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Abstract. While reasoning in logics extending a Boolean propositional base
is necessarily at least coNP-hard, some families of specifically designed light-
weight logics allow for tractable, i.e. polynomial-time reasoning, and hence may
be expected to scale to large reasoning problems. One example of this type is the
EL family of description logics; in this case, efficient reasoning may be based
on simulation checking between suitable small models. In the current work, we
lift this principle to the level of generality of coalgebraic logic. We thus not
only identify tractable fragments of non-relational logics whose semantics fea-
tures, e.g., neighbourhoods or integer weights, but we also obtain new insights
in the standard relational setting, e.g. on polynomial-time reasoning with global
assumptions in modal logics featuring only box and conjunction.

1 Introduction

One of the most successful applications of modal logics in computer science is in knowl-
edge representation, where description logics (DLs) are prevalent [4]; these are essen-
tially notational variants of relational modal logics. One of the most basic reasoning
tasks is then to decide whether a formula (or concept) φ is subsumed by a formula ψ,
notation φ v ψ, i.e. whether φ is a particular case of ψ, possibly taking into account a
so-called terminology or TBox, i.e. a set of global assumptions.

Figure 1 displays a very simple TBox (in German DL notation). There, a ‘person’
is said to be something whose ‘offspring’ are ‘persons’ as well (a property that is also
true of any infertile entity), while a ‘parent’ is defined precisely as a ‘person’ with
‘offspring’. It is not hard to verify that this TBox implies

Happy u GrandParent v ∃hasOffspring.∃hasOffSpring. (Happy u Person).

Many DLs extend the basic language ALC, where concepts can be built using con-
junctions (u), disjunction (t), negation (¬), and relational modalities (∃R/∀R). Modulo
syntax, the concept language ofALC is just the basic multi-modal logic Km. The com-
putational complexity of subsumption in ALC is PSPACE-complete without a TBox,
and EXPTIME-complete over unrestricted TBoxes, respectively. The term lightweight
description logics designates families of DLs with tractable reasoning. Their concept
language is necessarily non-Boolean, and typically lacks disjunction and negation. In
particular, languages from the EL family lack also universal restriction (∀R), but enjoy
a polynomial-time subsumption checking problem [2, 3]. Their expressiveness however
suffices to accommodate, e.g., large-scale medical ontologies such as SNOMED CT1.

1 http://www.ihtsdo.org/snomed- ct/



Person v ∀hasOffspring.Person Parent ≡ Person u ∃hasOffspring.>
Happy v ∀hasOffspring.Happy GrandParent ≡ Parent u ∃hasOffspring.Parent

Fig. 1. A very simple terminology of parenthood in ALC.

Maybe surprisingly, FL0, the counterpart of EL with universal instead of existential
restriction, has a subsumption problem that is tractable only over the empty TBox [1, 5,
12]. This shows that there is more to lightweight DLs than just dropping disjunctions.
Here, we aim to develop the conceptual tools to identify lightweight modal formalisms
beyond the relational realm, covering also semantic concepts such as gradedness (qual-
ified number restrictions in DL parlance) and monotone neighbourhoods (and, in prin-
ciple, any other semantics satisfying the criteria we develop, ATL-style game-based
semantics being one candidate). We achieve this by working in the setting of coalge-
braic logic [14], where the notions of model and modal operators are abstracted to deal
with relational and non-relational features in a uniform fashion. Coalgebraic logic is, of
course, agnostic about the interpretation of its instance logics, which may equally well
be understood as logics of labelled transition systems and concurrency.

Our main new contribution is the identification of criteria (necessarily highly re-
strictive) that allow replacing formulas by models in the sense that satisfaction of the
formula is equivalent to simulation of the model, following an approach for EL [2]
and building on a recently developed notion of coalgebraic simulation [10]. Calling
such models universal simulands, one then reduces subsumption to similarity of uni-
versal simulands. We believe that universal simulands are an important model-theoretic
concept, and in particular expect that they will prove to be instrumental not only for
subsumption checking but also for more general reasoning problems prominently in-
cluding least common subsumers [5]. Tractability of reasoning depends on smallness of
universal simulands; we develop criteria for this that not only reproduce known results
on EL and FL0 but also yield new tractability results for conjunctive monomodal K
with only boxes as well as fragments of monotone and graded modal logic. This will
allow for TBoxes that, varying Figure 1, say things like ‘happy parents have at most 2
unhappy children’ (graded modal logic) or ‘happy parents win arguments about disco
visits’ (monotone modal logic, read as a logic of games in the spirit of [13]).

2 Preliminaries: Coalgebraic Logic

We begin with a brief introduction to the basic concepts and terminology of coalgebraic
logics. The generality of coalgebraic modal logics stems from the parametricity of its
syntax and semantics. The language depends on a similarity type Λ, i.e. a set of modal
operators with finite arities ≥ 0. (Atomic) propositions are just modalities of arity 0.
To simplify notation, we will pretend that all operators are unary; however, all results
generalize straightforwardly to higher arities.
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Definition 1. The set L(Λ) of Λ-formulas is given by the grammar

φ, ψ ::= > | ¬φ | φ ∧ ψ | ♥φ (♥ ∈ Λ).

(with ∨ derived as usual). By rank(φ) we denote the maximal nesting depth of modal
operators ♥ ∈ Λ in φ. We are interested in two types of fragments of L(Λ): a formula
is positive if it is generated by the grammar

φ, ψ ::= > | ⊥ | φ ∧ ψ | φ ∨ ψ | ♥φ (♥ ∈ Λ);

moreover, a positive formula is conjunctive if it does not mention ⊥ and disjunction.
Generally, given an operator ♥ ∈ Λ we refer to the operator ♥̄ with ♥̄φ interpreted like
¬♥¬φ as the dual of ♥. We do not assume that Λ is closed under duals, and inclusion
or non-inclusion of mutually dual operators in Λ usually makes a big difference for the
lightweight logics we are considering here.

The semantics is parametrized by associating a Λ-structure 〈T, {J♥K}♥∈Λ〉 to a
similarity type Λ. Here, T is an endofunctor on the category Set of sets, and each
J♥K is a predicate lifting, that is, a natural transformation J♥K : Q→̇Q ◦ T op , where
Q : Setop → Set is the contravariant powerset functor (that is, QX = 2X for every set
X , and for a map f , Qf takes preimages under f ; thus, naturality of J♥K means that
J♥KX(f−1[A]) = Tf−1[J♥KY (A)] for f : X → Y ). Note that from J♥K we obtain a
dual predicate lifting correctly interpreting ♥̄ by J♥̄KX(A) = TX − J♥KX(X −A).

Assumption 2. We can assume w.l.o.g. that T preserves injective maps [6]. For conve-
nience, we will in fact assume that T preserves subsets.

Abusing notation, we shall identify a similarity type Λ with its associated Λ-structure,
and refer to both as Λ, with the underlying functor denoted by T throughout.

A model for L(Λ) is just a T -coalgebra C = (X, ξ), i.e. a set X (of states) and a
transition function ξ : X → TX . A pointed T -coalgebra is just a pair (C, r), where r,
a state of C, is called the point or root. Given x ∈ X , satisfaction of L(Λ)-formulas φ
at x (x |=C φ) is defined by the expected clauses for Boolean operators, and

x |=C ♥φ ⇐⇒ ξ(x) |= ♥JφKC

where JφKC = {x ∈ X | x |=C φ} is the extension of φ in C, and for t ∈ TX and
A ⊆ X , t |= ♥A is a more suggestive notation for t ∈ J♥KXA.

When restricting to positive formulas we can no longer encode all reasoning tasks
as validity or satisfiability; rather, we consider as the core reasoning task local conse-
quence or, in description logic terms, subsumption: For formulas φ and ψ, we say that
ψ subsumes φ, and write φ v ψ, if JφKC ⊆ JψKC in all T -coalgebras C.

Example 3. Coalgebras for the (covariant) finite powerset functor Pω are finitely
branching directed graphs. For Λ = {�,♦} one has predicate liftings

J�KX(A) := {B | B ⊆ A}
J♦KX(A) := {B | B ∩A 6= ∅}.
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To obtain the full basic modal logic K one additionally needs to enrich the coalge-
bra structure with an interpretation for propositions. So let V be a set of propositions
(nullary modal operators), and let CV be the constant functor that maps every set X to
2V . For each p ∈ V , the (nullary) predicate lifting JpKX := {π ∈ 2V | p ∈ π} describes
structures satisfying p. The Kripke functor K is then defined as K = CV × P , and the
similarity type Λ = V ∪{♦,�} is interpreted using the corresponding predicate liftings
on the appropriate projections. We largely forget about propositions until Section 5.

Example 4. The language of graded (modal) logic has the similarity type Λ =
{♦k | k ∈ N} (with ♦k read ‘in more than k successors’) and is interpreted over the
multiset functor B∞, i.e., B∞X = X → N ∪ {∞}. We regard b ∈ B∞X as an
N ∪ {∞}-valued measure on X , and correspondingly write b(A) =

∑
x∈A b(x) for a

subset A ⊆ X . Coalgebras for B∞ are multigraphs, i.e. directed graphs whose edges
are annotated with multiplicities from N ∪ {∞}. Interpretation of the modal operators
is by way of the following family of predicate liftings, for each k ∈ N:

J♦kKX(A) := {b ∈ B∞X | b(A) > k}.

Example 5. Consider the subfunctorM of the neighbourhood functorQ◦Q given by
MX = {N ∈ QQX | N is upwards closed under ⊆}. Over this functor one obtains
the monotone neighbourhood semantics of modal logic with Λ = {�} using the predi-
cate lifting J�KX(A) := {S ∈MX | A ∈ S}. The dual of � is written ♦.

Generally, a modal operator ♥ is monotone if A ⊆ B ⊆ X implies J♥KXA ⊆ J♥KXB.
All examples above are monotone. In general, coalgebraic logic does support non-
monotone logics. However, since we are exploring a method of subsumption checking
via simulations, we need to restrict to monotone logics (basically, simulations preserve
but do not reflect satisfaction of formulas, so that inductive proofs need monotonicity).

Assumption 6. In the following, we assume all modal operators to be monotone.

Coalgebraic logic adopts the local perspective of modal languages (cf. Slogan 2 on [7,
p.ix]). In fact, many phenomena such as derivability, satisfiability or, as we shall see
in the following sections, similarity can be studied in the simpler setting of one-step
models (roughly, the result of forgetting the structure of a pointed coalgebra everywhere
except at the root), and results then extrapolate to the general case (e.g. [15]). With one-
step models come one-step formulas, i.e. shallow modal formulas where propositional
variables are introduced as placeholders for the ‘missing’ recursive structure.

Definition 7 (One-step models and formulas). Let V be a set of propositional vari-
ables (not fixed, and typically finite); a one-step model over V is a tuple (X, τ, t) where
X is a set (possibly empty), τ : V → PX interprets propositional variables, and
t ∈ TX . The dual representation of τ is τ̆ : X → PV , i.e. τ̆(x) = {p | x ∈ τ(p)}. A
(simple) one-step (Λ-)formula is a Boolean combination of atoms ♥p, where ♥ ∈ Λ,
p ∈ V (here, we use, and immediately omit, the word simple to differentiate from the
more general case where arguments of modal operators can be Boolean combinations of
propositional variables). The satisfaction relation t |=τ φ is given by the usual Boolean
clauses plus t |=τ ♥p ⇐⇒ t ∈ J♥KXτ(p). We say that a one-step formula is positive
if it mentions only atoms, ∨, and ∧, and conjunctive if it mentions only atoms and ∧.
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The transfer of results between the one-step and the full logic is often by way of what
we shall term collages (pasting pointed coalgebras into a one-step model to form a new
coalgebra) and décollages (tearing away most of the structure of a pointed coalgebra
to obtain a one-step model); e.g. this technique has been used in the construction of
shallow models for coalgebraic modal [15] and hybrid [11] logics. Explicitly:

Definition 8. A pointed coalgebra (C, r), with C = (Y, ξ), is a collage over a one-step
model (X, τ, t) if there is a family of coalgebras Cx = (Yx, ξx) with x ∈ Yx for all
x ∈ X such that Y is the disjoint union of {r} and the Yx, and

ξ(y) :=

{
T (iX)(t) if y = r

T (iYx)(ξx(y)) otherwise, for the x such that y ∈ Yx

where, for every Y0 ⊆ Y , iY0 : Y0 ↪→ Y denotes the inclusion function.

In a nutshell, a collage over (X, τ, t) is obtained by replacing every x ∈ X by a pointed
coalgebra (Cx, x). The following is immediate by construction:

Lemma 9 (Collage lemma). For a collage (C, r) over (X, τ, t), with C = (Y, ξ),

1. x |=C φ ⇐⇒ x |=Cx φ, for all x ∈ X , and
2. t ∈ ♥X(A ∩X) ⇐⇒ ξ(r) ∈ ♥YA, for all A ⊆ Y and ♥ ∈ Λ.

One typically needs collages based on interpretations of propositional variables as
modal formulas. Here, we will be interested in preserving the interpretation of the sat-
isfied atoms; more precisely:

Definition 10. A collage (C, r) over a one-step model (X, τ, t) over V (positively)
fulfills a substitution ρ : V → L(Λ) if for all x ∈ X , x |=Cx ρ(p) iff (if) x ∈ τ(p).

Corollary 11. If (C, r) is a collage over (X, τ, t) (positively) fulfilling ρ, then

1. x ∈ τ(p) iff (implies) x |=C ρ(p), and
2. t |=τ ♥p iff (implies) r |=C ♥ρ(p).

The converse process is as follows.

Definition 12. Given a pointed coalgebra (C, r) with C = (X, ξ) and a substitution
ρ : V → L(Λ), we say that (X, τ, t) is the décollage of (C, r) by ρ if t = ξ(r) and
τ(p) = Jρ(p)KC .

Lemma 13 (Décollage lemma). If (X, τ, t) is a décollage of (C, r) by ρ : V → L(Λ)
then for all one-step formulas φ over V we have t |=τ φ ⇐⇒ r |=C φρ.

3 Simulations

We now proceed to introduce our notion of modal simulation. Given a binary relation
S ⊆ X × Y and A ⊆ X , we denote by S[A] the relational image S[A] = {y | ∃x ∈
A. xSy}, and by S− the relational inverse of S.
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Definition 14 (Λ-Simulation). Let C = (X, ξ) and D = (Y, ζ) be T -coalgebras. A
Λ-simulation S : C → D (of C by D) is a relation S ⊆ X × Y such that whenever
xSy then for all ♥ ∈ Λ and all A ⊆ X

ξ(x) |= ♥A implies ζ(y) |= ♥S[A]. (1)

If xSy for a Λ-simulation S, then we say that (C, x) and (D, y) are Λ-similar.

The crucial properties of Λ-simulations that we need here are sufficient stability under
standard constructions and preservation of positive formulas:

Proposition 15. Λ-simulations are stable under relational composition; moreover,
(graphs of) identities are Λ-simulations.

Proposition 16. Let S : C → D be a Λ-simulation of coalgebras C = (X, ξ) and
D = (Y, ζ), and let φ be a positive Λ-formula. Then xSy and x |=C φ imply y |=D φ.

The effect of dualizing modal operators is to turn around the notion of simulation:

Proposition 17. Let Λ̄ = {♥̄ | ♥ ∈ Λ}. Then a relation S between T -coalgebras is a
Λ̄-simulation iff S− is a Λ-simulation.

Example 18. (See [10] for details)

1. Over Kripke frames, when Λ = {♦}, then a Λ-simulation S : C → D is just a
simulation C → D in the usual sense.

2. By Proposition 17, when Λ = {�}, then a Λ-simulation S : C → D is just a
simulation D → C in the usual sense.

3. Consequently, a {�,♦}-simulation is a bisimulation in the usual sense.
4. For graded modal logic, with Λ = {♦k | k ∈ N}, a relation S ⊆ X × Y between
D-coalgebras (X, ξ) and (Y, ζ) is a Λ-simulation iff for all xSy and all A ⊆ X ,

ζ(y)(S[A]) ≥ ξ(x)(A) (2)

(keep in mind that we view ξ(x) ∈ B∞(X), ζ(y) ∈ B∞(Y ) as discrete N ∪ {∞}-
valued measures). Consequently, for Λ̄ = {�k | k ∈ N}, S is a Λ̄-simulation iff
ξ(x)(S−[B]) ≥ ζ(y)(B) for all xSy and all B ⊆ Y .

5. For monotone neighbourhood logic, with Λ = {�}, we have that a relation S ⊆
X × Y between M-coalgebras (X, ξ) and (Y, ζ) is a Λ-simulation iff for xSy,
A ∈ ξ(x) implies S[A] ∈ ζ(y).

As our method of subsumption checking will be based on checking similarity, we need
to analyse the complexity of the latter, which formally is the following problem:

Definition 19. The Λ-similarity problem is to decide whether two finite pointed coal-
gebras (C, x) and (D, y) are Λ-similar.

(Here and in the following, we assume a suitable representation format for elements of
TX determining the input sizes for decision problems such as this one; in the examples,
exact choices will play only a minor role and hence will mostly be glossed over.)

We follow the usual paradigm of reducing this problem to one formulated on the
one-step level, specifically:
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Definition 20. A relation S ⊆ X ×Y is a one-step Λ-simulation between t ∈ TX and
s ∈ TY if for every ♥ ∈ Λ and every A ⊆ X ,

t |= ♥A implies s |= ♥S[A].

The one-step Λ-simulation problem is to decide, given S ⊆ X × Y with X,Y finite,
t ∈ TX , and s ∈ SX , whether S is a one-step Λ-simulation between t and s.

Given this notion, we can evidently reformulate the definition of S being aΛ-simulation
between C = (X, ξ) and D = (Y, ζ) as saying that whenever xSy then S is a one-
step Λ-simulation between ξ(x) and ζ(y). In other words, Λ-simulations are post-
fixpoints of the (monotone) functional F taking S ⊆ X × Y to {(x, y) ∈ S |
S is a one-step Λ-simulation from ξ(x) to ζ(y)}. When C and D are finite, we can
therefore compute the greatest simulation between C and D by iterating F , starting
with S = X × Y as the initial value. We thus have the desired criterion:

Proposition 21. If the one-step Λ-simulation problem is in P , then the Λ-similarity
problem is in P .

Example 22. 1. For Λ ⊆ {�,♦}, interpreted over Kripke frames, one-step Λ-
simulation is easily seen to be in P using suitable characterizations (e.g. S is a one-step
♦-simulation from t ∈ P(X) to s ∈ P(Y ) iff for every x ∈ t there exists y ∈ s such
that xSy). We thus regain the well-known result that standard similarity is in P .

2. For graded logic (with Λ = {♦k | k ∈ N}), the situation is less opportune, as to
check one-step Λ-simulation there seems to be no universally applicable improvement
over the naive idea of checking Equation (2) for all sets A. In fact, the one-step Λ-
similarity problem for this case looks suspiciously similar to (the complement of) the
subset sum problem, and we conjecture that it is coNP-hard, hence coNP-complete,
being clearly in coNP. (We will see later that whether or not hardness really holds in
this case is not all that relevant for our current purposes.)

3. For monotone modal logic, with Λ = {�}, we represent elements of TX , i.e.
upwards closed systems of subsets of X , by subsets A ⊆ P(X), to be understood
as their upwards closure (this makes the representation more concise, so our decision
problems become harder). Given two such representations A ⊆ P(X) and B ⊆ P(Y ),
a relation S ⊆ X × Y is a one-step Λ-simulation iff for all A ∈ A, there exists B ∈ B
such that B ⊆ S[A], which can clearly be checked in polynomial time. Therefore,
Λ-similarity for monotone modal logic is in P .

4 Universal simulands

We now introduce the second of our core technical notions, that of universal simulands.
It is well-known that in general, models of a given modal formula may look very dif-
ferent, and will certainly not necessarily be related by simulations. Lightweight logics
in the sense considered here are basically those where one does have smallest models
under the simulation preorder. Formally:

7



Definition 23. Let φ be a positive Λ-formula. We say that a pointed coalgebra (Cφ, xφ)
is a universal simuland for φ if for any pointed coalgebra (D, y), y |=D φ iff there is a
Λ–simulation S : Cφ → D with xφSy.

Remark 24. Since identities are Λ-simulations, a universal simuland for φ must ac-
tually satisfy φ. Thus, by Proposition 16, (Cφ, xφ) is a universal simuland for φ iff
(i) xφ |= φ and (ii) whenever (D, y) is a pointed coalgebra such that y |=D φ, then
(Cφ, xφ) and (D, y) are Λ-similar.

The most obvious example where universal simulands fail to exist are disjunctive for-
mulas; e.g. even for a purely propositional formula such as a ∨ b we will clearly not be
able to find a universal simuland. Formally, we have

Proposition 25. If φ ∨ ψ has a universal simuland, then φ v ψ or ψ v φ.

It is thus no surprise that known examples of lightweight logics such as EL andFL0 ex-
clude disjunction; also here, we will henceforth restrict attention to conjunctive formu-
las. However, if we move beyond the purely relational realm, even conjunctive formulas
may fail to have canonical models:

Example 26. In graded logic, with Λ = {♦k | k ∈ N} ∪ {�k | k ∈ N}, consider the
formula ♦0a ∧ ♦0b ∧ ♦0c ∧ �2⊥, specifying that one has successors satisfying a, b,
and c, respectively, but only two successors altogether. Any model of this formula will
need to include a successor satisfying either a ∧ b or b ∧ c or a ∧ c, but of course none
of these choices will yield a universal simuland.

Worse, with the wrong choice of Λ, even > may fail to have a universal simuland:
with Λ = {�,♦}, interpreted over Kripke frames, a universal simuland for > would
need to be bisimilar in the usual sense to any other state (see Example 18), which is
impossible because states with successors fail to be bisimilar to deadlocked states.

Universal simulands will thus need to rely on a judicious choice of the modal signa-
ture Λ. We next complete the discussion of how universal simulands can be used to
decide subsumption (without TBoxes for the time being; TBoxes will be discussed in
Section 5). We will then proceed to analyse how universal simulands can be constructed
from their one-step counterparts, and discuss examples.

Theorem 27. If conjunctive formulas φ and ψ have universal simulands (Cφ, xφ) and
(Cψ, xψ), then φ v ψ iff there is a Λ-simulation S : Cψ → Cφ such that xψSxφ.

This property is the basis for tractable reasoning, if all goes well:

Corollary 28. If every conjunctive Λ-formula has a polynomial-size universal simu-
land and the one-step Λ-simulation problem is in P , then subsumption between con-
junctive Λ-formulas is in P .

Universal simulands can be obtained from similar structures at the one-step level:

Definition 29 (One-step universal simulands). A one-step model (X, τ, t) is a one-
step universal simuland for a one-step formula φ over V if, for every one-step model
(Y, ϑ, s), s |=ϑ φ iff there exists a one-step Λ-simulation S between t and s such that
S[τ(a)] ⊆ ϑ(a) for all a ∈ V .
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Somewhat analogously to Remark 24, we have

Lemma 30. A one-step model (X, τ, t) is a one-step universal simuland for a one-step
formula φ over V iff t |=τ φ and for every one-step model (Y, ϑ, s) such that s |=ϑ φ,
the relation xSy ⇐⇒ τ̆(x) ⊆ ϑ̆(y) is a one-step Λ-simulation between t and s.

Remark 31. Universal simulands need not be unique if they exist. However, one can
assume w.l.o.g. that in a universal simuland (X, τ, t), every x ∈ X is uniquely deter-
mined by τ̆(x) (quotient (X, τ, t) by the equivalence relation induced by τ̆(y)).

The main technical result of this section is then the following.

Definition 32. The T -structure Λ admits (one-step) universal simulands if every con-
junctive (one-step) formula has a universal simuland.

Theorem 33. If Λ admits one-step universal simulands, then Λ admits universal simu-
lands.

Proof ((sketch)). Induction on rank(φ). We have φ =
∧
i∈I ♥iχi for a finite (possibly

empty) set I . Take Vφ = {aχi | i ∈ I} and decompose φ as φ = φ̃ρ into a one-step
formula φ̃ =

∧
i∈I ♥iaχi and a substitution ρ(aχi) = χi. Let (X, τ, t) be a one-step

universal simuland for φ̃. By induction, we have, for each x ∈ X , a universal simuland
(Cx, x) with Cx = (Yx, ξx) for

∧
p∈τ̆(x) ρ(p) with root x; w.l.o.g. the Yx are pairwise

disjoint. Pick a fresh xφ, and let (Cφ, xφ) be the resulting collage over (X, τ, t), with
Cφ = (Y, ξ). Then (Cφ, xφ) is a universal simuland for φ. ut

We note in passing that the theorem has, under mild additional assumptions, a converse:

Definition 34. A T -structure Λ is called non-trivial if there are infinitely many inde-
pendent formulas I = {χ1, χ2, . . .}, independent in the sense that for every finite subset
H of I and every χi /∈ H , H 6|= χi.

This assumption is obviously rather harmless; in particular, is satisfied whenever Λ
contains infinitely many propositional atoms. Observe that any finite conjunction of
independent formulas is by definition satisfiable.

Theorem 35. If Λ is non-trivial and admits universal simulands, then Λ admits one-
step universal simulands.

For tractability, universal simulands are not enough, they also need to be small. We
reiterate, however, that we believe that universal simulands are of independent interest,
even when they are exponentially large; we do therefore later pay attention also to
examples where universal simulands exist but fail to be small.

Definition 36. The T -structure Λ admits small universal simulands if every conjunc-
tive Λ-formula φ has a polynomial-size universal simuland. Moreover, Λ admits lin-
ear one-step universal simulands if every conjunctive one-step Λ-formula over V has
a polynomial-size one-step universal simuland (X, τ, t) such that |τ(a)| ≤ 1 for all
a ∈ V (then w.l.o.g. |X| ≤ |V |). Here, sizes of formulas rely on a suitable representa-
tion for modal operators; in particular, we assume that numbers are coded in binary.
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The point of linear one-step universal simulands is that in the construction of universal
simulands, we never need to copy subformulas, so we avoid exponential blowup. The
following criterion is, then, rather immediate.

Theorem 37. If Λ admits linear one-step universal simulands, then Λ admits small
universal simulands.

Corollary 38. If Λ admits linear one-step universal simulands and one-step Λ-
simulation is in P , then subsumption between conjunctive Λ-formulas is in P .

We now proceed to see some examples. It is not a surprise that universal simulands turn
out to be a rare phenomenon requiring heavy restriction of the logic, and all the more so
for small universal simulands. We do however recover the known examples, and come
across some that are, to our current best knowledge, new. In the examples below, the
term subsumption checking refers to reasoning over the empty TBox; TBox reasoning
is discussed in the next section.

Example 39. Over Kripke frames, we have the following situations depending on Λ.

1. Λ = {♦} admits linear one-step universal simulands: for
∧
i∈I ♦ai, the one-step

model (I, τ, I) with τ(ai) = {i} is a linear one-step universal simuland. This extends
to the multimodal case, of which EL [5] is a syntactic variant (up to the presence of
propositional atoms, treated as in Example 3). We thus recover the known result that
subsumption checking in EL is in P .

2. Λ = {�} admits linear one-step universal simulands: for
∧
i∈I �ai, the singleton

one-step model ({∗}, τ, {∗}) with τ(ai) = {∗} is a linear one-step universal simuland.
(This may seem surprising, but recall that �-simulations are converse simulations.) This
extends straightforwardly to the multimodal case (for k modalities, one needs k states
in a one-step universal simuland). The DL FL0 (see, e.g., [1]) is a syntactic variant of
this, so we recover the known result that subsumption checking in FL0 is in P .

3. Λ = {�,♦} does not admit universal simulands, see Example 26.
4. We define a modality � by �φ := �φ∧♦>, corresponding to the allsome opera-

tor occasionally considered in DLs [9]. Then Λ = {�,♦} does admit one-step unversal
simulands: for

∧
i∈I �ai ∧

∧
j∈J ♦bj , the one-step model (J ∪ {∗}, τ, J ∪ {∗}) (with

∗ /∈ J) given by τ(ai) = J ∪ {∗} and τ(bj) = {j} is a one-step universal simuland.
These one-step universal simulands are never linear unless we interdict ♦. We thus have
that Λ = {�,♦} admits universal simulands but do not obtain tractability. Neverthe-
less, we believe that the fact that conjunctive formulas using � and ♦ have universal
simulands is of interest, certainly as a pleasant model-theoretic property, and poten-
tially also computationally by identifying global restrictions on formulas that prevent
exponential blow-up in universal simulands. (One obvious if maybe a bit high-handed
restriction is to bound the number of modal depths at which diamonds are allowed to
occur in formulas.)

Example 40. Over monotone neighbourhood frames, we have:

1. Λ = {�} admits linear one-step universal simulands — for
∧
i∈I �ai, the one-

step model (I, τ,N) with τ(ai) = {i} and N = {A ⊆ 2I | A 6= ∅} (the upwards
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closure of the polynomial-sized system {{i} | i ∈ I}) is a one-step universal simuland.
Comparison with Example 39 thus reveals that this logic is essentially the same as EL.
This equivalence, however, breaks down under slight variations, such as the following.

2. Take Λ = {�}, again abbreviating �a = �a ∧ ♦>. For
∧
i∈I �ai with I 6= ∅

(the case I = ∅ is simpler), the one-step model (I ∪ {∗}, τ,N) with τ(ai) = {i}
and N = {A ⊆ 2I∪{∗} | A 6= ∅} is a one-step universal simuland. We obtain that
subsumption between conjunctive {�}-formulas in monotone modal logic is in P , to
our knowledge a new result, which does not seem to correspond to a variation of EL.
The modalitiy � with �a = �a∧♦a can be treated similarly (with N = {A ⊆ 2I∪{∗} |
A 6= ∅∧∗ ∈ A}). The functorM of Example 5 has more predicate liftings than P , and
we expect that our approach will work for further variants.

Example 41. For graded logic, we have the following.

1. Λ ⊆ {♦k | k ∈ N} does not admit universal simulands unless |Λ| ≤ 1, a boring
case that is not really different from {♦} over Kripke frames. The reason for this is
roughly that for a conjunct ♦ka in a conjunctive one-step Λ-formula one will need to
have a multiplicity-(k + 1) element satisfying exactly a. But then for n such conjuncts
♦kiai, the model will satisfy ♦−1+

∑
(ki+1){a1, . . . , an}, which will not necessarily

hold in other models of
∧
♦kiai; and this is visible to the logic unless |Λ| ≤ 1.

2. Λ = {�k | k ∈ N}: For
∧
i∈I �kiai, the one-step model (X, τ, b) with

X = {ki | i ∈ I} ∪ {∞}
τ(ai) = {n ∈ X | ki < n}
b(n) = n−max{k ∈ X | k < n}

(where max ∅ = 0) is a one-step universal simuland, so that conjunctive diamond-free
formulas in graded modal logic have universal simulands. One-step universal simu-
lands for

∧
i∈I �kiai are linear iff |{ki | i ∈ I}| ≤ 1. Thus, {�k} admits small

universal simulands. As states in universal simulands then effectively have only two
successors, the problem with computing simulation discussed in Example 22 disap-
pears, so that subsumption checking between conjunctive graded formulas mentioning
only one graded box is in P , to our knowledge a new result. (Note that Λ = {�k} is not
quite as boring as Λ = {♦k}; we can read �kφ as ‘almost necessarily φ’, and universal
simulands for {�k} look different from the ones for {�}.)

5 Terminologies

When coalgebraic logics are applied in knowledge representation, i.e. are seen as a form
of generalized description logic, one will typically wish to reason with global assump-
tions; in description logic (DL) terms, this amounts to reasoning over a terminology
or TBox, which specifies properties to be satisfied everywhere in a model. Formally,
a general TBox is a finite set T of equivalence axioms of the form φ ≡ ψ, where
φ, ψ ∈ L(Λ). A model C satisfies T (C |= T ) if JφKC = JψKC for every axiom
φ ≡ ψ ∈ T . Inclusion axioms of the form φ v ψ (as showcased in Fig. 1) can then
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be encoded as φ ∧ a ≡ ψ with a being a fresh proposition. Reasoning relative to T
amounts to restricting attention to models satisfying T .

We assume from now on that Λ is a disjoint union Λ = Λp∪∆, where∆ consists of
finitely many propositions (note that Λp may contain propositions as well), interpreted
coalgebraically as indicated in Example 3. That is, we assume that T decomposes as
T = Tp × 2∆, with Λp interpreted over the first projection and ∆ over the second pro-
jection. We call Λp the set of primitive operators while the propositions in ∆ are called
defined propositions. Correspondingly, we will refer to Tp-coalgebras as primitive, and
we will say that a T -coalgebra D is based on a primitive coalgebra C if C = (X, ξ)
arises from D = (X, ζ) by composing with the first projection TX → TpX; that is,
D extends C by interpretations of the defined propositions. Moreover, instead of deal-
ing with general TBoxes, we will restrict our attention to classical TBoxes that contain
only definitions of the form a ≡ φ where a ∈ ∆ and φ ∈ L(Λ), under the proviso
that each a occurs on the left-hand-side of exactly one definition. There are three estab-
lished interpretations of such TBoxes using least fixpoints, greatest fixpoints, and loose
(descriptive) semantics, respectively [12]; here, we focus on greatest fixpoint semantics.

Formally, we define a partial order ≤C on coalgebras based on a common primitive
coalgebra C by setting D ≤C E ⇐⇒ JaKD ⊆ JaKE for all a ∈ ∆. Clearly, this
defines a complete lattice, so ≤C-monotone functions have greatest fixpoints. Now let
fT ,C be the function mapping a coalgebraD based on C to the coalgebraE based on C
such that JaKE = JφKD for all a ≡ φ ∈ T (this is well-defined because T is classical).
Since all the operators in Λp are monotone, fT ,C is ≤C-monotone. Moreover, D |= T
iff D is a fixpoint of fT ,C .

Definition 42. We say that a coalgebra D based on a primitive coalgebra C is a gfp
interpretation of T if D is the greatest fixpoint of fT ,C . For a, b ∈ ∆, we say that a is
subsumed by b in T under gfp semantics, notation a vgT b, if JaKD ⊆ JbKD for every
gfp interpretation D of T .

Since we can always add fresh definitions to a TBox, the restriction to elements of ∆ in
the definition of vgT is without loss of generality. For examples in EL see, e.g., [2].

We will now study universal simulands for classical TBoxes, and establish tractabil-
ity of subsumption checking if universal simulands are small. As is common in
lightweight DLs, we will rely on a normal form of TBoxes that can be obtained in
polynomial time [2].

Definition 43. A TBox T is normalized if a ≡ φ ∈ T implies that φ is a conjunctive
one-step Λp-formula over V = ∆ (i.e. φ =

∧
i∈I ♥iai with ♥i ∈ Λp and ai ∈ ∆).

Proposition 44. Every classical TBox T can be translated in polynomial time into a
normalized T ′ (possibly containing fresh defined propositions) such that subsumption
in T and in T ′ with respect to gfp semantics coincide.

For the rest of this section, we assume TBoxes to be normalized. Now, if Λp admits
one-step universal simulands, we can obtain, from every normalized TBox T , a Tp-
coalgebra CT that will be a universal simuland for T in a sense to be made precise
shortly.
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We assume a fixed choice of a one-step universal simuland (Xφ, τφ, tφ) for each
conjunctive one-step Λp-formula φ over V = ∆, which we then call the one-step uni-
versal simuland of φ (recall that ∆ is the set of defined propositions in T ). We assume
w.l.o.g. that Xφ ⊆ P(∆) and τφ(a) = {A ∈ Xφ | x ∈ A} (Remark 31). We then
construct the carrier XT of CT as a subset of P(∆). For A ⊆ ∆, we let φA denote the
conjunction of all right-hand sides of equivalences a = φ in T with a ∈ A (i.e. φA is a
conjunctive one-step Λp-formula over ∆, the expansion of

∧
A according to T ). Then,

XT is the smallest subset of ∆ such that

XφA ⊆ XT for each A ∈ XT .

We define a Tp-coalgebra structure ξT on XT by

ξT (A) = T (iA)tφA

where iA is the inclusion XφA ↪→ XT . We then have a universality property analogous
to the one established for EL in [2]:

Theorem 45. If Λ admits one-step universal simulands, then for every normalized
TBox T , CT as constructed above is a universal simuland, i.e. for any gfp interpre-
tation D of T based on a Tp-coalgebra C, any state x in D, and any a ∈ ∆, x |=D a
iff there is a Λp-simulation S : CT → D such that {a}Sx. Consequently, for a, b ∈ ∆,
a vgT b iff there exists a Λp-simulation S : CT → CT such that {b}S{a}.

Thus, those of the logics listed as having one-step universal simulands in Examples 39–
41 have universal simulands for normalized TBoxes under gfp semantics, among them
the conjunctive fragments of multimodal K with only boxes, only diamonds, and
{�,♦}, respectively, as well as conjunctive graded modal logic with only boxes. This
does not yet imply tractability, even when Λp admits linear one-step universal simu-
lands, since the closure process defining XT may still produce an exponentially large
set. One very simple (and limitative) criterion for smallness of XT is the following.

Theorem 46. If every one-step Λp-formula φ over V = ∆ has a one-step universal
simuland (X, τ, t) such that |τ̆(x)| ≤ 1 for all x ∈ X , then every normalized TBox T
has a universal simuland CT = (XT , ξT ) such that |XT | ≤ |∆| + 1. If additionally
one-step Λ-similarity is in P, then subsumption checking over classical TBoxes in the
conjunctive fragment of L(Λ) is in P .

Example 47. By the above criterion and the description of one-step universal sim-
ulands in Examples 39–41, we regain the known result that subsumption checking
over classical TBoxes with gfp semantics in EL is in P [2]. Moreover, we obtain the
(to our knowledge, new) result that subsumption checking over classical TBoxes with
gfp semantics in the conjunctive fragment of the monotone modal logic of � (with
�a = �a ∧ ♦>) is in P , similarly for the modality �a = �a ∧ ♦a.

For the remaining cases with linear one-step universal simulands, we need suitable re-
strictions on T and on one-step universal simulands to guarantee smallness of CT .

One strong condition on one-step universal simulands (X, τ, t) is to require that
there is at most one x ∈ X such that τ̆(x) 6= ∅. By the description of one-step universal
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simulands in Examples 39 and 41, this includes two of our remaining examples, the
conjunctive fragment of K with only boxes and the conjunctive fragment of graded
modal logic with only one graded box �k. It excludes the multimodal version of the
former, i.e. FL0, and in fact reasoning over even the most restrictive (i.e. acyclic, see
below) TBoxes in FL0 is known to be at least coNP -hard [12].

Additionally, we need to restrict T . We define a relation U (‘uses’) on ∆ by aRb iff
b occurs in the (unique) φ such that a = φ ∈ T . Following standard terminology, T is
acyclic if U is acyclic. Moreover, call T reflexive if U is reflexive; roughly, this means
that the propositions defined by T as greatest fixpoints must hold ‘without gaps’, i.e.
are always inherited down to direct successor states (rather than, say, only to grandchil-
dren). Under the above restriction on one-step universal simulands, CT is easily seen
to be polynomial-sized if T is either acyclic or reflexive; summing up: Subsumption
checking in gfp semantics over acyclic or reflexive TBoxes in the conjunctive fragments
of K with only boxes or graded modal logic with only one graded box is in P , both to
our knowledge new results. The condition ‘acyclic or reflexive’ can in fact be relaxed
to require only that all a ∈ ∆ that are on a U -loop are on a U -loop of bounded length.

6 Conclusions

We have developed the basic concepts of lightweight coalgebraic logics. These are con-
junctive fragments of coalgebraic modal logics characterized by allowing for universal
simulands associated to formulas in such a way that satisfaction of a formula is equiva-
lent to simulation of its universal simuland. Although additional restrictions are needed
to obtain smallness of universal simulands and hence tractable reasoning, we have the
impression that universal simulands are of independent interest as a model-theoretic
phenomenon, and may prove to be computationally useful even in cases where small-
ness does not hold in general. We have established that various logics of interest admit
universal simulators, including the diamond-free conjunctive fragment of graded modal
logic and the conjunctive fragment of multimodal K (i.e. of ALC).

By an additional analysis of the size of universal simulands, we can establish that
checking subsumption (i.e. local consequence) is in P under suitable additional restric-
tions, occasionally even over so-called classical TBoxes with gfp semantics. We thus
recover known results for the relational logics EL and (without TBoxes) FL0, and
moreover obtain several new tractability results, specifically for

– the conjunctive fragment of the monotone modal logic of � (where �a = �a ∧
♦>— a logic of reasonable parents that do not win arguments advocating absurd
propositions) with classical TBoxes under gfp semantics; similarly for � defined
by �a = �a ∧ ♦a in place of �.

– the diamond-free conjunctive fragment of K over acyclic or reflexive TBoxes; and
– the conjunctive fragment of graded modal logic with only one graded box over

acyclic or reflexive TBoxes.
– the conjunctive diamond-free fragment of K over reflexive TBoxes, which may

be thought of as a logic of safety properties in transition systems (essentially the
fragment of the µ-calculus with only �, ∧, and ν).
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We expect that (even without size bounds), universal simulators can be used to estab-
lish the existence of least common subsumers. Another core issue for future research
is lightweight reasoning over general TBoxes (i.e. finite sets of arbitrary inclusion ax-
ioms), which is known to remain tractable in the case of EL [8].
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Appendix: Omitted Proof Details

Proof of Lemma 9 (Collage lemma) The second equivalence follows directly from
naturality of ♥. For the first one, one proceeds by induction on φ; the relevant case is
the modal one, for which we have:

x |=C ♥ψ ⇐⇒ T (↪→Yx)(ξx(x)) ∈ ♥Y JψKC
⇐⇒ ξx(x) ∈ ♥Yx(JψKC ∩ Yx) (naturality)
⇐⇒ ξx(x) ∈ ♥YxJψKCx (IH)

⇐⇒ x |=Cx ♥ψ.

ut

Proof of Corollary 11 The first case follows directly from the collage lemma. For the
second one we prove the positive case:

t |=τ ♥p ⇐⇒ t ∈ ♥Xτ(p)

=⇒ t ∈ ♥X(Jρ(p)KC ∩X) (τ(p) ⊆ Jρ(p)KC by 1 + monotonicity)
⇐⇒ ξ(r) ∈ ♥Y Jρ(p)KC (collage lemma)
⇐⇒ r |=C ♥ρ(p).

ut

Proof of Proposition 16 Let (Cφ∨ψ, xφ∨ψ) be a canonical model for φ ∨ ψ; in partic-
ular, xφ∨ψ |= φ ∨ ψ, which means that x |= φ or x |= ψ. W.l.o.g. assume the former.
Now, take any (D, y) with y |= φ∨ψ; since (Cφ∨ψ, xφ∨ψ) and (D, y) are Λ-similar, we
conclude (using Lemma 16) that y |=D φ. Hence, φ ∨ ψ v φ and therefore ψ v φ. ut

Proof of Proposition 25 Induction over the formula structure, with trivial Boolean
cases (noting that these do not include negation). For the modal case, we have

x |=C ♥ρ ⇐⇒ ξ(x) |= ♥JρKC
=⇒ ζ(y) |= ♥S[JφKD] S Λ-A-simulation
=⇒ ζ(y) |= ♥JφKD induction, monotonicity
⇐⇒ y |=ζ ♥φ.

ut

Proof of Theorem 27 ‘Only if’: We have xφ |=Cφ φ, so by assumption xφ |=Cψ ψ, so
that we are done by the definition of universal simuland.

‘If’: Let (D, y) be a pointed coalgebra with y |=D φ. By the definition of uni-
versal simuland, (Cφ, xφ) and (D, y) are Λ-similar. By Proposition 15, Λ-similarity is
transitive, so that by assumption it follows that (Cψ, xψ) and (D, y) are similar; by
Proposition 16, y |=D ψ. ut
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Proof of Theorem 33 Induction on rank(φ). We have φ =
∧
i∈I ♥iχi for a finite

(possibly empty) index set I . Take Vφ = {aχi | i ∈ I} and decompose φ as φ = φ̃ρ into
a one-step formula φ̃ =

∧
i∈I ♥iaχi and a substitution ρ(aχi) = χi. Let (X, τ, t) be a

one-step universal simuland for φ̃. By induction, we have, for each x ∈ X , a universal
simuland (Cx, x) with Cx = (Yx, ξx) for

∧
p∈τ̆(x) ρ(p) with root x. We assume w.l.o.g.

that the Yx are pairwise disjoint. Pick a fresh xφ, and let (Cφ, xφ) be the resulting
collage over (X, τ, t), with Cφ = (Y, ξ).

We claim that (Cφ, xφ) is a universal simuland for φ. By construction, (Cφ, xφ)
positively fulfills ρ so that xφ |=C φ by Corollary 11. It remains to show that given
a coalgebra D = (Z, ζ) and z0 ∈ Z such that z0 |=D φ, xφ and z0 are Λ-similar.
Define a one-step model (Z, ϑ, ζ(z0)) by putting ϑ(a) = Jρ(a)KD. Then ζ(z0) |=ϑ φ̃,
so we have a one-step Λ-simulation S between t and ζ(z0) such that S[τ(a)] ⊆ ϑ(a)
for all a. This implies that whenever xSz then z |=D

∧
a∈Vφ ρ(a), so that there exists a

Λ-simulation Sxz between (Cx, x) and (D, z). Then R = {(xφ, z0)} ∪
⋃
xSz Sxz is a

Λ-simulation between (Cφ, xφ) and (D, z0). ut

Proof of Theorem 35 Assume a satisfiable one-step formula φ =
∧
i∈I ♥ipi is given.

We identify each pi with one of the infinitely many independent formulas that exist
since Λ is non-trivial and thus set ρ(pi) := χi. The first thing to note is that φρ is
satisfiable; this follows directly from the Corollary 11 and the fact that every (finite)
conjunction of independent formulas is satisfiable. Hence, let (Cφρ, xφρ) be a canonical
model for φρ, with Cφρ = (X, ζ), and let (X, τ, t) be its décollage following ρ which,
by the décollage lemma satisfies φ. In order to see that it is canonical we need to verify
that it is one-step simulated by every other model for φ.

So let (Y, σ, s) be such that σ, s |= φ. As before, we build a collage (D, r) over
(Y, σ, s), with D = (Z, ξ), that positively fulfills ρ but we insist that for each y ∈ Y ,
the rooted coalgebra (Dy, y) used in the collage, withDy = (Zy, ξy), need be canonical
for

∧
p∈σ̆(y) ρ(p). The canonicity condition guarantees that for q /∈ σ̆(y), y 6|=Cy ρ(q)

(otherwise we would have
∧
p∈σ̆(y) ρ(p) |= ρ(q), which would violate the independence

assumption) and, by the collage lemma, y 6|=C ρ(q). We thus conclude that, for y ∈ Y ,
y ∈ σ(p) ⇐⇒ y |=C ρ(p). Moreover, by Corollary 11, r |=C φρ, so by canonicity of
(Cφρ, xφρ), there is a simulation S : Cφρ → D with xφρSr.

Now, for A ⊆ X and ♥ ∈ Λ, we have:

t ∈ ♥XA =⇒ ζ(xφρ) ∈ ♥XA
=⇒ ξ(r) ∈ ♥Y ′S[A] (canonicity)
⇐⇒ T (↪→Y )(s) ∈ ♥Y ′S[A] (collage)
⇐⇒ s ∈ ♥Y (S[A] ∩ Y ) (naturality)
=⇒ s ∈ ♥Y Tτ,σ[A] (monotony + S[A] ∩ Y ⊆ Tτ,σ)

We only need to verify that S ∩ (X × Y ) ⊆ Tτ,σ , which was used on the last step. For
the sake of contradiction, assume that for x ∈ X and y ∈ Y , we have xSy but it is
not the case that xTτ,σy. This means that there is a p such that x ∈ τ(p) but y 6∈ σ(p).
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By construction (as shown above), the latter implies that y 6|=C ρ(p); but we also have
x |=ζ ρ(p) and xSy and hence a contradiction. ut

Proof of Proposition 44 The corresponding translation for EL [2] transfers straightfor-
wardly to the general coalgebraic case, as its correctness depends only on replacement
of equivalents under modalities, which is a valid proof principle in coalgebraic logic.

ut

Proof of Theorem 45 We prove the first claim; the second is an easy corollary.
‘If’: We first show that when we extendCT to a T -coalgebraDT by puttingA |=DT

a ⇐⇒ a ∈ A (recall that XT consists of subsets of ∆) then

DT is a post-fixpoint of fT ,C0
T

. (3)

i.e. for all a = φ ∈ T ,
JaKDT

⊆ JφKDT
.

So let A |=DT a, i.e. a ∈ A. We have to show A |=DT φ, i.e. ξT (A) |=τ φ where
τ(a) = JaKDT

= {B ∈ XT | a ∈ B} (recall here that φ is a one-step Λp-formula
over ∆). Now ξT (A) = T (iA)tφA , so by naturality of predicate liftings our goal is
equivalent to tφA |=τφA

φ, as τφA(a) = τ(a) ∩ XA. The latter follows from the fact
that tφA |=τφA

φA by construction, since φ is a conjunct of φA.
Now we proceed by coinduction: We define a T -coalgebra DS based on C by

putting for a ∈ ∆

x |=DS a ⇐⇒ (ASx for some A ∈ XT such that a ∈ A).

Since D is the gfp of fT ,C , we are done once we show that DS is a post-fixpoint of
fT ,C ; that is, we have to show that for a ∈ ∆ and the unique a = φ ∈ T , we have

JaKDS ⊆ JφKDS .

So let x |=DS a, i.e. we have A ∈ XT such that a ∈ A and ASx. We have to show that
x |=DS φ. Since by construction, S : DT → DS is a Λ-simulation, it suffices to show
that A |=DT φ; this however is immediate from (6).

‘Only if’: Let D be a gfp interpretation of T based on C = (Y, ζ), and let y |=D a.
Define a relation S ⊆ XT × Y by

ASx ⇐⇒ x |=D

∧
A.

Then clearly {a}Sx; we claim that S is a Λp-simulation. So let ASx, i.e. x |=D

∧
A,

and let ξT (A) |= ♥B for some ♥ ∈ Λ, B ⊆ XT . We then have to show ζ(x) |=
♥S[B]. Since ξT (A) = TiA(tφA), we have tφA |= ♥(B ∩ XφA by naturality of
predicate liftings. Since D is a (gfp) interpretation of T , we have x |=D φA and hence
ζ(x) |=ϑ φA where ϑ(a) = JaKD for all a ∈ ∆. But (XφA , τφA , tφA) is a universal
simuland for φA, so it follows that ζ(x) |= ♥R[B∩XφA ] whereBRy ⇐⇒ B ⊆ ϑ̆(y)
(recall that τφA(a) = {B ∈ XφA | a ∈ B}). Now R[B ∩ XφA ] ⊆ S[B]: when
B ∈ B ∩ XφA ] and BRy, then y |=ϑ

∧
B, hence y |=D

∧
B so that BSy. By

monotonicity, we obtain ζ(x) |= ♥S[B] as required. ut
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