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Abstract. This paper proposes the OnPlan framework for modeling
autonomous systems operating in domains with large probabilistic state
spaces and high branching factors. The framework defines components
for acting and deliberation, and specifies their interactions. It comprises a
mathematical specification of requirements for autonomous systems. We
discuss the role of such a specification in the context of simulation-based
online planning. We also consider two instantiations of the framework:
Monte Carlo Tree Search for discrete domains, and Cross Entropy Open
Loop Planning for continuous state and action spaces. The framework’s
ability to provide system autonomy is illustrated empirically on a robotic
rescue example.

1 Introduction

Modern application domains such as machine-aided robotic rescue operations re-
quire software systems to cope with uncertainty and rapid and continuous change
at runtime. The complexity of application domains renders it impossible to de-
terministically and completely specify the knowledge about domain dynamics
at design time. Instead, high-level descriptions such as probabilistic predictive
models are provided to the system that give an approximate definition of chances
and risks inherent to the domain that are relevant for the task at hand.

Also, in contrast to classical systems, in many cases there are numerous dif-
ferent ways for a system to achieve its task. Additionally, the environment may
rapidly change at runtime, so that completely deterministic behavioral specifi-
cations are likely to fail. Thus, providing a system with the ability to compile a
sensible course of actions from a high-level description of its interaction capabil-
ities is a necessary requirement to cope with uncertainty and change.

One approach to deal with this kind of uncertain and changing environments
is online planning. It enables system autonomy in large (or even infinite) state
spaces with high branching factors by interleaving planning and system action
execution (see e.g. [1–3]). In many domains, action and reaction are required very
often, if not permanently. Resources such as planning time and computational
power are often limited. In such domains, online planning replaces the require-
ment of absolute optimality of actions with the idea that in many situations it
is sufficient and more sensible to conclude as much as possible from currently
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available information within the given restricted resources. One particular way
to perform this form of rapid deliberation is based on simulation: The system is
provided with a generative model of its environment. This enables it to evaluate
potential consequences of its actions by generating execution traces from the
generative model. The key idea to scale this approach is to use information from
past simulations to guide the future ones to directions of the search space that
seem both likely to happen and valuable to reach.

In this paper we propose the OnPlan framework for modeling autonomous
systems operating in domains with large or infinite probabilistic state spaces
and high branching factors. The remainder of the paper is outlined as follows.
In Section 2 we introduce the OnPlan framework for online planning, define
components for acting and deliberation, and specify their interactions. We then
extend this framework to simulation-based online planning. In Sections 3 and
4 we discuss two instantiations of the framework: Monte Carlo Tree Search for
discrete domains (Section 3), and Cross Entropy Open Loop Planning for con-
tinuous state and action spaces (Section 4). We illustrate each with empirical
evaluations on a robotic rescue example. Section 5 concludes the paper and out-
lines potential lines of further research in the field.

2 A Framework for Simulation-Based Online Planning

In this Section we propose the OnPlan framework for modeling autonomous
systems based on online planning. We introduce the basic concept in Section
2.1. In Section 2.2, we will refine the basic framework to systems that achieve
autonomy performing rapidly repeated simulations to decide on their course of
action.

2.1 Online Planning

Planning is typically formulated as a search task, where search is performed
on sequences of actions. The continuously growing scale of application domains
both in terms of state and action spaces requires techniques that are able to (a)
reduce the search space effectively and (b) compile as much useful information
as possible from the search given constrained resources. Classical techniques for
planning have been exhaustively searching the search space. In modern applica-
tion scenarios, the number of possible execution traces is too large (potentially
even infinite) to get exhaustively searched within a reasonable amount of time
or computational resources.

The key idea of online planning is to perform planning and execution of
an action iteratively at runtime. This effectively reduces the search space: A
transition that has been executed in reality does not have to be searched or
evaluated by the planner any more. Online planning aims at effectively gathering
information about the next action that the system should execute, exploiting the
available resources such as deliberation time and capabilities as much as possible.
Algorithm 1 captures this idea informally. In the following, we will introduce the
OnPlan framework that formalizes the idea of online planning.
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Algorithm 1 Online Planning (Informally)

1: while true do
2: observe state
3: plan action
4: execute action
5: end while

Framework Specification The OnPlan framework is based on the following
requirements specification.

1. A set Sreal which represents states of real environments. While this is a part
of the mathematical formulation of the problem domain, it is not represented
by a software artifact in the framework.

2. A set Agent that represents deliberating and acting entities.
3. Representations of the agent’s observable state space S and the agent’s action

space A. The observable state space S represents information about the
environment Sreal that is relevant for an agent and its planning process. It
is in fact an abstraction of the environment.

4. A function observe : Agent×Sreal → S that specifies how an agent perceives
the current state of its environment. This function defines the abstraction
and aggregation of information available to an agent in its real environ-
ment to an abstract representation of currently relevant information. In some
sense, the function observe comprises the monitor and analyze phases of the
MAPE-K framework for autonomous computing [4].

5. A function actionRequired : Agent×S → Bool that is used to define triggering
of action execution by an agent. A typical example is to require execution of
an action after a certain amount of time has passed since the last executed
action.

6. For each action in A, we require a specification of how to execute it in the
real domain. To this end, the framework specification comprises a function
execute : A × Sreal → Sreal. This function defines the real (e.g. physical)
execution of an agent’s action.

7. We define a set RewardFunction of reward functions of the form R : S → R.
A reward function is an encoding of the system goals. States that are valuable
should be mapped to high values by this function. States that should be
avoided or even are hazardous should provide low values.

8. We define a set Strategy of strategies. Each strategy is a probability distribu-
tion Pact(A|S) of actions over states. In the following, we will often omit the
signature and simply write Pact for Pact(A|S). It defines the probability that
an agent executes a particular action in a given state. If an agent a ∈ Agent
in state scurrent ∈ S is required to act (i.e. when actionRequired(a, scurrent)
returns true), then the action that is executed is sampled from the dis-
tribution: a ∼ Pact(·|scurrent), where Pact(·|scurrent) denotes the probability
distribution of actions in state scurrent and ∼ denotes sampling from this
distribution. Sampling can be seen as non-deterministic choice proportional
to a distribution.
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9. A set Planner of planning entities. Planning is defined by a function plan :
Planner × S × RewardFunction × Strategy → Strategy. A planning entity
refines its strategy Pact w.r.t. its currently observed abstract state and a
reward function to maximize expected cumulative future reward. It is usually
defined as the sum of rewards gathered when following a strategy.

Framework Model Figure 1 shows a class diagram for the OnPlan framework
derived from the mathematical specification. It comprises classes for the main
components Agent and Planner. States and actions are also represented by a class
each: states s ∈ S are represented by objects of class State, actions a ∈ A by
objects of class Action. Probability distributions of actions over states (defining
potential agent strategies) are modeled by the class Strategy. Reward functions
are represented by object of class RewardFunction. All classes are abstract and
must be implemented in a concrete online planning system.

Note that OnPlan supports multiple instances of agents to operate in the
same domain. While inter-agent communication is not explicitly expressed in the
framework, coordination of agents can be realized by emergent system behavior:
As agents interact with the environment, the corresponding changes will be
observed by other agents and incorporated into their planning processes due to
the online planning approach.

RewardFunction

getReward(State) : Real

Strategy

sampleAction(State) : Action

Planner

plan() : Strategy

Agent

observe() : State
actionRequired() : Bool

Action

duration : Real

execute()

State

« use »

state
1

rewardFct
1

state
1

« use »

strategy
1

planner
1..*

Fig. 1: Basic components of OnPlan

Component Behavior Given the specification and the component model, we
are able to define two main behavioral algorithms for Agent and Planner that
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are executed in parallel: Agent ‖ Planner. I.e., this design decouples informa-
tion aggregation and execution (performed by the agent) from the deliberation
process (performed by the planner).

Algorithms 2 and 3 show the behavior of the respective components. We
assume that all references shown in the class diagram have been initialized. Both
behaviors are infinitely looped. An agent observes current state and passes it to
its corresponding planning component as long as no action is required (Algorithm
2, lines 2–5). When action is required – e.g. due to passing of a certain time frame
or occurrence of a particular situation/event – the agent queries the planner’s
current strategy for an action to execute (line 6). Finally, the action proposed
by the strategy is executed (line 7) and the loop repeats.

The behavior of the planning component (Algorithm 3) repeatedly calls a
particular planning algorithm that refines the strategy w.r.t. current state and
specified reward function. We will define a particular class of planning algorithms
in more detail in Section 2.2.

Algorithm 2 Agent Component Behavior

Require: Local variable action : Action
1: while true do
2: while !actionRequired() do
3: state ← observe() . observe environment
4: planner.state ← state . inform planner
5: end while
6: action ← planner.strategy.sampleAction(state) . sample from strategy
7: action.execute() . execute sampled action
8: end while

Algorithm 3 Planner Component Behavior

1: while true do
2: strategy ← plan()
3: end while

Framework Plug Points The OnPlan framework provides the following plug
points derived from the mathematical specification. They are represented by
abstract operations such that domain specific details have to be implemented by
any instantiation.

1. The operation Agent::observe() : State. This operation is highly dependent
on the sensory information available and is therefore implemented in a frame-
work instantiation.
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2. The operation Agent::actionRequired() : Bool. The events and conditions
that require an agent to act are highly depending on the application do-
main. The timing of action execution may even be an optimization problem
for itself. The state parameter of the mathematical definition is implicitly
given by the reference of an agent to its state.

3. The operation Action::execute(). Action execution is also highly dependent
on technical infrastructure and physical capabilities of an agent.

4. The operation RewardFunction::getReward(State) : Real. Any concrete im-
plementation of this operation models a particular reward function.

5. The operation Strategy::sampleAction(State) : Action should realize sam-
pling of actions from the strategy w.r.t. to a given state. It depends on the
used kind of strategy, which may be discrete or continuous, unconditional or
conditional, and may even be a complex combination of many independent
distributions.

6. Any implementation of the operation Planner::plan() should realize a con-
crete algorithm used for planning. Note that the arguments of the function
plan from the mathematical specification are modeled as references from the
Planner class to the classes State, RewardFunction and Strategy. We will dis-
cuss a particular class of simulation-based online planners in the following
Section 2.2.

2.2 Simulation-Based Online Planning

We now turn our focus on a specific way to perform online planning: simulation
based online planning, which makes use of a simulation of the domain. It is used
by the planner to gather information about potential system episodes (i.e. exe-
cution traces). Simulation provides information about probability and value of
the different state space regions, thus guiding system behavior execution. After
simulating its possible choices and behavioral alternatives, the agent executes
an action (in reality) that performed well in simulation. The process of plan-
ning using information from the simulation and action execution is iteratively
repeated at runtime, thus realizing online planning.

A simple simulation based online planner would generate a number of ran-
domly chosen episodes and average the information about obtained reward. How-
ever, as it is valuable to generate as much information as possible with given
resources, it is a good idea to guide the simulation process to high value regions
of the search space in a principled way. Using variance reduction techniques such
as importance sampling, this guidance can be realized using information from
previously generated episodes [5–7].

Framework Specification In addition to the specification from Section 2.1,
we extend the OnPlan framework requirements to support simulation-based
online planning.

1. For simulation based planning, actions a ∈ A require a duration parameter.
If no such parameter is specified explicitly, the framework assumes a duration
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of one for the action. We define a function d : A → R that allows to access
the duration of an action.

2. OnPlan requires a set Simulation of simulations of the environment. Each
simulation is a probability distribution of the form Psim(S|S×A). It takes the
current state and the action to be executed as input, and returns a potential
successor state according to transition probability. Simulating the execution
of an action a ∈ A in a state s ∈ S yields a successor state s′ ∈ S. Simula-
tion is performed by sampling from the distribution Psim: s′ ∼ Psim(·|(s, a)),
where Psim(·|(s, a)) denotes the probability distribution of successor states
when executing action a in state s and ∼ denotes sampling from this dis-
tribution. Note that in the instantiations of the framework we discuss in
Sections 3 and 4 we work with a fixed simulation of the environment. It does
not change in the course of system execution, in contrast to the strategy.

3. We require a set SimPlanner ⊆ Planner of simulation based planners.
4. Any simulation based planner defines a number emax ∈ N+ of episodes gen-

erated for each refinement step of its strategy.
5. Any simulation based planner defines a maximum planning horizon hmax ∈

N+ that provides an upper bound to its simulation depth. A low planning
horizon results in fast but shallow planning – long term effects of actions are
not taken into account when making a decision. The planning horizon lends
itself to be dynamically adapted, providing flexibility by allowing to choose
between fast and shallow or more time consuming, but deep planning taking
into account long term consequences of actions.

6. Any simulation based planner defines a discount factor γ ∈ [0; 1]. This factor
defines how much a planner prefers immediate rewards over long term ones
when refining a strategy. The lower the discount factor, the more likely the
planner will built a strategy that obtains reward as fast as possible, even if
this means an overall degradation of payoff in the long run. See Algorithm
5 for details on discounting.

7. We define a set E ⊆ (S × A)∗ of episodes to capture simulated system
execution traces. We also define a set Ew ⊆ E × R of episodes weighted by
the discounted sum of rewards gathered in an execution trace. The weight of
an episode is defined as its cumulative discounted reward, which is given by
the recursive function RE : E → R as shown in Equation 1. Let s ∈ S, a ∈ A,
e, e′ ∈ E where e = (s, a) :: e′, and let R : S → R be a reward function.

RE(nil) = 0

RE(e) = R(s) + γd(a)RE(e
′) (1)

An element of Ew is then uniquely defined by (e,RE(e)).
8. In the OnPlan framework, the simulation-based planner uses the simulation
Psim to generate a number of episodes. The resulting episodes are weighted
according to rewards gathered in each episode, w.r.t. the given reward func-
tion of the planner. Simulation is driven by the current strategy Pact. This
process is reflected by following function.

generateEpisode : SimPlanner×Simulation×Strategy×RewardFunction→ Ew
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9. Importance sampling in high value regions of the search space is realized
by using the resulting weighted episodes to refine the strategy such that
its expected return (see Section 2.1) is maximized. The goal is to incre-
mentally increase the expected reward when acting according to the strat-
egy by gathering information from simulation episodes in an efficient way.
This updating of the strategy is modeled by the function updateStrategy :
SimPlanner× 2Ew × Strategy→ Strategy.

Framework Model Using mathematically justified approaches for strategy re-
finement provides a solution to the notorious exploration-exploitation tradeoff
(see e.g. [8]): While learning (or planning), an agent has to decide whether it
should exploit knowledge about high-value regions of the state space, or whether
it should use its resources to explore previously unknown regions to potentially
discover even better options. We will discuss two instances of OnPlan that pro-
vide principled and mathematically founded methods that deal with the question
where to put simulation effort in Sections 3 and 4.

Figure 2 shows the components of the OnPlan framework for simulation-
based online planning. It comprises the components of the basic OnPlan frame-
work (Section 2.1), and additionally defines a specialization SimPlanner of the
Planner class, and a class Simulation that models simulations of the form Psim.
The parameters emax, hmax and γ are modeled as attributes of the SimPlanner
class. We further assume a class WEpisode that models weighted episodes. As
this is a pure data container, it is omitted in the class diagram shown in Figure
2.

The SimPlanner class also provides two concrete operations. The operation
SimPlanner::plan() : Strategy realizes the corresponding abstract operation of
the Planner class and is a template method for simulation based planning (see
Algorithm 4). Episodes are modeled by a type Episode, weighted episodes by
a type WEpisode respectively. The function generateEpisode is realized by the
concrete operation generateEpisode() : WEpisode of the SimPlanner class and
used by the plan operation. The function updateStrategy from the mathematical
specification is realized as abstract operation updateStrategy(Set(WEpisode)) in
the class SimPlanner.

Simulation-Based Planning SimPlanner realizes the plan operation by using
a simulation to refine its associated strategy. We formalize the algorithm of the
plan operation in the following. Algorithm 4 shows the simulation-based planning
procedure. The algorithm generates a set of episodes weighted by rewards (lines
2 – 5). This set is the used to refine the strategy (line 6). The concrete method
to update the strategy remains unspecified by OnPlan.

Algorithm 5 shows the generation of a weighted episode. After initialization
(lines 2 – 5), an episode is built by repeating the following steps for hmax times.

1. Sample an action a ∈ A from the current strategy w.r.t. the current simula-
tion state s ∈ S, i.e. a ∼ Pact(s) (line 7).
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Simulation

sampleSuccessor(State, Action) : State

SimPlanner

eMax : Integer
hMax : Integer
gamma : Real

plan() : Strategy
generateEpisode() : WEpisode
updateStrategy(Set(WEpisode)) : Strategy

RewardFunction

getReward(State) : Real

Strategy

sampleAction(State) : Action

Planner

plan() : Strategy

Agent

observe() : State
actionRequired() : Bool

Action

duration : Real

execute()

State

« use »

« use »

« use »

  simulation
1

state
1

rewardFct
1

state
1

« use »

strategy
1

planner
1..*

Fig. 2: Components of the OnPlan framework

Algorithm 4 Simulation-based planning

Require: Local variable Ew : Set(WEpisode)
1: procedure plan
2: Ew ← ∅
3: for 0 ... eMax do
4: Ew ← Ew ∪ generateEpisode()
5: end for
6: return updateStrategy(Ew)
7: end procedure
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2. Store current simulation state and selected action in the episode (line 8).
3. Simulate the execution of a. That is, use the action a sampled from the

strategy in the previous step to progress the current simulation state s, i.e.
s ∼ Psim(s, a) (line 9).

4. Add the duration of a to the current episode time t ∈ R. This is used for
time-based discounting of rewards gathered in an episode (line 10).

5. Compute the reward of the resulting successor state discounted w.r.t. current
episode time t and the specified discount factor γ, and add it to the reward
aggregation (line 11).

After simulation of hmax steps, the episode is returned weighted by the aggre-
gated reward (line 13).

Algorithm 5 Generating weighted episodes

Require: Local variables s : State, r, t : Real, e : Episode, a : Action
1: procedure generateEpisode
2: s ← state
3: r ← rewardFct.getReward(s)
4: t ← 0
5: e ← nil
6: for 0 ... hMax do
7: a ← strategy.sampleAction(s)
8: e ← e::(s, a)
9: s ← simulation.sampleSuccessor(s, a)

10: t ← t + a.duration
11: r ← r + gammat · rewardFct.getReward(s)
12: end for
13: return (e, r)
14: end procedure

Framework Plug Points In addition to the plug points given by the basic
framework (see Section 2.1), the framework extension for simulation-based online
planning provides the following plug points.

1. The operation Simulation::sampleSuccessor(State, Action) : State. This op-
eration is the interface for any implementation of a simulation Psim. The
concrete design of this implementation is left to the designer of an instance
of the framework. Both simulations for discrete and continuous state and
action spaces can instantiate OnPlan. Note that, as Psim may be learned
from runtime observations of domain dynamics, this operation may be inten-
tionally underspecified even by an instantiated system. Also note that the
implementation of this operation does not necessarily have to implement the
real domain dynamics. As simulation based planning typically relies on sta-
tistical estimation, any delta of simulation and reality just decreases estima-
tion quality. While this also usually decreases planning effectiveness, it does
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not necessarily break planning completely. Thus, our framework provides
a robust mechanism to deal with potentially imprecise or even erroneous
specifications of Psim.

2. The operation SimPlanner::updateStrategy(Set(WEpisode)) : Strategy. In prin-
ciple, any kind of stochastic optimization technique can be used here. Exam-
ples include Monte Carlo estimation (see e.g. [6]) or genetic algorithms. We
will discuss two effective instances of this operation in the following: Monte
Carlo Tree Search for discrete domains in Section 3, and Cross Entropy Open
Loop Planning for domains with continuous state-action spaces in Section 4.

Figure 3 shows an informal, high-level summary of OnPlan concepts and
their mutual influence. Observations result in the starting state of the simula-
tions. Simulations are driven by the current strategy and yield episodes. The
(weighted) episodes are used to update the strategy. The strategy yields actions
to be executed. Executed actions influence observations made by an agent.

Fig. 3: Mutual influence of OnPlan concepts

In the following Sections, we will discuss two state-of-the-art instances of the
OnPlan framework for simulation-based online planning introduced in Section
2. In Section 3, we will illustrate Monte Carlo Tree Search (mcts) [9] and its
variant uct [10] as in instantiation of OnPlan in discrete domains. in Section 4,
we will discuss Cross Entropy Open Loop Planning (ceolp) [3, 11] as an instance
of OnPlan for simulation based online planning in continuous domains with
infinite state-actions spaces and branching factors.

3 Framework Instantiation in Discrete Domains

In this Section we discuss Monte Carlo Tree Search (mcts) as an instantiation
of the OnPlan framework in discrete domains.
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3.1 Monte Carlo Tree Search

Monte Carlo Tree Search (mcts) provided a framework for the first discrete
planning approaches to achieve human master-level performance in playing the
game Go autonomously [12]. mcts algorithms are applied to a vast field of appli-
cation domains, including state-of-the-art reinforcement learning and planning
approaches in discrete domains [2, 9, 13].

mcts builds a search tree incrementally. Nodes in the tree represent states
and action choices, and in each node information about the number of episodes
an its expected payoff is stored. mcts iteratively chooses a path from the root to
leaf according to these statistics. When reaching a leaf, it simulates a potential
episode until search depth is reached. A new node is added to the tree as a child
of the leaf, and the statistics of all nodes that were traversed in this episode are
updated according to the simulation result.

Figure 4 illustrates an iteration of mcts. Each iteration consists of the fol-
lowing steps.

1. Nodes are selected w.r.t. node statistics until a leaf is reached (Figure 4a).
2. When a leaf is reached, simulation is performed and the aggregated reward

is observed (Figure 4b).
3. A new node is added per simulation, and node statistics of the path selected

in step (a) are updated according to simulation result (Figure 4c).

Steps (1) to (3) are repeated iteratively, yielding a tree that is skewed towards
high value regions of the state space. This guides simulation effort towards cur-
rently promising search areas.

3.2 UCT

uct (upper confidence bounds applied to trees) is an instantiation of mcts
that uses a particular mechanism for action selection in tree nodes based on
regret minimization [10]. uct treats action choices in states as multi-armed
bandit problems. Simulation effort is distributed according to the principle of
optimism in the face of uncertainty [15]: Areas of the search space that have
shown promising value in past iterations are more likely to be explored in future
ones. uct uses the mathematically motivated upper confidence bound for regret
minimization ucb1 [16] to formalize this intuition. The algorithm stores the
following statistics in each node.

1. x̄a is the average accumulated reward in past episodes that contained the
tuple (s, a), where s is the state represented by the current node.

2. ns is the number of episodes that passed the current state s ∈ S.
3. na is the corresponding statistic for each action a that can be executed in s.

Equation 2 shows the selection rule for actions in uct based on node statis-
tics. Here, c ∈ R is a constant argument that defines the weight of exploration
(second term) against exploitation (first term). The equation provides a for-
malization of the exploration-exploitation tradeoff – the higher the previously
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x̄0, n0

x̄1, n1

x̄3, n3 x̄4, n4

x̄2, n2

(a) Selection

x̄0, n0

x̄1, n1

x̄3, n3 x̄4, n4

(e, r) ∈ Ew

Pact(A|S)

x̄2, n2

(b) Simulation

x̄′
0, n0 + 1

x̄′
1, n1 + 1

x̄3, n3 x̄′
4, n4 + 1

r, 1

(e, r) ∈ Ew

x̄2, n2

(c) Update

Fig. 4: Illustration of Monte Carlo Tree Search. (e, r) ∈ Ew is a weighted episode
as generated by Algorithm 5. Nodes’ mean values can be updated incrementally
(see e.g. [14]): x̄′i = x̄i + r−x̄i

ni+1 .
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observed reward of a child node, the higher the corresponding uct score. How-
ever, the more often a particular child node is chosen by the search algorithm,
the smaller the second term becomes. At the same time, the second term in-
creases for all other child nodes. Thus, child nodes that have not been visited
for some time become more and more likely to be included into future search
episodes.

UCT(s, a) = x̄a + 2c

√
2 lnns
na

(2)

3.3 Framework Instantiation

Monte Carlo Tree Search instantiates the OnPlan framework for simulation-
based online planning based on the following considerations.

1. Strategy::sampleAction(State) : Action is instantiated by the action selection
mechanism used in mcts. As mcts is a framework itself, the particular choice
is left underspecified. Examples of action selection mechanisms include uni-
form selection (all actions are chosen equally often), ε-greedy selection (the
action with best average payoff is selected, with an ε probability to chose a
random action) or selection according to uct (see 2). Note that also proba-
bilistic action selection strategies can be used, providing support for mixed
strategies in a game-theoretic sense. Simulation outside the tree is performed
according to an initial strategy. Typically, this is a uniformly random action
selection. However, given expert knowledge can also be integrated here to
yield potentially more valuable episodes with a higher probability.

2. SimPlanner::updateStrategy(Set(WEpisode)) : Strategy adds the new node to
the tree and updates all node statistics w.r.t. the simulated episode weighted
by accumulated reward. Note that a single episode suffices to perform an
update. Different mechanisms for updating can be used. One example is
averaging rewards as described above. Another option is to set nodes’ values
to the maximum values of their child nodes, yielding a Monte Carlo Bellman
update of the partial state value function induced by the search tree [2].

3. While multiple simulations may be performed from a node when leaving
the tree, typically the update (adding a node and updating all traversed
nodes’ statistics) is performed after each iteration. Thus, when using mcts
for simulation-based planning, the number of episodes per strategy update
emax is usually set to one.

4. The remaining plug-points – execute of class Action, getReward of class Re-
wardFunction and sampleSuccessor of class Simulation – have to be instan-
tiated individually for each domain and/or system use case.

3.4 Empirical Results

We implemented an instantiation of OnPlan with uct in an example search-
and-rescue scenario to show its ability to generate autonomous goal-driven be-
havior and its robustness w.r.t. unexpected events and changes of system goals
at runtime.
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VictimRobot

capacity : Integer

Position

fire : Boolean
safe : Boolean

[*] connections

[*] victims

[0..1] position

[*] victims

[1] position

[*] robots

Fig. 5: Class diagram of the example domain.

Example Domain Figure 5 shows a class diagram of the scenario. A number of
arbitrarily connected positions defines the domains topology. At some positions
there is an ambulance (pos.safe = true). Positions may be on fire, except those
that host an ambulance, i.e. class Position has the following invariant: pos.safe
implies not(pos.fire) for all pos ∈ Position. Fires ignite or cease probabilistically
depending on the number of fires at connected neighbor positions. A position may
host any number of robots and victims. A robot can carry a number of victims
that is bounded by its capacity. A carried victim does not have a position. A
robot has five types of actions available.

1. Do nothing.
2. Move to a neighbor position that is not on fire.
3. Extinguish a fire at a neighbor position.
4. Pick up a victim at the robot’s position if capacity is left.
5. Drop a carried victim at the robot’s position.

All actions have unit duration. Each action may fail with a certain probabil-
ity, resulting in no effect. Note that the number of actions available to a robot in
a particular situation may vary due to various possible instantiations of action
parameters (such as the particular victim that is picked up or the concrete target
position of movement).

Experimental Setup In all experiments, we generated randomly connected
topologies with 20 positions with a connectivity of 30%, resulting in 6 to 7 con-
nections per position on average. We randomly chose 3 safe positions, and 10
that were initially on fire. 10 victims were randomly distributed on the non-safe
positions. We placed a single robot agent at a random starting position. All po-
sitions were reachable from the start. Robot capacity was set to 2. The robot’s
actions could fail with a probability of up to 5%, chosen uniformly distributed
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for each run. One run consisted of 80 action executed by the agent. Results for
all experiments have been measured with the statistical model checker Multi-
VeStA [17]. In all experiments, we set the maximum planning depth hmax = 20.
The discount factor was set to γ = 0.9. As mcts was used for planning, we set
emax = 1: The tree representing Pact(A|S) is updated after every episode. uct’s
exploratory constant was set to c = 20 in all experiments.

In the following experiments, we let the agent deliberate for 0.2 seconds. That
is, actionRequired() returned true once every 0.2 seconds. I.e. each action was
planned for 0.2 seconds, incorporating information from past planning steps.

As long as not stated otherwise, we provided a reward of 100 to the planning
agent for each victim that was located at a safe position. Let I : Bool → {0, 1}
be an indicator function that yields one if the argument is defined and true, and
zero otherwise. Let victims : S → 2Victim be the set of all victims present in
a given state. Then, for any state s ∈ S the reward function was defined as in
Equation 3.

R(s) = 100 ·
∑

v∈victims(s)

I(v.position.safe) (3)

The reward function instantiates the getReward operation of class Reward-
Function in the OnPlan framework. Action implementations instantiate the ex-
ecute operations of the corresponding subclasses of the Action class (e.g. move,
pick up victim, etc.). A simulation about domain dynamics is provided to the
simulation-based planner. It instantiates the sampleSuccessor operation of the
Simulation class.

Estimation of Expected Future Reward In a preliminary experiment, we
observed the estimation of mean expected future reward. The mcts planner in-
creases expected future reward up to step 60. Onwards from step 60 it decreases
as the agent was informed about the end of the experiment after 80 steps. The
planning depth hmax = 20 thus detects the end of an experiment at step 30. The
mean expected reward for executed actions is shown in Figure 6.

We also measured the increase in accuracy of estimation of expected reward
by mcts. We measured the normalized coefficient of variation (CV) to investigate
estimation accuracy, as the mean of expected future reward is highly fluctuating
in the course of planning. The CV is a standardized measure of dispersion of data
from a given distribution and independent from the scale of the mean, in contrast
to standard deviation. Normalization of the CV renders the measurement robust
to the number of samples. The normalized CV of a sample set is defined as
quotient of samples’ standard deviation s and their mean x̄, divided by the
square root of available samples n. Note that the CV decreases as n increases,
reflecting the increased accuracy of estimation as more samples become available.

s/x̄√
n

(4)

We recorded mean r̄ and standard deviation sa of the expected reward gath-
ered from simulation episodes for each potential action a, along with the number
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Fig. 6: Expected accumulated future reward at each step by the mcts planner.

of episodes where a was executed at the particular step na. The normalized CV
of an action then computes as follows.

sa/r̄√
na

(5)

Figure 7 shows the normalized CV w.r.t. expected reward of the actions
executed by the agent at a given step in the experiment. We observed that mcts
steadily improves its estimation accuracy of expected reward. After about 20
steps, estimation noise resembles the noise level inherent to the domain (up to
5% action failures and average spread of fires).

Autonomous System Behavior In a baseline experiment, we evaluated On-
Plan’s ability to synthesize autonomous behavior according to the given reward
function. Figure 8 shows the average ratio of victims that was at a safe position
w.r.t. to the number of actions performed by the agent, within a 95% confidence
interval. The Figure also shows the ratio of victims that are located at a burning
position. No behavioral specification besides the instantiation of our planning
framework has been provided to the agent. It can be seen that the planning
component is able to generate a strategy that yields sensitive behavior: The
robot transports victims to safe positions autonomously.

Robustness to Unexpected Events In a second experiment we exposed the
planning agent to unexpected events. This experiment is designed to illustrate
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After about 20 steps, estimation noise resembles the noise level inherent to the
domain (up to 5% action failures and average spread of fires).
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Fig. 8: Autonomous agent performance based on an instantiation of the OnPlan
framework with a mcts planner. Reward is given for victims at safe positions.
Shaded areas show 0.95 confidence intervals.
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robustness of the OnPlan framework to events that are not reflected by the sim-
ulation Psim provided to the planning component. In this experiment, all victims
currently carried by the robot fall to the robot’s current position every 20 steps.
Also, a number of fires ignite such that the total number of fires accumulates to
10. Note that these events are not simulated by the agent while planning. Figure
9 shows the agent’s performance in the presence of unexpected events with their
95% confidence intervals. It can be seen that transportation of victims to safety
is only marginally impaired by the sudden unexpected changes of the situation.
As mcts is used in an online manner that is based on replanning of at each step,
the planning framework is able to recover from the unexpected events efficiently.
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Fig. 9: Autonomous agent performance despite unexpected events at runtime.
Every 20th step, all victims carried by the agent fall to the ground, and the
number of fires raises to 10. Shaded areas show 0.95 confidence intervals.

System Goal Respecification A third experiment highlights the framework’s
ability to adapt behavior synthesis to a system goal that changes at runtime.
Before step 40, the agent was given a reward for keeping the number of fires low,
resulting in a reduction of the number of burning victims. Onwards from step 40,
reward was instead provided for victims that have been transported to safety.
Besides respecification of the reward function to reflect the change of system
goal no additional changes have been made to the running system. I.e., only
the rewardFct reference of the planner was changed. This change impacts the
weighting of episodes (see Algorithm 5, lines 3 and 11). The different weighting
in turn impacts the updating of the planner’s current strategy.
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Figure 10 shows system performance in this experiment, together with 95%
confidence intervals. The results indicate that the framework indeed is able to
react adequately to the respecification of system goals. As system capabilities
and domain dynamics remain the same throughout the experimental runtime, all
high-level specifications such as action capabilities (i.e. the action space A) and
knowledge about domain dynamics (i.e. the generative model Psim) are sensibly
employed to derive valuable courses of actions, regardless of the current system
goal. OnPlan thus provides a robust system adaptation mechanism for runtime
goal respecifications.
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Fig. 10: Autonomous agent performance with a respecification of system goal at
runtime. Before step 40, the agent is given a reward for keeping the number of
fires low, resulting in a reduction of the number of burning victims. Onwards
from step 40, reward is provided for victims that have been transported to safety.
Shaded areas show 0.95 confidence intervals.

4 Framework Instantiation in Continuous Domains

We now focus on an instantiation of the OnPlan framework that works in
continuous space and action domains. I.e. states and actions are represented as
vectors of real numbers Rn, for some n ∈ N. This means that state and action
spaces are of infinite size. In this section we show how Cross Entropy Open Loop
Planning (ceolp) [11, 3] instantiates our planning framework, and illustrate how
information obtained from simulations in the planning process can be used to
identify promising ares of the search space in continuous domains. ceolp works
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by optimizing action parameters w.r.t. expected payoff by application of the
cross entropy method.

4.1 Cross Entropy Optimization

The cross entropy method for optimization [18, 7] allows to efficiently estimate
extrema of an unknown function f : X → Y via importance sampling. To do so,
an initial probability distribution (that we call sampling distribution) Psample(X)
is defined in a way that covers a large region of the function’s domain. For es-
timating extrema of f , a set of samples x ∈ X is generated w.r.t. the sampling
distribution (i.e. x ∼ Psample(X)). The size of the sample set is a parameter of
the cross entropy method. For all x in the set, the corresponding y = f(x) ∈ Y
is computed. Then samples are weighted w.r.t. their relevance for finding the
function extrema. For example, when trying to find maxima of f, samples x are
weighted according to y = f(x). Typically this involves normalization to keep
sample weights in the [0; 1] interval. We denote the weight of a sample xi by wi.
The weighted sample set is used to update the sampling distribution Psample(X)
by minimizing the distributions’ cross entropy. Minimizing cross entropy yields
a distribution that is more likely to generate samples in X that are located
close to the maxima of f . Minimizing of cross entropy has been shown to be
equivalent to maximizing the likelihood of the samples x weighted by f(x) [18].
Sampling, weighting and building new sampling distributions by maximum like-
lihood estimation are repeated iteratively. This yields an iterative refinement of
the sampling distribution which increases the probability to sample in the region
of the maxima of f , thus providing a potentially better estimate thereof. While
convergence of the CE method has been proven for certain conditions, it is not
easy to establish these conditions in the most practically relevant settings [19].
However, empirical results indicate that the CE method provides a robust opti-
mization algorithm which has been applied successfully in a variety of domains
(see e.g. [18, 20, 21])

Figure 11 illustrates the idea of iterative refinement of the sampling distribu-
tion to increase the probability to generate samples in the region of the maxima
of the unknown function f . In this example, a Gaußian sampling distribution
was chosen. The sampling distribution is shown as solid line, while the unknown
target function is shown as dashed line. While in this Figure the target function
has a Gaußian form as well, this is not required for the cross entropy method to
work. Initially, the sampling distribution has a large variance, providing a well
spread set of samples in the initial generation. Then the samples are weighted
w.r.t. their value f(x) and a maximum likelihood estimate is built from the
weighted samples. This yields a Gaußian sampling distribution that exposes less
variance than the initial one. Repeating this process finally yields a distribution
that is very likely to produce samples that are close to the maximum of the
unknown target function.

Sampling from a Gaußian distribution can for example be done via the Box-
Muller method [22]. Equation 6 shows a maximum likelihood estimator for a
Gaußian distribution (µ, σ2), given a set I of n samples ai ∈ A, i ∈ {0, ..., n},
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each weighted by wi ∈ R. This yields a new Gaußian distribution that concen-
trates its probability mass in the region of samples with high weights. Samples
with low weights are less influential on the probability mass of the new distribu-
tion.

µ =

∑
(ai,wi)∈I wiai∑
(aj ,wj)∈I wj

σ2 =

∑
(ai,wi)∈I wi(ai − µ)T (ai − µ)∑

(aj ,wj)∈I wj
(6)

Summarizing, the requirements for the cross entropy method are as follows.

1. A way to weight the samples, i.e. a way to compute f(x) for any given x ∈ X.
2. An update mechanism for the distribution based on the weighted samples

has to be provided. Typically, this is a maximum likelihood estimator for
the sampling distribution.

Note that the cross entropy method is not restricted to a particular form of
probability distribution. Also discrete distributions or other continuous ones than
a Gaußian can be used to model the sampling distribution [18].

4.2 Online Planning with Cross Entropy Optimization

The key idea of ceolp is to use cross entropy optimization on a sequence of
actions. The agent’s strategy Pact(A|S) is thus represented by a vector of multi-
variate Gaußian distributions over the parameter space of the actions A ⊆ RN.

In the context of our framework for simulation-based planning, we want to
find the maxima of a function that maps sequences of actions to expected re-
wards, that is f : A∗ → R. The simulation Psim(S|S×A) and the reward function
R : S → R allow us to estimate f(a) for any given a ∈ A∗: We can generate a
sequence of states states ∈ S∗ by sampling from the simulation. We can then
evaluate the accumulated reward of this state sequence by computing the sum
of rewards gathered in this simulation run:

∑
s∈statesR(s).

In OnPlan, we generate emax episodes and weight them by accumulated
reward as shown in Algorithm 5. The sampling of actions from the strategy (Al-
gorithm 5, line 9) is done by generating a sample from the Gaußian distribution
over action parameters at the position of the strategy vector that matches the
current planning depth (i.e. the number of iteration of the for-loop in Algorithm
5, line 6). The Gaußians that form the strategy Pact(A|S) are updated after
generating and weighting emax episodes, as stated in Algorithm 4. The update is
performed via maximum likelihood estimation for each Gaußian in the strategy
vector as defined in Equation 6.

4.3 Framework Instantiation

Cross Entropy Open Loop Planning instantiates the OnPlan framework based
on the following considerations.
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Fig. 11: Illustration of the cross entropy method with a Gaußian sampling dis-
tribution. The dashed line represents the unknown target function. The solid
line represents the Gaußian sampling distribution that is iteratively refined by
maximum likelihood estimation based on samples from the previous iteration,
weighted by their target function values.
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1. Strategy::sampleAction(State) : Action generates samples from the current
vector of Gaußians that represents Pact. As ceolp is state agnostic and only
accumulates action parameters w.r.t. planning depth, this depth is the only
information that is used for conditioning the distribution: I.e. when sampling
at depth d, the d-th component of the plan distribution is used to generate
a value for the action.

2. SimPlanner::updateStrategy(Set(WEpisode)) : Strategy refines the Gaußians
in the strategy by maximum likelihood estimation w.r.t. the samples from
the previous generation, weighted by the accumulated reward (see Equation
6). This yields a strategy that is likely to produce high-reward episodes.

3. The remaining plug-points – execute of class Action, getReward of class Re-
wardFunction and sampleSuccessor of class Simulation – have to be instan-
tiated individually for each domain and/or system use case.

4.4 Empirical Results

We compared an instantiation of our framework with ceolp with a vanilla Monte
Carlo planner that does not perform iterative update of its strategy. The latter
proposes actions from a strategy distribution that is the best average w.r.t.
weighted simulation episodes. However, in contrast to the ceolp planner, it
does not refine the strategy iteratively while simulating to concentrate its effort
on promising parts of the search space.

Experimental Setup We provided the same number of simulations per ac-
tion to each planner. The one that instantiates OnPlan updates the strategy
distribution every 30 simulations (i.e. emax = 30) and does this 10 times before
executing an action. Planning depth was set to hmax = 50. The vanilla Monte
Carlo planner uses the aggregated result of 300 episodes generated w.r.t. the
initial strategy to decide on an action, without updating the strategy within the
planning process. It only builds a distribution once after all samples have been
generated an evaluated to decide on an action. Action duration was fixed at one
second. The discount factor was set to γ = 0.95 in all experiments.

Example Domain Figure 12 depicts our evaluation scenario. The circle bottom
left represents our agent. Dark rectangular areas are static obstacles, and small
boxes are victims to be collected by the planning agent. The agent is provided
with unit reward on collecting a victim. Victims move with Gaußian random
motion (i.e. their velocity and rotation are randomly changed based on a normal
distribution). Note that this yields a highly fluctuating value function of the
state space – a plan that was good a second ago could be a bad idea to realize a
second later. This means that information aggregation from simulations should
be as efficient as possible to be able to react to these changes in real time.

An agent can perform an action by first rotating for a second and then
moving forward for the same amount of time. Rotation rate and movement
speed are action parameters to be optimized by the planner in order to collect
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Fig. 12: The continuous sample domain.

the victims as fast as possible. The agent is provided with a simulation of the
environment as described above. Note that this simulation is an abstraction of
the real environment. This means that reality and simulation may differ in their
dynamics, even if performing the exactly same set of actions. Also, the simulation
is not informed about the movement model of the victims.

The reward function providing unit reward to a planner on collecting a vic-
tim instantiates the getReward operation of class RewardFunction in the On-
Plan framework. Action implementations instantiate the execute operations
of the corresponding subclasses of class Action. The simulation provided to the
simulation-based planner instantiates the sampleSuccessor operation of the Sim-
ulation class.

Iterative Parameter Variance Reduction Figure 13 shows an exemplary set
of actions sampled from Pact for the first action to be executed. Here, the effect
of updating the sampling strategy can be seen for the two-dimensional Gaußian
distribution over the action parameters speed (x axis) and rotation rate (y axis).
While the distribution is spread widely in the initial set of samples, updating
the strategies according to the samples’ weights yields distributions that increas-
ingly concentrate around regions of the sample space that yield higher expected
reward. The figures also show Spearman’s rank correlation coefficient of the
sampled action parameters to measure of dependency between the two action
variables (speed and rotation rate). It can be seen that the degree of correlation
increases with iterations. Also, the probability that there is no statistically sig-
nificant correlation of the parameters decreases: From 0.94 in the initial set of
samples to 0.089 in the tenth set.

Estimation of Expected Reward Figures 14 and 15 show the effect of iter-
atively updating the strategy on simulation episode quality. We evaluated the
magnitude of effect depending on the degree of domain noise. Domain noise is
given by movement speed of victims in our example. We compared victim speed
of 0.1 and 1.0 (m/sec). Figure 14 shows the average accumulated reward of the
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episodes generated in a particular iteration, grouped by domain noise. The result
is shown as a factor of the value in the initial iteration. The data shows that the
episodes’ average accumulated reward increases with iterations of strategy up-
dates. The magnitude of the effect depends on domain noise. Figure 15 shows the
corresponding coefficient of variation (CV), the quotient of standard deviation
and mean of a sample set. This data is also grouped by domain noise. The CV
of accumulated reward per episode shows a tendency to be reduced with itera-
tions. This means that the estimation of the target value (accumulated reward
per episode) is likely to increase its accuracy due to iterative strategy refinement.
Again, the magnitude of the effect depends on domain noise.

Comparison with Vanilla Monte Carlo Figure 16 shows time needed to col-
lect the victims by the OnPlan and vanilla Monte Carlo (Vmc) planners. Both
are able to autonomously synthesize behavior that leads to successful comple-
tion of their task. System autonomy is achieved in a highly dynamic continuous
state-action space with infinite branching factor and despite the noisy simulation.
However, the planner using our framework is collecting victims more effectively.
The benefit of making efficient use of simulation data by cross entropy optimiza-
tion to drive decisions about actions becomes particularly clear when only a few
victims are left. In these situations, only a few combinations of actions yield
goal-oriented behavior. Therefore it is valuable to identify uninformative regions
of the sampling space fast in order to distribute simulations more likely towards
informative and valuable regions.

5 Conclusion & Further Work

Modern application domains such as cyber-physical systems are characterized
by their immense complexity and high degrees of uncertainty. This renders un-
feasible classical approaches to system autonomy which compile a single solution
from available information at design-time. Instead, the idea is to provide a sys-
tem with a high-level representation of its capabilities and the dynamics of its
environment. The system then is equipped with mechanisms that allow to com-
pile sensible behavior according to this high-level model and information that is
currently available at runtime. I.e., in contrast to provide a system with a single
predefined behavioral routine they are given a space of solutions and a way to
evaluate individual choices in this space. This enables systems to autonomously
cope with complexity and change.

In this paper we proposed the OnPlan framework for realizing this approach.
It provides simulation-based system autonomy employing online planning and
importance sampling. We defined the core components for the framework and
illustrated its behavioral skeleton. We showed two concrete instantiations of
our framework: Monte Carlo Tree Search for domains with discrete state-action
spaces, and Cross Entropy Open Loop Planning for continuous domains. We
discussed how each instantiates the plug points of OnPlan. We showed the
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Fig. 13: Actions sampled from Pact for the first action to execute at iterations
one, five and ten.
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Fig. 14: Mean accumulated reward of sampled episodes per iteration. Results are
shown as factor (i.e. gain) of mean accumulated reward in the initial iteration.
The data shows a tendency to increase episode quality with iterative updating
of the sampling strategy. The magnitude of the effect depends on domain noise.
Boxes contain 50% of measured data, whiskers 99.3%.
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Fig. 15: Coefficient of variation (CV) of mean accumulated reward from the sam-
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contain 50% of measured data, whiskers 99.3%.
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Fig. 16: Comparison of an instance of OnPlan using Ceolp with a vanilla
Monte Carlo planner (Vmc). Lines show the median, shaded areas interquartile
range (comprising 50% of measured data).

ability of our framework to enable system autonomy empirically in a search and
rescue domain example.

An important direction of future work is to refine OnPlan to enable learning
of simulations from observations at runtime. Machine learning techniques such
as probabilistic classification or regression provide potential tools to accomplish
this task (see e.g. [23]). Also, other potential instantiations of the framework
should be explored, such as the gourmand planner based on labeled real-time
dynamic programming [1, 24], sequential halving applied to trees (shot) [25, 26],
hierarchical optimistic optimization applied to trees (hoot) [27] or hierarchi-
cal open-loop optimistic planning (holop) [3, 28]. It would also be interesting
to investigate possibilities to extend specification logics such as LTL or CTL
[29] with abilities for reasoning about uncertainty and solution quality. Model
checking of systems acting autonomously in environments with complexity and
runtime dynamics such as the domains considered in this paper provides po-
tential for further research. Another direction of potential further research is
simulation-based planning in collectives of autonomous entities that are able to
form or dissolve collaborations at runtime, so-called ensembles [30, 31]. Here,
the importance sampling approach may provide even more effectiveness as in
a single-agent context, as the search space typically grows exponentially in the
number of agents involved. Mathematically identifying information that is rel-
evant in a particular ensemble could provide a principled way to counter this
combinatorial explosion of the search space in multi-agent settings.
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