
1

Online Monitoring of Distributed Systems with a
Five-valued LTL

Ming Chai and Bernd-Holger Schlingloff
Humboldt University of Berlin

Rudower Chaussee 25, 12489 Berlin, Germany
Email: {ming.chai, hs}@informatik.hu-berlin.de

Abstract—In this paper, we deal with two kinds of uncertainties
in distributed systems. On one hand, the order of causally
unrelated executions is not determined because we cannot assume
that there exists a global clock. On the other hand, in a finite
amount of time, the behaviour can be observed only up to a
certain moment, and the future behaviour is unknown. In this
paper, we investigate a monitoring approach based on linear
temporal logic (LTL) specifications. We propose a five-valued
semantics for LTL to deal with both kinds of uncertainties. We
develop an efficient runtime verification algorithm using formula
rewriting, and show the feasibility of our approach with a case
study in the railway domain.

Index Terms—runtime verification; distributed system; five-
valued logic; LTL

I. INTRODUCTION

Runtime verification is a lightweight validation technique
that checks whether a run of a system satisfies a correctness
property or not. Online monitoring is implemented while
the system is running by a monitor. This is a device or a
piece of software that observes a behaviour of the system
under monitoring, and gives a verdict as the result. Runtime
verification does not require a model of the system, and
is able to perform ongoing testing [1]. It is effective for
providing correctness assurance for distributed systems, which
are notoriously hard to verify or test. When monitoring a
distributed system, the following problems arise.

A behaviour observed by a monitor is an execution trace,
which is built according to time stamps of executions. For a
distributed system, the order of causally unrelated executions
of different components is not always determined when the
system does not have a global clock. This can cause race
conditions, which are difficult to catch and eliminate by testing
or model checking. A race condition impacts monitoring
results as well. It may result in inconsistency between an
observed trace and the actual behaviour of a distributed sys-
tem. Therefore, the monitoring results are not always certain.
For instance, given a distributed system consisting of two
components, each of which concurrently writes a data to a file.
A monitor reads, e.g., a trace (write1, write2). However, due
to asynchronicity, the actual behaviour of this system could be
(write2, write1). Since we don’t know which component writes
the file first, the monitoring result for the property “write1 is
executed before write2” is uncertain.

This work was supported by the State Key Laboratory of Rail Traffic Con-
trol and Safety (Contract No.: RCS2012K001), Beijing Jiaotong University.

Linear temporal logic (LTL) is a well accepted and expres-
sive formal language used for specifying correctness proper-
ties. Unfortunately, monitoring results can be misleading with
LTL. This is because LTL is usually defined on infinite traces,
whereas a behaviour can be observed by a monitor only up
to a certain moment. For instance, let τ = (open, read, write,
write) be an observed trace. A correctness property “if a file
is open, it will be closed in the future” is expressed by the
LTL formula (open → F close). The monitoring result with
standard LTL is false. This is an inappropriate verdict because
there exists a suffix close leading to a trace which satisfies the
formula. Since we do not know whether close will be actually
executed, the monitoring result is not adequately expressed by
a standard truth value (true or false) at this point in time.

One solution for the first problem could be to restrict
properties for race conditions. If a behaviour is a critical race, a
monitor for such correctness properties would only accept the
correct execution order; otherwise, it would accept all possible
execution orders. Unfortunately, such restrictions will make it
difficult to build a monitor. In this paper, we use standard LTL
to express correctness properties, and faithfully present satis-
faction relations in monitoring results. The second problem is
essentially caused by unknown further behaviours. A solution
would be to restrict the evaluation to completed traces, e.g.
postmortem dumps. However, in many contexts intermediate
results are desirable. Thus, we introduce additional truth values
for such intermediate results.

For the satisfaction relation between a behaviour of a
distributed system b and an LTL property ϕ, we consider the
following five possibilities.

• b satisfies or violates ϕ, no matter how the system will
behave in the future;

• b satisfies or violates ϕ, but there exists an extension b′

of b which may change the verdict;
• the satisfaction relation between b and ϕ can not be

determined according to any of the above categories,
since the actual order of independent events in b is
unknown.

We define a five-valued logic E5 = {tt, ff, pt, pf, uk} to
express these five possible monitoring results. Truth values tt
(true) and ff (false) indicate that the monitor has observed the
system sufficiently, and can stop monitoring because the result
will not change in the future. The values pt (possibly true)
and pf (possibly false) indicate that the monitoring result may

2

change if further events are observed, therefore the monitoring
has to continue. Truth value uk indicates that the monitoring
result is unknown since the execution order is non-determined.
In this case, the system could keep on running or terminate
with an exception (if the behaviour causes a critical race); or
the monitor could raise an alarm and start a further checking
procedure.

Related work.

There are several approaches that express uncertainties
in executions of systems. Bauer et. al. propose LTL3 to
express uncertainties caused by unknown future behaviours
[2]. LTL3 is defined by introducing a third truth value “?”
into LTL. The truth value “?” indicates that it cannot be
determined whether an LTL formula satisfies a trace because
there are different possible suffixes of the trace. Furthermore,
they extend their work by extending ? to >p and ⊥p. The
value >p (or ⊥p) means that the satisfaction relation is
unknown, meanwhile the existing trace does not violate (or
satisfy, respectively) the property [3]. Morgenstern et al. [4]
argue that even the four-valued semantics is not sufficient for
defining the satisfaction relation between a LTL formula and
an infinite trace. They therefore consider several subclasses
of LTL formulae to express safety, liveness, persistence and
recurrence properties, respectively, and propose semantics for
each of these subclasses.

To express the occurrence probability of an event, fuzzy
temporal logic has been proposed [5]. Lamine et. al. [6] and
Pasquale et. al. [7] use this logic to monitor systems in unpre-
dictable environments. To our knowledge, uncertainties caused
by non-determined execution orders have not been studied in
the runtime verification literature. However, uncertainties have
been investigated in system testing. Kahsai et. al [8] use three-
valued test oracles, which are colors green, red and yellow, to
evaluate a test case with respect to a specification. A test case
is evaluated to green, if it reflects a required behaviour of the
specification; it is evaluated to red, if it reflects a forbidden
behaviour of the specification; and it is evaluated to yellow, if
it reflect a behaviour which is neither required nor forbidden
by the specification.

The rest of the paper is organized as follows. Section II
gives the definition of five-valued LTL for finite traces with
inaccurate time values. Section III presents our runtime veri-
fication algorithm for monitoring distributed systems. Section
IV shows a case study of the RBC/RBC handover process in
the railway domain. Section V contains a conclusion and ideas
for future work.

II. A FIVE-VALUED LTL FOR MONITORING DISTRIBUTED
SYSTEMS

A. Truth Values

For a many valued logic, a truth value can be defined as
a set of possible answers for a query from some assumptions
[9]. In a three-valued logic E3 = {Y , N , {Y , N}}, the truth
value Y and N are singletons, indicating that only this answer
can be concluded from the given assumptions; and {Y , N}
indicating that both answers are possible.

In three valued logic, the classical boolean operations need
to be extended, and new connections can be defined. For dis-
junction (∨) and negation (¬), we adopt Kleene’s three valued
truth tables. In addition, we introduce a new binary operation
(q), which compares two arguments. In the following truth
tables, the truth value {Y , N} is denoted with ?.

∨ Y ? N
Y Y Y Y
? Y ? ?
N Y ? N

¬
Y N
? ?
N Y

q Y ? N
Y Y ? ?
? ? ? ?
N ? ? N

When monitoring a system, the following two items are
interesting:

1) whether the observed behaviour meets the correctness
property, and

2) whether the monitoring result is conclusive or provi-
sional.

Unfortunately, traditional many-valued logics give little knowl-
edge about these items. Therefore, we define a truth value by
an evolution operation .

Given any truth values c, c′ ∈ E3, we define a new truth
value as (c c′). The truth value indicates that the set of
answers from given assumptions is c (i.e., the truth value at
present is c), and the union of all possible answers when
introducing more assumptions is c′ (i.e., the possible truth
value in the future is c′).

Notice we cannot assume there always exists a new assump-
tion to be introduced. The answer at present would still be a
possible answer in the future. Therefore, for any c c′ it
holds that c ⊆ c′.

Formally, nine truth values can be defined by from E3,
however four of them (Y N, N Y, ? Y and ? N)
violate the above rule. A five-valued logic E5 = {tt, ff, pt, pf,
uk} can be obtained from E3 with as follows.

• tt , Y Y
• ff , N N
• uk , ? ?
• pt , Y ?
• pf , N ?

Given e1, e2 ∈ E5 with e1 = c1 c′1 and e2 = c2 c′2,
we define e1 ◦ e2 , (c1 ◦ c2) (c′1 ◦ c′2) with ◦ ∈ {∨, q},
and ¬ e1 , (¬c1) (¬c′1). Form this, the five-valued truth
tables for the operations ∨, ¬ and q can be calculated, and
are shown in Fig. 1.

B. The Five-valued LTL

Let AP be a finite set of atomic propositions and Σ = 2AP

a finite alphabet. An event is any element of Σ. We define a
finite trace over Σ to be an element of Σ∗, whereas an infinite
trace is an element of Σω .

Definition 1. (LTL syntax) Given the finite set AP of
atomic propositions, LTL formulae are formed according to
the following grammar, where p ∈ AP
ϕ ::= ⊥ | p | ¬ ϕ | (ϕ1 ∨ ϕ2) | (ϕ1 U ϕ2) | X ϕ.

3

∨ tt pt uk pf ff
tt tt tt tt tt tt
pt tt pt pt pt pt
uk tt pt uk uk uk
pf tt pt uk pf pf
ff tt pt uk pf ff

q tt pt uk pf ff
tt tt pt uk uk uk
pt pt pt uk uk uk
uk uk uk uk uk uk
pf uk uk uk pf pf
ff uk uk uk pf ff

¬
tt ff
pt pf
uk uk
pf pt
ff tt

Figure 1. Truth tables for five-valued logic

In addition, we use the following shorthands: ϕ1 ∧ ϕ2

standards for ¬ (¬ϕ1 ∨ ¬ ϕ2), ϕ1 → ϕ2 stands for ¬ ϕ1

∨ ϕ2, F ϕ stands for > U ϕ and G ϕ stands for ¬F ¬ ϕ.
The semantics for LTL on an infinite trace is as follows.

Definition 2. (Semantics for standard (two valued) LTL)
Given an infinite trace τ = e0e1 · · · ∈ Σω with i ≥ 0 being
a position of τ . The semantics for LTL is defined inductively
as follows:

(τ , i) 2 ⊥;
(τ , i) |= p iff p ∈ ei;
(τ , i) |= ¬ ϕ iff (τ , i) 2 ϕ;
(τ , i) |= (ϕ1 ∨ ϕ2) iff (τ , i) |= ϕ1 or (τ , i) |= ϕ2;
(τ , i) |= (ϕ1 U ϕ2) iff there exists k ≥ i such that

(τ , k) |= ϕ2, and for all i ≤ j < k it holds that (τ , j) |= ϕ1;
(τ , i) |= X ϕ iff (τ , i + 1) |= ϕ.

We denote (τ , 0) |= ϕ with τ |= ϕ. When monitoring a
distributed system, an observed execution may actually be
executed at a different global time (according to the observer)
then a local time recorded in the time stamp. We assume that
the global time and the local time deviate only by a fixed
amount of time. An execution of a distributed system is defined
with an uncertain time event (ue), which is a tuple ue , (e, t,
∆t) from the set (Σ × N≥0 × N≥0). Here, t is a discrete time
stamp to identify the local time of execution; and ∆t standards
for the maximal delay to the global time of ue. With the respect
to the global clock, an event ue can be actually executed at
any time within the interval [t, (t + ∆t)], which is denoted
by I (ue). We define Event (ue) , e, Time (ue) , t and
Delay (ue) , ∆t.

The temporal relations of two executions are uncertain if the
intersection of their time intervals is not empty. An observed
behaviour is a set of uncertain time events. From an observed
behaviour, a set of event traces can be concluded. Given
an observed behaviour b , {ue1, ue2, ..., uen}, let ρ be a
permutation function on 1 to n. A trace τ is consistent with
this behaviour if
• τ , Event(ueρ(1)) · · · Event(ueρ(n)), and
• for any i and j with ρ(i) < ρ(j), either

– Time (uei) < Time (uej), or
– I (uei) ∩ I (uej) 6= ∅.

The concluded trace set (T b) for the behaviour b is the set
of all traces that are consistent with b. For instance, let b =
{uea, ueb, uec} be an observed behaviour, where uea = (a,
0, 3), ueb = (b, 2, 3) and uec = (c, 4, 3). Since Time(uec)
> Time(uea), and the intersection of I(uec) and I(uea) is
an empty set, Event(uec) comes after Event(uea) for all τ ∈
T b. Because I(uea) ∩ I(ueb) 6= ∅, there exists τ , τ ′ ∈ T b

such that Event(uea) comes before Event(ueb) in τ , meanwhile
Event(uea) comes after Event(ueb) in τ ′. The event trace set
T b therefore is {abc, bac, acb}.

Whether a behaviour b meets an LTL property ϕ is deter-
mined by the satisfaction relation between the trace set T b

and ϕ.

Definition 3. (Semantics of five valued LTL on a finite
trace set) Let T , {τ1, τ2, ..., τn} be a set of finite traces
with τi ∈ Σ∗ for all 1 ≤ i ≤ n, and ε , (∅, ∅, ...) ∈ Σω an
infinite empty trace. The truth value of the satisfaction relation
between τ and a LTL formula ϕ, denoted with [τ |= ϕ], is
defined as follows:

[τ |= ϕ] =


tt if for all υ∈ Σω: τυ|=ϕ
pt if τε|=ϕ and there exists υ∈ Σω: τυ2ϕ
pf if τε2ϕ and there exists υ∈ Σω: τυ|= ϕ

ff if for all υ∈ Σω: τυ2ϕ

.

Here we only use four truth values because we define the
satisfaction with respect to a single trace. The satisfaction
relation between a trace set T and ϕ, denoted with [T |=
ϕ], is then defined as
[T |= ϕ] = [τ1 |= ϕ] q [τ2 |= ϕ] q · · · q [τn |= ϕ].

For the above example T b = {abc, bac, acb}, let a = {p,
q}, b = {p}, and c = {q} with p, q ∈ AP . Then we have [T b

|= (p → F q)] = tt, [T b |= (p → G q)] = ff, [T b |= G F (p
∨ q)] = pt, [T b |= G (p → F q)] = pf, and [T b |= ((p ∧ q)
U (p ∧ ¬ q))] = uk.

III. A FORWARD MONITORING ALGORITHM

In runtime verification, an execution is observed by a moni-
tor directly upon its occurrence. This may cause the following
problems when monitoring a distributed system. On one hand,
to find whether there exists uncertainties caused by non-
determined execution orders, a set of traces concluded from the
observed behaviour needs to be checked. All traces in the set
have the same executions but different temporal relations. The
size of the set grows heavily with the growing length of the
observed behaviour. This increases the monitoring complexity
seriously. On the other hand, future executions may change
the temporal relations of existing ones. A monitor needs to re-
check the existing trace if such an execution occurs. Therefore,
the whole observed behaviour needs to be stored. This limits
the implementation of runtime verification, especially online
monitoring, when the storage space is limited. To overcome
these drawbacks, we extend the traditional runtime verification
approach by adding a buffer. The buffer collects executions
from the system, and sends them to a monitor when future
executions will not overlap with any of the collected ones. In
this approach, a monitor reads a sequence of execution sets,
where temporal relations of the sets are determined. It does

4

Monitor
LTL

Formulae

High level
specification

Monitoring
verdicts in E5

System

Buffer

Executions

Set of
executions

Execution
recognizer

Set of traces

Figure 2. Framework for Monitoring a system

not re-check the existing trace when receiving a new execution
set, and does not store the entire observed trace as well.

The framework of our runtime verification approach for
distributed systems is shown in Fig. 2. In this framework,
correctness properties are from the high level specification,
and are expressed with LTL formulae. The buffer collects
low level executions from the system. It has a timer, which
resets to 0 when a new execution is observed. If the timer
equals to the maximal time delay, then the buffer sends
the set of collected executions to the execution recognizer.
The execution recognizer converts received executions into a
set of high-level event traces, which can be recognized by
correctness properties. The high-level event traces are sent to
the monitor, which consists of LTL formulae and five-valued
LTL checking algorithms. The monitor presents satisfaction
verdicts as monitoring results.

Let b , b1b2 ... bn be a finite behaviour sequence collected
by the buffer. The corresponding trace set sequence Tb ,
T1T2...Tn is generated by the execution recognizer, where for
all 1≤ i≤ n−1 it holds that max

ue∈Ti
(Time (ue) + Delay (ue)) <

min
ue∈Ti+1

(Time (ue)). A monitor checks the satisfaction relation

between T and an LTL property. According Definition 3, the
checking time for (Tb |= ϕ) is |T1| · |T2| · · · · · |Tn| · O(τ1τ2
. . . τn, ϕ), where O(τ1τ2 . . . τn, ϕ) is the time of checking
(τ1τ2 . . . τn |= ϕ) with τi ∈ Ti for all 1 ≤ i ≤ n. When a
new behaviour T ′ is received, the definition requests to check
the entire trace set sequence T T ′. This causes backtracking
in the checking process.

To reduce the complexity of monitoring, we develop a
forward rewriting algorithm (Alg. 1). In this algorithm, sub-
formulae of ϕ are stored into a list FList from the bottom up,
and the formulae after rewriting are stored into a list RewF.
A formula after rewriting consists of satisfaction relations,
which are connected with operations “and”, “or” and “not”.
the operation “[χ]” assigns a formula χ to a truth value in
E5, where satisfaction relations are assigned to a truth value
in E5 and connected operations are assigned to ∧, ∨ and ¬
respectively. The function Rewrite(Ti, ψ) assigns a formula
Ti |= ψ to a truth value

∐
τ ∈Ti

[τ |= ψ]. The truth values for

subformulae against a trace set are stored into a list Eva. The
present result for [Ti |= ϕ] equals to Eva[|FList (ϕ)|]. Here
we omit the rewriting rules for τ |= ϕ, which can be developed
directly from the definition of LTL.

Algorithm 1 A rewriting algorithm of [T |= ϕ]

Function Five-valued LTL checking (T , ϕ)
/* initialization of the checking process */
for j = 1 to |FList (ϕ)| do {

ψ ← FList[j];
RewF [j] ← Rewrite (T1, ψ); }

for i = 2 to |T | do {
If ϕ is a temporal operation free formula
then print “[Ti |= ϕ]=” [T1 |= ϕ];
else print “[Ti |= ϕ]=” SubFC (ϕ, Ti, RewF[1]);}

Function SubFC (ϕ, Ti, RewF [j])
/* rewriting algorithm for subformulae */

for j = 1 to |FList (ϕ)| do {
ψ ← FList [j];
case ψ is a propositional logic formula

RewF [j] ← (Ti |= ψ);
Eva [j] ← [Ti |= ψ];

case ψ = ¬ψ1

RewF [j] ← not (Ti |= ψ);
Eva [j] ← ¬ [Ti |= ψ];

case ψ = ψ1 U ψ2

RewF [j] ← RewF [j] or
(Rewrite (Ti, Gψ1);

Eva [j] ← [RewF [j]] ∨
([Rewrite (Ti, G ψ1)] ∧ pf);

case ψ = X ψ1

if |Ti| > 1 then RewF [j]← (Ti |= X ψ1);
else Eva [j] ← pf;

RewF [j] ← ψ1;}
return Eva [|FList (ϕ)|];

For a set of traces T and an LTL formula, it can be proved
that [T |= ¬ ϕ] = ¬ [T |= ϕ]. Therefore, the algorithm for
checking the negation formula is straightforward. However, [T
|= ϕ1 ∨ ϕ2] is not equivalent to ([T |= ϕ1] ∨ [T |= ϕ2]).
For instance, given T = {abccd, bacdc}, it holds that [T |=
a] = uk, [T |= b] = uk. The truth value for ([T |= ϕ1] ∨
[T |= ϕ2]) is (uk ∨ uk) = uk, whereas [T |= (a ∨ b)] = tt.
To develop the forward rewriting algorithm for (ϕ1 ∨ ϕ2), we
first present the precise relations between ([T |= ϕ1] ∨ [T |=
ϕ2]) and [T |= (ϕ1 ∨ ϕ2)] in the following lemma.

Lemma 4. Given e1, e2 ∈ E5, [T |= ϕ1] = e1 and [T |= ϕ2]
= e2, it holds that:

(e1 ∨ e2) = ff iff [T |= (ϕ1 ∨ ϕ2)] = ff;
if (e1 ∨ e2) = tt, then [T |= (ϕ1 ∨ ϕ2)] = tt;
if (e1 ∨ e2) = pf then [T |= (ϕ1 ∨ ϕ2)] = pf;
if (e1 ∨ e2) = uk then [T |= (ϕ1 ∨ ϕ2)] = uk, or

[T |= ϕ1 ∨ ϕ2] = tt, or [T |= (ϕ1 ∨ ϕ2)] = pt;
if (e1 ∨ e2) = pt then [T |= (ϕ1 ∨ ϕ2)] = pt,

or [T |= ϕ1 ∨ ϕ2] = tt.

The proof can be achieved easily via identities of first-order
logic.

For traces τ and τ ′, let τj..i be the segment consisting of

5

events from the jth event to the ith event of τ , with 0 < j <
i. A safety/liveness property is defined as follows.

Definition 5. (Safety/liveness property) An LTL formula ϕ is
called a safety property, iff for any trace τ ,
τ |= ϕ if for all i < |τ |, there exists τ ′ ∈ Σω such that
τ[..i]τ

′ |= ϕ; and
ϕ is called a liveness property, iff for any trace τ ,

for all i < |τ |, there exists τ ′ ∈ Σω such that τ[..i]τ ′ |= ϕ.

For any property ϕ, there exists a safety property ϕS
and a liveness property ϕL such that ϕ = ¬(¬ϕS ∨ ¬ϕL)
(decomposition theorem) [10].

The following theorem shows that the satisfaction relation
between T1T2...Tn and (ϕ1 ∨ ϕ2) can be obtained by checking
the satisfaction relation at each position (i.e., T1 |= (ϕ1 ∨ ϕ2),
..., Tn |= (ϕ1 ∨ ϕ2)) separately. According to this theorem, a
forward rewriting algorithm for the formula (ϕ1 ∨ ϕ2) can be
achieved.

Theorem 6. Given a finite sequence of trace sets T ,
T1T2...n, if [T1|= (ϕ1 ∨ ϕ2)] = tt (or ff), then [T |= (ϕ1

∨ ϕ2)]= tt (or ff, respectively); else if [T1|= (ϕ1 ∨ ϕ2)] 6=
tt (or ff), then [T |= (ϕ1 ∨ ϕ2)] (denoted with e ∈ E5) is as
follows.

• if ϕ1 and ϕ2 are safety properties, then
e = ([T1 |= (ϕ1 ∨ ϕ2)] ∧ [T2...n |= (ϕ1 ∨ ϕ2)]);

• if ϕ1 and ϕ2 are liveness properties, then
e = ([T1 |= (ϕ1 ∨ ϕ2)] ∨ [T2...n |= (ϕ1 ∨ ϕ2)]);

• if ϕ1 is a safety property and ϕ2 is a boolean formula
(without temporal operations), then
e = ([T1 |= ϕ1] ∨ ([T1 |= (ϕ1 ∨ ϕ2)] ∧ [T2...n |= ϕ1]));

• if ϕ1 is a liveness property and ϕ2 is a boolean operation
then

• e = ([T1 |= ϕ1] ∨ ([T1 |= (ϕ1 ∨ ϕ2)] ∨ [T2...n |= ϕ1]));
• if ϕ1 is a safety property and ϕ2 is a liveness property,

and
– ([T1 |= ϕ1] ∨ [T1 |= ϕ2]) = pf, then

e = [T2...n |= ϕ2];
– [T1 |= ϕ1] ∨ [T1 |= ϕ2] = pt, then

e = ([T1 |= ϕ2] ∨ [T2...n |= (ϕ1 ∨ ϕ2)]);
– ([T1 |= ϕ1] ∨ [T1 |= ϕ2]) = uk, then

e = ([T1 |= ϕ2] ∨ [T2...n |= ϕ2]).

Proof: We illustrate the proof of the case “ϕ1 is a safety
property and ϕ2 is a liveness property”, others can be proved
in the same way.

Denote [T1 |= ϕ1], [T1 |= ϕ2] and [T |= ϕ1 ∨ ϕ2] with
e1, e2 and e, respectively. According to the lemma 4, if e 6=
tt and e 6= ff, then the only possibilities of (e1 ∨ e2) are (e1
∨ e2) = pf, (e1 ∨ e2) = pt and (e1 ∨ e2) = uk. According to
definition 5, a liveness property ϕ can be understand as “if a
trace satisfies ϕ, then it will not violates ϕ with any suffix”.
Therefore,
[T |= ϕ] 6= pt if ϕ is a liveness property. Meanwhile, as T is
a finite sequence, [T |= ϕ] 6= ff since there always exists T ’
such that [T T ’ |= ϕ] = tt. Similar, [T |= ϕ] 6= pf and [T |=
ϕ] 6= tt if ϕ is a safety property, which is “if a trace violates
ϕ, then it will not satisfies ϕ again”. Therefore e 6= ff.

If (e1 ∨ e2) = pf, then the only possibility is e1 = ff and e2
= pf. That is for all τ ∈ T1, it holds that τ 2 ϕ1. Therefore,
for any τ ′ ∈ T2...n, it holds that (ττ ′ 2 ϕ1). Then for all τ
and τ ′, (ττ ′ |= (ϕ1 ∨ ϕ2)) iff ττ ′ |= ϕ2. Since [T T ’ |= ϕ] 6=
tt, the suffix T ’ decides the satisfaction relation between T T ’
and ϕ, that is e = [T2...n |= ϕ2].

If (e1 ∨ e2) = pt, then the possibilities are e1 = pt and e2
= pf or uk. For the case e1 = pt and e2 = pf, for all τ ∈ T1,
it holds that τ |= ϕ1 and τ 2 ϕ2. Therefore, the value of e is
decided by the value of [T2...n |= (ϕ1 ∨ ϕ2)]. For the case e1
= pt and e2 = uk, for all τ ∈ T2...n, there always exists some
τ ∈ T1 such that (ττ ′ |= ϕ2). Therefore, it is not the case that
e = pf (if for all τ ′ ∈ T2...n with τ ′ 2 (ϕ1 ∨ ϕ2), [T T ’ |=
ϕ] = uk). Hence, the value of e equals
[T1 |= ϕ2] ∨ [T2...n |= (ϕ1 ∨ ϕ2)], which is also the case of
e2 = pf.

If (e1 ∨ e2) = uk, then it is possible that e1 = uk and e2
= uk, or e1 = ff and e2 = uk, or e1 = uk and e2 = pf. For all
three cases, for all τ ∈ T2...n, there always exists some τ ∈
T1 such that ττ ′ 2 ϕ1. Therefore,
ττ ′ |= ϕ1∨ ϕ2 iff ττ ′ |= ϕ2. For the case of e2 = uk, e equals
[T1 |= ϕ2] ∨ [T2...n |= ϕ1 ∨ ϕ2].

With this algorithm, the checking time for (T1T2 ... Tn |=
ϕ) is reduced to (|T1| · O(τ1, ϕ) + |T2| · O(τ2, ϕ) + · · · +
|Tn| · O(τn, ϕ)), where O(τi, ϕ) is the checking time for (τi
|= ϕ) with τi ∈ Ti for all 1 ≤ i ≤ n.

IV. CASE STUDY: THE RBC/RBC HANDOVER PROCESS
FOR TWO TRAINS

In European Train Control System (ETCS) level 2, the RBC
is responsible for providing movement authorities to allow the
safe movement of trains. If a train requests to enter a new
RBC area, the RBC of the leaving area (i.e., the handing
over RBC, denoted with RBCHOV) sends a request message
(denoted with Req) to the RBC of the entering area (i.e., the
accepting RBC, denoted with RBCACC). If the entering area
is not occupied by another train (the route state is “clear”),
then RBCACC permits the request by sending a route related
information (denoted with RRI), and set the route state to
“occupied”. After the train has been running a safety distance,
the accepting RBC set the route state to “clear” again.

Details of the RBC/RBC handover process can be found
in [11]. In this section, we illustrate our monitoring approach
with a case that two trains from different routes try to enter the
same RBC area (Fig. 3). If the two trains request to enter the
accepting RBC area at almost the same time, a race condition
arises.

Let e be an event, we write e(i) to indicate that e is sent
or received by the ith handing over RBC (i.e. RBCHOV i).
For example, the event RRI(1) means the route related
information is sent to RBCHOV (1), Req(2) means the request
is sent by RBCHOV (2). We assume that trains do not have a
global clock, and the maximal time delay of an event is ∆t
= 5. We denote the route state “clear” with an event C, and
the route state “occupied” with ¬C.

The monitor starts monitoring the system whenever a train
request to enter the accepting RBC area, and the area is

6

Figure 3. A case study: two trains from different routes try to enter a same
RBC area

clear. The following behaviours are collected by the buffer,
according the clock of each RBCHOV .
b1 = {({Req(1), C}, 0, 5), ({Req(2), C}, 1, 5), ({Req(1),

C}, 2, 5) ({Req(2), C}, 3, 5)};
b2 = {(RRI(2), 10, 5), RRI(2), 12, 5), RRI(2), 13, 5), RRI(2),

14, 5), (Req(1), 16, 5), (Req(1), 17, 5) };
b3 = {(C, 40, 5)}.
A sequence of behaviours b = b1b2b3 is sent to the

execution recognizer, which converts it to a sequence of trace
sets T = T1T2T3. We consider the following properties.
• Property 1: an RBCHOV sends a request to the RBCACC ,

and if the route is clear, then the RBCACC sends RRI to
the RBCHOV , and sets the route occupied, i.e.,
ϕ1 = (Req(i) ∧ C) ∧ F (RRI(i) ∧ ¬C); and

• property 2: if RBCACC sends an RRI to a RBCHOV , it
can not send it to another RBCHOV until the route is
clear, i.e.,
ϕ2 = G (RRI(i) → (¬RRI(i′) U C)), with i 6= i′.

We also inject some errors into the executions, and get
behaviours as follows.

b′1 = {({Req(1), C}, 0, 5), ({Req(2), C}, 1, 5)};
b′2 = {(RRI(1), 8, 5), (Req(2), 10, 5)};
b′3 = {(RRI(2), 17, 5)}.
The trace set sequence for this run is denoted with T ′ =
T ′1T ′2T ′3 . The online monitoring results of T and T ′ with
respect to ϕ1 and ϕ2 are as follows.

T T ′
T1 T2 T3 T ′1 T ′2 T ′3

ϕ1 pf uk uk pf uk tt
ϕ2 pt pf pt pt pf ff

For trace T and ϕ1, the monitoring result uk indicates
the race condition. Since the run of the system does not
violate the correctness properties, this race condition is a
non-critical race. The monitoring result ff for T ′ indicates
the run of the system violates ϕ2 (possibly caused by the
race condition). The system should stop running although it
satisfies ϕ1. We developed a basic algorithm for monitoring
such traces directly from the definition of five-value LTL. Then
we implemented the forward algorithm in Maude [12]. This is

a high performance system providing a rewriting environment,
and is able to execute 2 millions of rewrites per second. With
the forward algorithm, the rewriting complexity is reduced
significantly. Experiment results show that the approach is
feasible. We created a long trace set sequence by repeating
100 times T , and checking it against ϕ2. The basic algorithm
uses 2.7 million rewrites, whereas the forward algorithm uses
only 0.28 million rewrites. Furthermore, since the forward
algorithm does not store the entire sequence of trace sets, it
is also feasible for online monitoring.

V. CONCLUSIONS AND FUTURE WORK

This paper presented a five valued LTL based runtime
verification approach for distributed systems. On one hand,
this approach reduces the difficulty of building correctness
properties for non-determined temporal relations of causally
unrelated executions. These uncertainties are indicated in
monitoring results by the truth value uk. On the other hand, this
approach avoids the problem that a violation of a requirement
can only be detected after the monitored system is stopped.
Intermediate results are expressed by truth values pt and pf.
In addition, a forward rewriting algorithm was developed. It
is able to reduce LTL checking time, and does not suffer from
the trace storing problem. Furthermore, the algorithm was used
to test a case study in the railway domain, and evaluated
on several benchmarks. The results are very encouraging and
show the feasibility of our approach.

Future work will show how to reduce uncertainties in
monitoring results. Furthermore, we are planning to consider
different specification languages for system properties, such
as UML diagrams.

REFERENCES

[1] M. Leucker and C. Schallhart, “A brief account of runtime verification,”
Journal of Logic and Algebraic Programming, vol. 78, no. 5, pp. 293–
303, 2009.

[2] A. Bauer, M. Leucker, and C. Schallhart, “Runtime verification for ltl
and tltl,” ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 20, no. 4, p. 14, 2011.

[3] ——, “Comparing ltl semantics for runtime verification,” Journal of
Logic and Computation, vol. 20, no. 3, pp. 651–674, 2010.

[4] A. Morgenstern, M. Gesell, and K. Schneider, “An asymptotically correct
finite path semantics for ltl,” in Logic for Programming, Artificial
Intelligence, and Reasoning. Springer, 2012, pp. 304–319.

[5] S. Dutta, “An event based fuzzy temporal logic,” in Multiple-Valued
Logic, 1988., Proceedings of the Eighteenth International Symposium
on. IEEE, 1988, pp. 64–71.

[6] K. B. Lamine and F. Kabanza, “Using fuzzy temporal logic for moni-
toring behavior-based mobile robots,” in Proc. of IASTED Int. Conf. on
Robotics and Applications, 2000, pp. 116–121.

[7] L. Pasquale and P. Spoletini, “Monitoring fuzzy temporal requirements
for service compositions: Motivations, challenges and experimental
results,” in Requirements Engineering for Systems, Services and Systems-
of-Systems (RESS), 2011 Workshop on. IEEE, 2011, pp. 63–69.

[8] T. Kahsai, M. Roggenbach, and B.-H. Schlingloff, “Specification-based
testing for refinement,” in Software Engineering and Formal Methods,
2007. SEFM 2007. Fifth IEEE International Conference on. IEEE,
2007, pp. 237–246.

[9] M. Fitting, “Kleene’s logic, generalized,” Journal of Logic and Compu-
tation, vol. 1, no. 6, pp. 797–810, 1991.

[10] A. J. Robinson and A. Voronkov, Handbook of automated reasoning.
Elsevier, 2001, vol. 2.

[11] M. Chai and B.-H. Schlingloff, “A rewriting based monitoring algorithm
for tptl,” 2013, pp. 61–72. [Online]. Available: http://ceur-ws.org/Vol-
1032/paper-06.pdf

[12] P. C. Olveczky, “Real-time maude 2.3 manual,” Research report, 2004.

