invocation, a contract instance capturing the observed
behaviour. Observations are made by weaving instrumentation
code using AspectJ. This results in a trace recording the
object creation, read and write access to objects and attributes
caused by the active invocation. Concurrent invocations create
the problem of identifying for each observation the relevant
invocation and are therefore not considered. We aggregate
observations into a contract instance capturing the overall
precondition and effect of the invocation (see [6] for more
details). Along with the instance we collect traceability data
for its elements, such as the line numbers in the code causing
for their access. This is used later to validate the extraction,
e.g., to assess which code fragments are captured by which
contracts.

Consider the contract instances in Figure 1. Instance reg-
isterClient creates a new client object, registers it with the
branch at city, and updates attribute branch.cMax. Instance
makeReservation books a car for a client by creating a new
reservation object r with links pickup, dropoff, made and for.
Links of and at indicate that a client can reserve cars from the
pickup branch they are registered with. Instances pickupCar
and dropoffCar describe the movement of a car from the
pickup to the dropoff branch.

As can be seen in the example, a contract instance consists
of a pair of object graphs representing the situation before and
after the operation. We write b = op(a1, . . . , an) : G ⇒ H
to indicate the invocation op(a1, . . . , an) of an operation

with signature op(x1 : T1 . . . , xn : Tn) : T leading to a
transformation of G into H . We assume that G,H live in a
common name space given by unique object identities, so the
elements deleted, preserved and created by the transformation
are G \H,G ∩H and H \G, respectively.

Fig. 1: Type graph and rule instances, extracted from car rental
service

B. Deriving Minimal Contracts and Shared Context

Each contract instance only represents one invocation, but
of course our aim is to derive a small set of contracts that
describe the overall behaviour as precisely as possible. Such
a general contract is given by a set of parametrised rules
op(x1, . . . , xn) = y : L ⇒ R over the same operation
signature with graphs L and R, called the left- and right-hand
side of the rule, expressing the pre- and postconditions of the
operation. As before L \ R, L ∩ R and R \ L represent the
elements deleted, preserved and created by the rule.

To derive such a general model we consider all instances
representing executions of the same operation. First, we gen-
erate a minimal rule for each instance, i.e., the smallest rule
containing all objects referred to by the operation’s parameters
and able to perform the observed object transformation. The
construction has been formalised in [8] and implemented
(without considering parameters) in [5]. Formally, given a
contract instance b = op(a1, . . . , an) : G ⇒ H its minimal
rule is the smallest rule L ⇒ R such that L ⊆ G,R ⊆ H
with a1, . . . , an ∈ L and b ∈ R as well as G \ H = L \ R
and H \ G = R \ L. That means, the rule is obtained from
the instance by cutting all context not needed to achieve the
observed changes nor required as input or return.

The result is a classification of instances by effect: All
instances with the same minimal rule have the same effect, but



possibly different preconditions. These are in turn generalised
by one so called maximal rule which extends the minimal rule
by all the context that is present in all instances, essentially
the intersection of all its instances’ preconditions. Figure 2
shows an example of this generalisation where maximal rule
(C) results from instances (A) and (B) of cancelClientReserva-
tion(..). The shared effect in both cases is the deletion of the
Reservation object connected to the Client and the minimal
rule is identical to (B). The isolated r1:Reservation object in
(A) arises from an unsuccessful test on r1 when searching for
the reservation object to be cancelled.

Fig. 2: Extracting maximal rules from contract instances

Fig. 3: Inferring MOs from contract instances

But minimal or maximal rules are not just generalisations
of instances, but provide a constructive specification. Given
an object graph G, a rule can be applied if there is a match
m : L → G, such that L is (isomorphic to) a subgraph of
G and removing (an image of) L \ R from G, the resulting
structure is a graph. The derived object graph H is obtained
by adding a copy of R \ L. Unsurprisingly, applying a rule
extracted from a contract instance b = op(a1, . . . , an) : G ⇒
H to the pre-graph G of that instance, we obtain its post-graph
H , but we can also apply the same rule to other given graphs
deriving transformations not previously observed.

C. Introducing Universally Quantified Multi Objects

The contracts extracted so far may use a number of rules
to describe the same operation. In the case of iteration over
containers, for example, the set of minimal rules is potentially

unbounded, but some only differ in the number of objects
manipulated while performing the same actions on all of
them. Rules with multi objects (MOs) provide a concise way
to specify constraints and actions across sets of objects of
different cardinalities.

A multi-object (MO) rule distinguishes a set M ⊆ L of MO
nodes, with cardinality constraints card : M → P(IlN) stating
how many concrete objects each MO can be instantiated by.
Application of MO rules is defined by expanding MO nodes
into sets of regular nodes. An expansion of an MO rule is
a (regular) rule obtained by successively replacing each MO
node m ∈M, card(m) = C by c(m) copies for some c(m) ∈
C. This includes copying all incoming and outgoing edges so
that for each node m ∈M and chosen c(m) we get Lm as
• Lm

V = LV \ {m} ] {m} × {1, . . . , c(m)} and
• Lm

E = LE \ LE(m) ] LE(m)× {1, . . . , c(m)}
where LE(m) = {e | srcL(e) = m ∨ tarL(e) = m} is the
set of edges attached to node m. Sources, targets and types
of new edges and nodes are inherited from L. The expansion
extends to R on the MO nodes shared with L. (Due to the
associativity of the product × up to isomorphism, the resulting
rule is essentially independent of the order of the MO nodes
expanded.) Note that for two MO nodes m1,m2 connected by
an edge we will create c(m1)∗c(m2) edges between the copies
of m1 and m2. An application of an MO rule to an object
graph G is an application of a maximal applicable expansion.

For example, node Reservation in Figure 3 (C) is an
MO node (shown with a 3D shadow) with cardinality 1..2,
applicable to object graphs with 1 or 2 Reservation nodes con-
nected to the Client. Contract instances of two corresponding
transformations are shown in Figure 3 (A) and (B).

To derive MO rules from such instances we have to discover
sets of nodes that have the same structure and behaviour, then
represent them by a single multi-object node. We only consider
multi-object nodes that are part of the minimal rule because
their typical use is to describe universally quantified effects
(rather than preconditions). In the rule instance Figure 3 (B),
for example, both Reservation nodes have the same context,
i.e., they both point to the same Client node by a made edge,
and they are both connected to return: Collection on the right-
hand side, so share the same behaviour. Therefore they are
substituted by one multi-object, as shown in Figure 3 (C),
which also generalises Figure 3 (A) with only one occurrence.
After inferring multi objects within individual rules, if two MO
rules are isomorphic, the two original rules can be replaced
by a single MO rule with appropriate cardinalities reflecting
the generalised cases.

Two objects are equivalent if they are (1) of the same type;
(2) part of the minimal rule; and (3) have the same context
(incident edges of the same type connected to the same nodes)
in the pre- and postcondition (thus specify the same actions).
Assuming for every operation op a set of maximal rules R(op)
as constructed in Sect. II-B, we derive MO rules in two steps.
Merge equivalent objects: For each rule m ∈ R(op) and each
non-trivial equivalence class of objects in m, one object is
chosen as the representative for that class and added to the set



of MO nodes for m, while all other objects of that class are
deleted with their incident edges. The cardinality of the MO
node is defined to be the cardinality of its equivalence class
(the number of objects it represents). The resulting set of MO
rules is MOR(op).
Combine isomorphic rules: A maximal set of structurally
equivalent rules in MOR(op), differing only in their object
identities and cardinalities of their MO nodes, forms an
isomorphism class. For each such class we derive a single rule
by selecting a representative MO rule and assigning to each of
its MO nodes the union of cardinalities of corresponding nodes
in all the rules in the class. The resulting set of combined MO
rules is CMOR(op). An example is the derivation of Figure 3
(C), a combination of basic rule Figure 3 (A) with the MO
rule derived from (B) whose cardinalities of 1 and 2 for the
Reservation node are merged to 1..2.

D. Deriving Constraints on Attributes and Parameter Values

So far we have focussed on structural preconditions and ef-
fects, disregarding the data held in objects’ attributes or passed
as parameters. However, at implementation level, manipulation
of object structure and data are tightly integrated. While we
have seen that the structural view is naturally expressed by
graphical patters, constraints or assignments over basic data
types are more adequately expressed in terms of logic.

The contract for cancelClientReservation(cid: String) de-
scribes the removal of a Reservation object linked to the
Client whose id matches the parameter cid. In the contract
this is expressed by the equality id = cid in the Client
object. Formally, c.id and cid, as well as the right-hand side
counterpart c.id′ of c.id, are local variables of the contract
that get instantiated by the match as part of an application.
In particular, given a graph object G and match m : L→ G,
c.id is instantiated by the value of the id attribute of m(c),
i.e., m(c.id) = m(c).id. In a similar way we can extend m to
evaluate complex expressions and use these in assignments
to update attributes. The formalisation in attributed graph
transformation assumes an abstract data type A as attribute
domain linking it to the structural part by attribution maps.

Let us consider how attribute constraints for contracts can be
learned. Say, an instance i = [b = op(a1, . . . , an) : Gi ⇒ Hi]
has attribute and parameter values Ai (i.e., these values were
either read or written during the corresponding invocation). A
maximal rule r = [op(x1, . . . , xn) = y : L⇒ R] generalising
a number of instances with shared effects is given a set X
of local variables for all formal parameters x1, . . . , xn and all
attributes read or accessed by all its instances. Since maximal
rule r is embedded by a match mi into every instance i it
subsumes, this extends to an assignment of the local variables
mi : X → Gi.

Fixing an order on the variables X , each mi becomes
a vector of values to be fed into a machine learning tool
capable of driving logical constraints. We use the Daikon
tool [9] designed for the derivation of invariants over program
variables. From the assignments mi for all instances i that con-
tributed to the construction of rule r Daikon generates a set of

constraints that are valid for all assignments. These constraints
are fed back into the graphical part of the contract, where
each becomes part of the pre- or postcondition depending on
wether the variables used occur only in L or in L,R and the
parameters. This approach allows the separation of structural
and constraint learning.

III. EVALUATION

In this section, we illustrate the implementation of the
approach by a proof-of-concept prototype and discuss correct-
ness and completeness of extracted contracts. We report on
experiments to assess the utility of visual contracts and the
scalability of the extraction as implemented by the prototype.

A. Prototype Tool

The approach is implemented by a tool whose high-level
architecture is shown in Figure 5. It consists of a Tracer
observing the behaviour of selected classes using AspectJ
and constructing contract instances (cf. subsection II-A), a
Generaliser learning minimal, maximal and MO rules (cf.
subsection II-B and II-C) using Daikon [9] to learn constraints
(cf. subsection II-D) both supported by a database connection
and a Visualiser for selective display and analysis of contracts.
An export to the graph and model transformation tool Hen-
shin [10] is used to simulate contracts for validation. First we
focus on the Visualiser to illustrate how results are presented
and how they could be used to aid program understanding.

Fig. 5: Architecture of the Tool

The main task of the Visualiser (see Figure 4) is to organise,
browse and display extracted contracts. To this end we support
• the distinction in colour and style between elements of

the minimal and larger maximal rule, e.g., dotted edges
and nodes with grey background represent elements of
minimal rules, while nodes with white background and
solid edges are context elements;

• the alternative display of collections as to-* associations
or using explicit collection objects;

• the selective visualisation of rules, for example of the
minimal rule or the precondition only.

Figure 4 shows two screenshots of the main interface. In
(a), we present an instance extracted from makeReservation()
in Figure 1. The upper part of (a) gives information on
the operation signature, actual parameters and the extraction
process. Apart from the rule showing the precondition and
effect at a high level, we provide information on the access
to individual objects with the corresponding locations in the



(a) Rule instance

(b) Generalised rules interface

Fig. 4: Visualiser interface

code. They are available through a pop-up window like the one
in Figure 6 activated by clicking on the :Reservation node in
the right-hand side of the contract.

Figure 4 (b) shows how generalised (maximal and MO)
rules are displayed. The top left shows a list of the rules
organised by their operation signatures. When selecting, e.g.,
a maximal rule, all its rule instances will appear in the
table, see the top right of (b). The lower part shows the
maximal rule with multi objects and 5 attribute constraints
for RegisterClient() that describe the relation between attribute
values, input and return parameters. For example, the 4th
constraint states that the value of the cID is returned while
the 5th requires that the cName attribute of the new Client

Fig. 6: Object access and code locations



(a) Left-hand side of maximal rule cancelClientReservations()

(b) Left-hand side with multi object extracted from (a)

Fig. 7: Extraction of rule with multi object

object has the same value as the 2nd parameter. An example
of a rule with multi object is shown in Figure 7 (b) as extracted
from the maximal rule in (a) for cancelClientReservations().

B. Correctness and Completeness

In order to establish to which extent the contracts extracted
provide an accurate description of the software’s behaviour
we consider two directions, the correctness and completeness
of the contracts. For every state s in the implementation
there exists a corresponding object graph G(s) at model level
obtained by representing all objects in the scope of observation
(i.e., that are instance of the classes selected for tracing,
cf. start of section II) as nodes, object-valued attributes as
edges and data-valued attributes as node attributes. Then, a
model is correct if for every valid state s and invocation
in, a step in : G(s) ⇒ H in the model implies a step
in the implementation from state s to a new state s′ such
that H = G(s′). That means, the model does not allow
behaviour that is not implemented by the system. Conversely,
completeness means that for each valid state s, a step caused
by an invocation in of the implementation leading to a state s′

must be matched by a step in : G(s) ⇒ G(s′) in the model,
i.e., all the system’s behaviour is captured by the model.

In general, the models extracted will be neither correct nor
complete. Correctness fails because the model is extracted
for a certain part of the system only as identified by the
implementation classes selected for tracing. Anything outside
this scope of observation is not recorded and therefore not
represented by the model. That means, if the implementation
checks a condition on the state of an object outside scope,
this check is not reflected in the precondition of the contract.
If this check fails, a step in the model may not be reflected
by a step in the implementation. A weaker condition taking
into account this limitation is that of moderated correctness.
It states that, if both preconditions are satisfied, the observable
effect of the implementation-level step should match the effect
of the model-level step. Here the comparison is moderated
via the the mapping G( ) of implementation states to object
graphs, which also takes account of the scope.

Completeness fails for the same reason that test cases cannot
prove the correctness of a system. The dynamic approach to
extracting contracts is inherently dependent on the range of be-
haviours observed, and behaviours that have not been observed
will not be reflected in the model. So what can we realistically
hope to achieve? A minimal notion of completeness should
require that all observed behaviours are represented in the
model, i.e., when executing the tests the model was extracted
from, all steps steps in the implementation should be matched
by the model.

We used manual inspection on the Car Rental Service case
study to validate if the models extracted by the tool satisfy the
baseline/moderated notions of correctness and completeness.
The limited amount of code and our familiarity with the
application allowed us to perform a detailed review for every
method in the interface, validating for all execution paths that
there exists a rule in the corresponding contract capturing the
path’s combined precondition and effect, and vice versa for
every rule that the behaviour described is fully implemented.
This process was aided by the export of extracted contracts to
the Henshin model transformation tool [10], which provides
a facility to simulate contracts based on their operational
semantics as graph transformation rules.

Consider the source code fragment in Listing 2 implement-
ing the dropoffCar() method. There are three possible paths
leading to at least three different contracts, depending on
the evaluation of the two if statements in lines 4 and 10.
When executing this method by three test cases that cover all
statements, the extracted rules reflect the expected behaviours.
This is confirmed by tracing the line numbers in the code
responsible for the access to objects in the contracts.

Figure 8 shows the left-hand sides of the three rules
extracted from dropoffCar(). For example, (a) reflects the
behaviours of statements 1-6 as we pass an invalid reser-
vation id and, accordingly, the execution breaks at line 5.
The rule correctly describes the access to this:Rental and
the Reservation container. In (b) the parameter is valid, i.e.,
the Reservation object Leicester 13 exists, but the execution
breaks at line 11 since the car has not been picked up yet.
This can be seen from the pickup link which would have been



deleted otherwise. The rule in (c) reflects correctly the third
path, i.e., the conditions in 4 and 10 are false so there is no
return from the method there.

1 public void dropoffCar(String Reference){
2
3 int iIndex = getReservationIndex(Reference);
4 if (iIndex==−1){
5 return;
6 }
7
8 Reservation getReservation = this.reservations.get(iIndex);
9 // check if reserved car has been picked up already

10 if (getReservation.pickup!=null){
11 return;
12 }
13
14 // return reserved car to the drop−off branch
15 getReservation.dropoff.at.add(getReservation.for);
16 // remove reservation object
17 this.reservations.remove(iIndex);
18 }

Listing 2: Implementation of dropoffCar() method

(a) Rule instance extracted from lines (1-6)

(b) Rule instance extracted from lines (1-12) without line
(5)

(c) Rule instance extracted from all lines except (5,11)

Fig. 8: Rule instances for dropOffCar()

More generally, due to the method of model extraction (and
assuming it was correctly implemented in our prototype tool)
we can assert that model and implementation should show the
same behaviour at least for the test cases used. In particular
• contract instances capture precisely the preconditions and

effects relevant to the invocation they are derived from,
within the scope of observation;

• minimal rules capture exactly the effect of contract in-
stances they are extracted from;

• maximal rules subsume all contract instances they derive
from, i.e., every contract instance can be replicated as an
application of the maximal rule;

• rules with multi-objects are (more concise, but) equivalent
to the sets of maximal rules they derive from, i.e., by
retaining the original rules’ cardinality information, they
describe exactly the same set of transformations;

• the parameter and attribute constraints derived do not
invalidate any of the contract instances their maximal rule
originates from.

The fact that, in general, models are only representative of
the behaviour they were extracted from is an obstacle to some
applications, such as their use in verification, where automated
extraction has to be followed by a manual review and com-
pletion of contracts. In the following section we demonstrate
an application to program understanding in the context of
testing and debugging that does not rely on completeness or
correctness beyond the set of tests executed.

C. Utility in Assessing Test Reports and Localising Faults

Using the Car Rental Service case study we conducted an
experiment to evaluate the utility of visual contracts extracted
from the execution of test cases for analysing test reports and
identifying faults. In this paper-based exercise our hypothesis
was that “visual contracts, rather than textual representations
of the same information, improve recall and accuracy of
detecting faults in test reports”. Generally, we wanted to find
out how visual contracts help developers, and for which kinds
of faults they are most effective.

To conduct the experiment, an implementation of the Rental
Car Service was documented in natural language, seeded with
8 faults and provided with several short test cases able to
detect them. Tests were executed and results recorded in
two different formats: (A) as sequences of invocations and
returns of operations from the interface, with queries added to
display details of the internal state after each step and (B) as
sequences of visual contracts extracted from the same invoca-
tions. Students were asked to (1) identify invocations where
the observed behaviour deviated from the expected based on
the documentation and (2) locate the faults responsible in the
code provided. Both groups received reports from 4 tests of
4-5 invocations each, containing a total of 20 failures to be
traced down to the 8 seeded faults.

The 66 participating students were volunteers from an
MSc module on (UML-based design, implementation and
testing of) Service-oriented Architectures running February-
May at the University of Leicester. We could use data from
previously submitted coursework, one on modelling and one
on implementation and testing, to check that the average level
of qualification of participants in both groups was comparable.
The groups A and B were selected randomly (handing out
worksheets A and B alternatingly), resulting in 32 students



in group A with an average coursework mark of 67.4% and
34 students in group B with an average coursework mark of
68.1%. From the module, the students were broadly familiar
with the concept of specification-based testing of service
interfaces like the one provided. The Car Rental Service
interface, its documentation and the two types of assignments
were introduced to all students in a 50 min session prior to
the experiment. The participants then had 50 mins under exam
conditions to analyse test reports, detect and document failures
and locate the corresponding faults in the code provided.

Group A achieved an avg. recall of 0.215 (identifying 1.7
out of the 8 faults) and an avg. precision of 0.232 (with 1.7
correct out of 7.4 responses). Group B had an avg. recall of 0.3
(correctly identifying 2.41 out of 8) and an avg. precision of
0.35 (with 2.41 correct out of 6.88 responses). This represents
a factor of improvement recall B / recall A of 0.3/0.215 = 1.4
and precision B / precision A of 0.35/0.232 = 1.5. In both
cases, the t-test for independent two-sample experiments (for
unequal variances and population sizes) showed that the results
are statistically significant with a probability (p-value) of 0.033
for recall and 0.013 for precision. The p-value was calculated
using an online tool1 for a degree of freedom of 64 (the sum of
population sizes −2), a significance level of 0.05, and a one-
tailed hypothesis (there is a reasonable expectation that group
B would perform better than group A). That means, assuming
the null hypothesis that “the different representations of test
reports in both groups have no effect on the resulting scores”
is true, there is a 0.033 resp. 0.013 probability of observing the
same results due to random sampling error. The key figures
are summarised in Table I.2

TABLE I: Statistical data for groups A and B

recall precision
A mean 0.215 0.232
A std dev. 0.196 0.212
B mean 0.3 0.35
B std dev. 0.18 0.209
t-test 1.875 2.284
p-value 0.033 0.013

We investigated more closely which faults in which oper-
ations were detected more frequently by which group. The
numbers are too low to have statistical significance, but suggest
that the differential benefit of using visual contracts is greater
with faults that involve structural features rather than those
that concern attributes and parameter values only, such as
• makeReservation() does not check the of link between

Branch and Client object;
• dropoffCar() does not remove the Reservation object.

The visual representation seems to be less effective for de-
tecting faults in postconditions than in preconditions. In fact,
there are two examples of structural postcondition faults that
were detected with higher frequency by group A than B, i.e.,

1Social Science Statistics, P Value from T Score Calculator, http://www.
socscistatistics.com/pvalues/tdistribution.aspx

2All documents and instructions handed out to both groups as well as
the raw data and detailed calculations are available at http://www.cs.le.ac.
uk/people/amma2/experiment

• cancelReservation() deletes all reservations for the rel-
evant client, rather than only the one specified by the
parameter;

• pickupCar() does not delete the pickup link.
Indeed to understand the structural effect of a rule we have
to spot the differences between its left- and right-hand side,
which can be difficult if the structure is complex and there
are several changes. This could be addressed, for example, by
using different colours to highlight changes.

The highest relative benefit of visual contracts (13 dis-
coveries in group B vs. 1 in group A) was observed for
registerClient() (see top right of Figure 1) where according
to the documentation, the client id returned should have been
formed as city + ” ” + Branch.cMax while in fact was
computed as city + ” ” + Branch.of.size() using the size of
the client list rather than the next free client number cMax.
To detect this problem requires matching information from pre
and postcondition, including the navigation of the link between
Client and Branch object, and the return value. Indeed, one
advantage of visual representations is that they are not linear,
and so able correlate items of information across more than
one dimension.

Threats to Validity: While it is unlikely (see above) that
results are due to random error, the design of the experiment
itself could have biased the outcome. The (self) selection
of participants may have resulted in groups that are not
representative of the software developers normally concerned
with testing tasks or could have provided an advantage to one
of the groups. However, testing is often performed by junior
developers. Many of our MSc students, mostly international
with a broad range of backgrounds, would expect to go into
entry level developer roles after graduation. As stated earlier
we checked that both groups were equally capable based on
their academic performance on a related MSc module that
matched well with the expertise required in this task.

The relatively poor performance overall is a cause for con-
cern. We believe this is due to the limited time to understand
and perform a quite complex task, and the lack of practical
experience of the participants, but also caused by the paper-
based nature of the exercise, where a debugging tool providing
similar representations in a more interactive, navigable way
could improve outcomes. It is worth stressing, however, that
the study does not claim the visual approach to be effective in
absolute terms, only that it works better than the textual one
in this artificial setting. This indicates that it might provide
advantages in related practical tasks as well, but this is yet to
be demonstrated.

There could be bias in the representation of information to
both groups. Of course, since the hypothesis claims that the
visual representation is more useful, this “unfair advantage” is
intended. Apart from that the information provided is equiva-
lent: invocations with actual parameters and returns are shown
textually in both cases, only information on the internal state
(object structure and attribute values) is represented differently,
in group A by query operations listing all accessed objects and
their state and in group B by visual contracts extracted.

http://www.socscistatistics.com/pvalues/tdistribution.aspx
http://www.socscistatistics.com/pvalues/tdistribution.aspx
http://www.cs.le.ac.uk/people/amma2/experiment
http://www.cs.le.ac.uk/people/amma2/experiment


The choice of case study, with its dominance of structural
features and their manipulation rather than computations on
data, limit the validity of results to just such applications. This
is justified by the fact that this is the natural domain for visual
contracts. The NanoXML and JHotDraw case studies provide
further examples of that nature.

D. Scalability

We use two case studies to evaluate scalability to large
numbers of invocations and large object graphs. The case
studies are based on NanoXML and JHotDraw3 , both popular
benchmarks for software testing and analysis, and representa-
tive of the kind of system our method would be appropriate
for, i.e., with significant and dynamic object structures in their
core model. In NanoXML this is the object representation of
the XML tree, for JHotDraw that of graphics’ objects.

NanoXML is a small non-validating XML parser for Java,
which provides a light-weight and standard way to manipu-
late XML documents. We use version 2.2.1 which consists
of three packages and 24 Java classes. We focus on two
classes, XMLElement and XMLAttribute, which provide the
functionality to manipulate XML documents. We monitor all
XMLElement methods, executing 5605 test cases in order to
evaluate the handling of large numbers of invocations. The
original test cases were generated by CodePro4, some modified
and completed manually to improve coverage. These tests
cover 2099 out of 5836 instructions. In Figure 9 we plot
the time taken to execute different batch sizes of tests, from
59 to 2183. Each test generates a single rule instance from
which minimal and maximal rules, multi-objects and con-
straints are extracted. Tracing, contract instance construction
and extraction of minimal rules are essentially linear, as is the
derivation of constraints and multi objects. The construction
of maximal rules requires to compare all rule instances with
shared minimal rules, which is quadratic in the number of rule
instances that share the same effect.

Fig. 9: Scalability for extracting contracts from NanoXML

JHotDraw is a Java GUI framework for technical and
structured graphics, developed as an exercise in good software
design using patterns. We used version 5.3 which has 243

3See http://nanoxml.sourceforge.net/orig/ and www.jhotdraw.org/
4A JUnit test case generator https://developers.google.com/java-dev-tools/

codepro/doc/features/junit/test case generation

classes, focussing on the top level methods for the manipu-
lation of graphs, such as *.addFigure(..), *.DeleteFigure(..),
*.copyFigure(..), *.DecoratorFigure(..) and all undoable ac-
tions in *.CommandMenu.actionPerformed(comExe). We use
GUI testing using WindowTester5 to generate test cases by
recording user interactions. We executed 405 test cases that
cover 9284 of 34710 instructions. Based on the recorded test
cases, the total runtime of the extraction is about 3 hours 15
mins. Scalability is analogous to NanoXML, see Figure 10,
but the quadratic component of maximal rule extraction is less
significant due to the smaller overall number of rule instances.

Fig. 10: Scalability for extracting contracts from JHotDraw

Unlike NanoXML where the number of invocations / con-
tract instances is large but the size of each contract instance
small, JHotDraw produces contract instances up to several
hundreds of objects. Table II shows the number of objects
accessed, number of instances, maximal rules, and rules with
MO created (with total size in terms of numbers of objects).

TABLE II: JHotDraw objects accessed and processed for
construction of contracts

executed instance max MO
Executed method signature objects rules rules rules
CopyCommand.execute() 20150 16(400) 3(80) 0
add(Figure) 11106 24(332) 2(26) 0
DeleteCommand.execute() 494971 15(6259) 2(828) 1 (207)
DecoratorFigure.decorate(Figure) 2215 20(90) 2(10) 0
UndoableCommand.execute() 651671 60(19060) 10(2088) 1 (209)

number (and size) of rules

Based on these results we conclude that scalability may be
acceptable for batch processing moderately sized test suites,
but not necessarily for interactive testing. In applications to
program understanding and debugging, however, where the
human effort is significant, the time taken to prepare a more
effective representation for inspection is likely to pay off, and
our user study indicates that such benefits may be expected.
The number of cases where multi objects could be identified is
relatively small (2 out of 19 maximal rules) but they covered
a large number of objects that may be hard to survey without
this added level of abstraction.

The overall evaluation provides some confidence in the
validity of the technology, the usefulness of the results and
the scalability of the tool, but these aspects were evaluated

5A tool to record GUI tests for Swing applications, https://developers.
google.com/java-dev-tools/wintester/html/gettingstarted/swing sampletest

http://nanoxml.sourceforge.net/orig/
www.jhotdraw.org/
https://developers.google.com/java-dev-tools/codepro/doc/features/junit/test_case_generation
https://developers.google.com/java-dev-tools/codepro/doc/features/junit/test_case_generation
https://developers.google.com/java-dev-tools/wintester/html/gettingstarted/swing_sampletest
https://developers.google.com/java-dev-tools/wintester/html/gettingstarted/swing_sampletest


through separate experiments on a range of different cases.
There is no direct evaluation of the usability of the tool or
of the absolute effectiveness of the approach in applications
to program understanding and testing because such claims are
beyond the scope of the paper.

IV. RELATED WORK

Reverse engineering visual contracts is a process of learning
rules from transformations. This has been suggested in a
number of areas, including the modelling of real-word business
processes [11], biochemical reactions [12] and model trans-
formations [13]. Although related in the aim of discovering
rules, the challenges vary based on the nature of the graphs
considered, e.g., directed, attributed or undirected graphs, the
availability of typing or identity information, etc. We organise
the discussion in two levels: tracing to construct rule instances
and learning to infer high-level rules with advance features

Model Extraction: Automated reverse engineering is based
on static or dynamic analysis. The static approach, exemplified
by [14], [15], [16], examines the source code only, with
the intention of extracting all possible behaviours. This is
useful for incomplete systems, e.g., components that cannot be
executed independently [15], but limited in its ability to detect
dynamic object-oriented behaviours such as dynamic binding.
The drawback of a dynamic approach, such as ours but
also [17], [18], [19], is that the extracted model represents only
those behaviours that are actually executed. In particular [19]
uses AspectJ for extracting a context-free graph grammar
but their use of graph grammars is for representing nested
hierarchical call graphs, not to model the behaviour of the
system in terms of transformations on objects.

Learning Models from Observations: [11] propose mining
algorithms for graph transformation systems from transition
systems. Their context algorithm provides similar outputs
to our inferred maximal rule, but we differ in the strategy
used. Their construction relies on extending the minimal rule
by adding matched context elements. Our approach is the
opposite, based on cutting down unmatched contexts from a
chosen contract instance, which makes it easier to maintain
the graph structure as valid against the type-graph. To the best
of our knowledge, no work has been done on inferring multi-
objects for visual contracts.

In [12] source and target graphs represent networks of
biomolecules. The authors aim to discover rules modelling
reactions. They extract the minimal rule by best sub-graph
matching and adopt a statistical approach to rate context. Our
approach is simpler in that the minimal rule is determined by
tracing and we do not deal with uncertainty of context.

Considering approaches to learning model transforma-
tions [20], we distinguish in-place where source and target
have the same metamodel and out-place transformations where
the metamodels are different [21]. For learning out-place trans-
formations, [13] use input-output pairs representing the result
of a transformation process rather than a single step. [22], [23],
[24] also address the learning of out-place transformations,
while our approach focusses on in-place transformations.

[25] also addressing the learning of in-place transformations
is interactive, requiring confirmation of the rules proposed.
Our approach does not rely on direct user involvement and,
significantly, is not based on a small number of carefully
hand-crafted examples, but on large numbers of observations
extracted from a running system. Therefore, scalability and
the ability to deal with example sets providing incomplete
coverage are important.

Graph pattern mining: An algorithmic problem closely
related to the extraction of rules from example transformations
is graph pattern discovery. Current approaches are statistical
or node signature-based. Finding graph patterns by statistical
means is popular in machine learning [26], but can produce
a large variance depending on the frequency of a pattern. For
instance, an object that is not accessed, but always present in
the context, is considered an important element of the rule.

[27], [28] discuss research in exact and best graph pattern
matching. A crucial point is how to distinguish nodes as
candidates for possible matches. In [29], a node signature for
attributed graphs encodes node/edge types and node attributes.
We use a node signature-based approach with added structural
information and metadata, extended from subgraph to subrule
matching, taking into account shared minimal rules and pa-
rameters.

V. CONCLUSION AND FUTURE WORK

We presented an integrated approach and tool for learning
visual contracts, from instrumentation of Java code and obser-
vation of tests to the derivation of general rules with multi ob-
jects and attribute constraints. It supports the analysis of tests
based on a concise, visual and comprehensive representation
of operations’ behaviour. We have evaluated the validity of the
resulting models, usability and scalability in experiments on
three case studies.

Currently we work on improving the integration of our
tool with Henshin [10] to evaluate extracted contracts more
widely. This involves invoking the model alongside the orig-
inal implementation with the same set of tests, comparing
outputs for consistency. Executing the tests the contracts were
extracted from adds to their validation of correctness, but
more interestingly we can try a range of additional cases
to evaluate how well contracts capture the wider behaviour,
beyond the directly observed. A related idea is the use for
adaptive testing [30] where test cases are generated from
contracts in a cycle of test generation, execution, and contract
extraction.

We also plan to use contract extraction to support testing
and debugging, evaluating their effectiveness for these tasks
more comprehensively. Additionally, we will be investigating
techniques such as Hyper/J [31] to support tracing and extrac-
tion for multithread Java applications.
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